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ON SIMPLE GOEDEL NUMBERINGS
AND TRANSLATIONS*

J. HARTMANIS anp T. P. BAKER?t

Abstract. In this paper we consider classes of Goedel numberings, viewed as simple models for
programming languages, into which all other Goedel numberings can be translated by computationally
simple mappings. Several such classes of Goedel numberings are defined and their properties are
investigated. For example, one such class studied is the class of Goedel numberings into which all
other Goedel numberings can be translated by finite automata mappings. We also compare these
classes of Goedel numberings to the class of optimal Goedel numberings and show that translation
into optimal Goedel numberings can be computationally arbitrarily complex, thus indicating that
from a computer science point of view, optimal Goedel numberings have undesirable properties.
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1. Introduction. It is well known [1] that all (acceptable) Goedel numberings
of the partial recursive functions are recursively isomorphic and thus, from an
abstract recursive function theory point of view, they can all be considered equiv-
alent. On the other hand, from a computational complexity point of view, this is
definitely not the case, since translations between Goedel numberings can be
computationally arbitrarily complex. In particular, if we view Goedel numberings
as simple models for programming languages, we are interested in those Goedel
numberings into which all other Goedel numberings can be translated easily.

In this paper we study the classification of Goedel numberings by the
computational complexity of translating all other Goedel numberings into them.
The central concept of this study is the “complexity class” of Goedel numberings,
which is defined (for any computational complexity measure) by giving a recursive
bound and then considering all Goedel numberings into which any other Goedel
numbering can be translated by a mapping whose computational complexity does
not exceed the given bound.

We show that there exist Goedel numberings into which all other numberings
can be translated by finite automata mappings, and refer to these as regular
Goedel numberings. It is easily shown that for regular Goedel numberings, the
S,-function and the function giving the fixed point, guaranteed by the recursion
theorem [2], can also be chosen to be finite automata mappings. As a matter of fact,
the computational complexity of translations into a Goedel numbering are
directly related to the computational complexity of the Si-function of the
numbering.

We show that there exist infinitely many different complexity classes of Goedel
numberings and investigate some properties of these classes. For example, using
the operator gap theorem [3], we prove that there exist, in any complexity measure,
infinitely many recursive bounds ¢ such that all the Goedel numberings in the
complexity class defined by the bound ¢ are also isomorphic to each other under
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isomorphisms whose complexity is bounded by t. On the other hand, we have left
as an open problem whether all the regular Goedel numberings are isomorphic
under finite automata mappings.

We show that for every Goedel numbering ¢ (and any computational
complexity measure [4]) we can effectively give a recursive bound t(n) such that
for any other Goedel numbering s, we can choose a translation of ¥ into ¢ whose
computational complexity is bounded by #(n). We also consider the problem of
recursively bounding the length of translated Goedel numbering indices to the
indices which are translated. Here we again show that there exists, for every
Goedel numbering ¢, a recursive function f such that for any other Goedel
numbering there exists a translation into ¢ which is bounded by f.

Finally, to relate the classification of Goedel numberings by the computational
complexity of translations from all other Goedel numberings, we consider the
previously studied optimal Goedel numberings [S]. A Goedel numbering ¢ is
optimal if for any other Goedel numbering i there exists a constant ¢ and a transla-
tion ¢ of Y into ¢, such that o(i) < ¢ -i. Though these optimal numberings have
some nice mathematical properties, we show that, from a computer science point
of view, they have undesirable properties, since the translations into or between
optimal Goedel numberings can be computationally arbitrarily complex and that,
similarly, their S}-functions and the functions satisfying the recursion theorem
must be computationally arbitrarily complex.

2. Complexity classes of Goedel numberings. Let R, and P, denote the
recursive and partial recursive functions of k variables, respectively. For all g in
Py, let g, = Ax[g(i, X)].

A (an acceptable) Goedel numbering, GN, is a recursive enumeration of the
partial recursive functions which satisfies the universal machine theorem and the
S theorem [1], [2].

Thus a GN of P, is a function ¢* in P, , , such that for all g in P, , , there exists
atin R, satisfying

8, Xq, Xy - o0y X)) = giX 1, Xa, 00, X)) = DXy, Xp, 000, X))

In this paper we are primarily concerned with GN’s for P,. Since we are
interested in those GN’s into which all others can be easily translated, we will
define complexity classes of GN’s in terms of the computational complexity of
translations from other GN’s.

Note that in actual translations from one programming language into
another, the translations are mapping sequences over finite alphabets into other
sequences over a finite alphabet. Thus we will view an index i in a Goedel number-
ing as the binary sequence representing i and express some of our results in terms
of operations on sequences. It should be noted that the whole treatment can easily
be transcribed to the convention that we are indexing algorithms by the set +,
and thus avoid some of the technical difficulties of mixing integers and their binary
representations.

DEFINITION. For any GN ¢' of P (¢'(i, x) = ¢«(x)) and every y in P,, a
translation of \ into ¢ is a recursive function ¢ such that

Wi, %) = $X(0(i). %) = ).

We will denote translations by writing o:1y — ¢'.
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DEFINITION. Let C be any class of recursive functions. Then
GNC = {¢!|¢'isaGNand (V¢ in P,)3 oin C)[a:y — ¢']}.

Thus GNC consists of those GN’s into which all other GN’s can be translated
by functions from C. Usually we will let C be some well-known class of functions
of bounded computational complexity.

For example, let GNReg denote the class of all GN’s into which all other
GN’s can be translated by finite automata mappings (i.e., deterministic gsm
mappings [6]). We refer to these as regular GNs.

Similarly, let C = Prfx and C = Pstfx denote, respectively, the class of
functions which prefix and postfix a fixed string to the representation of i. That
is, 0, 1s in Prfx iff there exists w such that for all i, 6(i) = wi. We refer to GNPrfx and
GNPstfx as prefix and postfix GN’s, respectively.

The class GNLBA consists of all those GN’s into which other GN’s can be
translated by deterministic linearly bounded automata mappings [6].

It should be observed that several programming languages and many natural
GN’s belong to GNReg and GNPrfx. Intuitively speaking, every GN or formal
programming language in which we can “freely” program is in GNPrfx, since for
any other GN s, we just have to use a prefix w with the meaning: “This is a descrip-
tion of GN y; what follows is a description of an index i; please compute V;.”
Thus (i) = wi will be the desired translation of Y into ¢.

Next we prove formally that postfix GN’s exists. The postfix GN exhibited
is the same as used by Schnorr [5] to show that there exist optimal GN’s.

A GN ¢ is said to be optimal iff, for every GN ¥, there exists a positive constant
¢ and a translation ¢ of i into ¢ such that for all i, a(i) < ¢ -i. We denote the class
of optimal GN’s by GNOpt.

THEOREM 1. T here exist postfix GN’s, and proper containment exists between
the following classes of GN’s as indicated :

GNPstfx @ GNReg « GNLBA < GNOpt.

Proof. Let ¢? be any GN of P, and let g(i, n) = i2""' + 2" — 1. The pairing
function g is a bijection, and if we interpret it as mapping sequences into sequences,
where i is the binary representation of the ith integer and 1" represents the sequence
of n ones, we get g(i, n) = i0(1"). Thus Ai[g(n, i)] is a postfix function for every n,
and therefore ¢, ;(x), given by

@[, n, x] = Plgn, i), x] = Pyq,(X),

g(n,i)

is a postfix GN.
It is seen from the definitions that

GNPsfx € GNReg <€ GNLBA = GNOpt.
To show that the containments are proper requires more work, but the proof that
GNPsfx =« GNReg = GNLBA

follows by a reasonably straightforward construction, which we do not give here.
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The proof that GNLBA < GNOpt follows from two observations:

1. From the definition of GNLBA, we know that any other GN can be
translated into any ¢ in GNLBA by a deterministic linearly bounded automaton
[6]. Thus these translations are all in the complexity class of L(n) = n tape-bounded
Turing machine computations [4].

2. The proof of Theorem 10 (§3) shows that for every recursive L(n) there
exists a GN ¢ which cannot be translated into a ¥ in GNOpt by any L(n) tape-
bounded Turing machine.

Thus GNLBA = GNOpt, which completes the proof.

In [5] it was shown that ¢ is in GNOpt iff ¢» admitted an Si-function which is
linearly size bounded in the second variable, i.e., for every n there exists a ¢ such that
for all i, Ai[S}(n, i)] < c-i. A similar proof shows our next result.

THEOREM 2. A GN ¢ is in GNPrfx, GNPstfx, GNReg and GNLBA iff ¢
admits an S} -function which is, in the second variable, a prefix, postfix, gsm or linearly
bounded automaton mapping, respectively.

Proof. We give the proof for a GN ¢ in GNReg.

Let ¢ be a GN of P,, ¢? a GN of P, and S} such that for all n, i, x,

d)f(i, X) = ¢s{(n,i)(x)a

and assume that for any fixed n, S}(n, i) is a gsm mapping. Then for any other GN
¥ of P, there exists an n, such that the numbering y is given by y,(x) = fﬂ(i, X).
But then

¢S{(no,i)(x) = d)io(ia X),

and we see that ¢ = Ai[S}(n,, i)] is the desired gsm translation.

Conversely, if GN ¢ is in GNReg and ¢ is the GN of Theorem 1, then there
exists a gsm mapping o such that

¢oog(n,i)(x) = $g(n,i)(x) = d)z(ia n, X).

Since g (defined in Theorem 1) is a postfix translation for any fixed n, o o g(n, i) is a
gsm mapping. Thus ¢ admits Si(n, i) = o o g(n, i) as an S}-function which is a gsm
mapping in the second variable. The other cases follow by an identical argument.

Next we show that those GN’s into which all others can be easily translated
have easily computable recursion theorem fixed points.

We recall that by the recursion theorem [2], for every GN ¢ of P, there exists
a recursive function n such that for all z,

¢n(z) = ¢¢zln<zn~

THEOREM 3. If ¢ is in GNPrfx, GNPstfx, GNReg or GNLBA, then there exists
a prefix, postfix, gsm or 1ba mapping n, respectively, such that for every z,

Py = P poinzn-

Proof. The proof follows the standard proof of the recursion theorem [2].
Define

Y(u, x) = ¢y (%) if ¢,(u) converges else divergent.
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Let g be a recursive function (translation) such that y(u, x) = ¢, (x). Thus for
¢, total, we have

¢¢..(u) = d)y(u)'
Define

Uz, x) = ¢,0g(x) ifd,o g(x) converges else divergent

and let h be the recursive function (translation) such that u(z, x) = ¢,,,(x). Thus for

¢, total, we have ¢,,, = ¢, g. By combining these equalities, we get for all z
such that ¢, is total,

Dgoney = Ponathan = Poatgonan:
Thus by setting g o h(z) = n(z), we get that

Ppnen = Prcer-
Furthermore, since g and h are translations, we can choose them to be prefix,
postfix, regular, or lba mappings, respectively, and therefore n = g o h will be a
mapping of the same type, as was to be shown.
Schnorr has shown that the optimal GN’s are all isomorphic under linearly

size bounded mappings. Thus, in a mathematical sense, they form a natural class
of GN’s.

For the prefix and postfix GN’s, we know that they cannot be isomorphic
under prefix and postfix mappings, since these mappings are (but for the trivial
case) proper into mappings. On the other hand, our next result shows that they are
isomorphic under gsm mappings. Thus they form classes of GN’s which are very
similar in a computational sense.

THEOREM 4. Let ¢ and ¢ be in GNPrfx or GNPstfx. Then there exists a permu-
tation © such that = and 1~ are gsm mappings, and

¢; = 4_’1:(;‘) and ¢; = ¢n“(i)'

Proof. We give the proof for GNPrfx. Let w and v be the prefix sequences
which translate ¢ into ¢ and ¢ into ¢, respectively. Then

1(1 + 0% = {(wo)zlk = 0, 1,2, ---and z ¢ w(0 + 1)%)
U {wow)zlk = 0, 1,2, ---and z ¢ v(0 + 1)*}
= {v(wv)'zlk = 0,1,2, ---and z ¢ w0 + 1)*}
U {(ww)zlk = 0,1,2, ---and z ¢ v(0 + 1)*}.
Define
a[(wo)*z] = v(wv)'z fork =0,1,2,---and z ¢ w0 + 1)*,
n[wow)z] = (ow)¥z fork =0,1,2,---and z ¢ v(0 + 1)*.

We see that 7is a permutation of the set 1(0 + 1)*, and since ¢; = ¢,,; and §; = ¢,;,
we see that for j = (wv)'z, §; = ¢,; = ¢,;, and for j = wow)*z, P k. = Puewk

w(vw)'Vz

and therefore ¢; = @, k, = ¢, Finally we note that a finite automaton can
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perform the permutation n. The arguments for =~ ! can be carried out similarly,
which completes the proof.

It should be noted that in the previous proof, the finite automaton computing
© either prefixed the sequence v or removed the sequence w. A restricted regular
mapping is a finite automaton mapping which can only prefix a fixed string or
remove a fixed string from the input sequence. We call the GN’s into which all
other GN’s can be mapped by such mappings restricted regular GN’s. We conjec-
ture that the restricted regular GN’s are all isomorphic under restricted regular
mappings. Unfortunately, so far we have not been able to prove this conjecture.

We also conjecture that regular GN’s are not isomorphic under finite
automata isomorphisms. Again, we have not been able to prove this simple
sounding conjecture.

We can prove though that the complexity of the isomorphisms between
GN’s in GNReg or GNLBA, respectively, are of bounded computational
complexity, and in the next sections we will see that this is not true for GNOpt.

To do this, we will prove a more general result which holds in all computational
complexity measures. For this purpose we recall [4] that a computational complexity
measure 1s given for a GN ¢ by assigning to every algorithm ¢, a step counting
function @, such that:

1. for all i and n ¢(n) is defined iff ®(n) is defined;

2. it is recursively decidable for all i, m, n whether ®,(n) = m.

For a computational complexity measure, denoted by (¢, @) or just O, we
define for every recursive function t a complexity class

C? = {f|f is a recursive function, for some i f = ¢, and ®(n) < t(n) a.e.}.

Note that the complexity classes are not changed if we change the GN on which
the computational complexity measure is defined. Thus quite often we will not
explicitly mention on what GN the measure is defined.

Let GNC? denote all the GN’s into which all other GN’s can be mapped by
mappings in complexity class CP.

THEOREM 5. For every computational complexity measure @, there exist
infinitely many different classes of GN’s GNCP.

Proof. By a straightforward diagonal argument, we can construct for every
recursive t and GN ¢ another GN y such that ¢ cannot be translated into
by any function in C?.

THEOREM 6. For any computational complexity measure ® and t in R,, there
exists a t' in R, such that the isomorphisms between GN’s in GNC® can be chosen
from C?.

Proof. We only outline the proof. Let ¢ and ¢ be two GN’s and ¢; = ¢ and
¢; = p be two translations of ¢ into ¢ and ¢ into ¢, respectively. Then we know
from the proof of the isomorphism theorem for Goedel numberings [1] that the
index of the isomorphism 6 yielded by the theorem (i.e., a 1-1 translation of ¢
onto ¢)is given by a recursive function g of the indices of ¢, and ¢ j»thatis,é = ¢, ;.
It is easily seen that there exists another recursive function 4 such that the computa-
tional complexity @ ; of the isomorphism é = ¢, ; is bounded by ¢, ;:

@, 5(X) = Py p(x)  ae
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Furthermore, h can be so chosen that

®,(x) and D(x) < Dy(x) ae.
implies that
D, (%) = dpapx)  ae.

From this it follows that for any two GN’s ¢ and ¢ in GNC} , there exists
an isomorphism & between ¢ and ¢ such that é is in Cg, , , , as was to be shown.

Recall that a recursive operator (say, in one variable) on the partial recursive
functions is given by a recursive function f: N — N such that ¢; = ¢; implies that
br0 = Pray:

It is easily seen from the previous proof or from [1] that the isomorphism
0 is yielded by a recursive operator from the two translations ¢ = ¢; and p = ¢;
between the GN’s ¢ and ¢. The operator is defined by the recursive function g.
Similarly, the recursive function h, yielding the complexity bound

Dy )x) = ¢h(i,j)(x) < pan(x)  ae.,

can be viewed as a recursive operator. Thus we see that the computational
complexity of the isomorphism ¢ is bounded by a recursive operator in the
complexity of the two translations.

When we combine this observation with the operator gap theorem [3] we get
a result obtained jointly with K. Mehlhorn.

COROLLARY 7. For any computational complexity measure ®, there exist
arbitrarily large t in R, such that any two GN’s in GNC? are isomorphic under a
permutation in C®.

Proof. Let Z be the recursive operator yielded by the isomorphism theorem.
Then there exists a recursive operator which bounds the complexity of the resulting
isomorphism in terms of the complexity of the two into mappings; denote it by %'
Then from the operator gap theorem [3], we know that there exists arbitrarily
large recursive t such that

® _ O
C’ = Cqu-

Thus all GN’s in GNC?® are isomorphic under mappings in C®, as was to be shown.

It should be stated again that it would be very interesting to find some natural
complexity classes of Goedel numberings, say GNC, such that all the GN’s in
GNC are isomorphic under permutations in C. For example, we conjecture that
GNLBA is closed under lba isomorphisms.

We describe one reasonably natural class of Goedel numberings which is
closed under isomorphisms of the same type.

Let GNPTIME denote the class of GN’s into which all others can be translated
by deterministic Turing machines whose computation times are bounded by a
polynomial function of the input (index) (i.e., the index, not the length of the
representation of the index!)

The following result is due to R. Constable.



8 J. HARTMANIS AND T. P. BAKER

THEOREM 8. Any two GN’s in GNPTIME are isomorphic under a polynomial-
time bounded Turing machine computable mapping.

Proof. The proof is by a lengthy and careful estimation of run times in the
proof of the isomorphism theorem [1].

A somewhat more natural (and better known) class of GN’s would be the
class into which all other GN’s can be translated by Turing machines whose
computation times are bounded by a polynomial in the length of the input (index).
Unfortunately, the previous proof does not extend to this class of Goedel number-
ings. We conjecture that the answer is positive.

We conclude this section by showing that for any GN ¢' we can give a
recursive function which bounds the complexity of translations from all other
GN’sinto ¢!. Furthermore, there exists for every fixed GN ¢! a recursive function
| and a translation from every other GN into ¢! such that [ bounds the length
of the translated index to the length of the index.

THEOREM 9. Let ® be any computational complexity measure and ¢' a fixed
GN. Then we can recursively obtain from an index of ¢ indices for two recursive
functions s and | such that for any GN ¢ there exists a translation ¢:¢p — ¢! such
that o is in C® and |o(i)| < |l(i)| a.e.

Proof. Let i be a prefix GN and let g, be a translation mapping  into ¢'.
Then for any GN ¢ there exists a sequence w such that a(i) = wi is a translation
of ¢ into . But then ¢, o a(i) = g,(wi) is a translation of  into ¢'. To obtain the
functions s and [, let X,(wi) be the step-counting function of the computation
0o(wi) in the complexity measure ® and define

s(i) = max {Zo(wi)},
[wisli
and similarly,
IG) = |nrliéyls'{Iao(wi)l}-

Clearly, for every ¢ there exists a translation o:¢ — ¢* such that ¢ is in C® and
la(i)| < |ii)| a.e., as was to be shown.

3. Complexity of optimal Goedel numberings. In this section we show that the
computational complexity of translations into optimal Goedel numberings
cannot be recursively bounded. Actually we will show that for any GN ¢, there
exist optimal GN’s such that the translations from ¢ into these optimal GN’s
must be arbitrarily complex. Similarly, we will show that for optimal GN’s the
computational complexity of the Si-function and the function n of the recursion
theorem cannot be recursively bounded.

THEOREM 10. For any computational complexity measure (¢, ®) and recursive
function t, there exists an optimal GN  into which ¢ cannot be translated by any
oin CP.

Proof. Let y be an optimal GN. We will obtain i from y by a recursive
permutation which will not move any index upward by more than one place.
Therefore Y will also be an optimal GN. The construction of { is obtained by
diagonalizing over all possible t-bounded o.

We know that for sufficiently large recursive T, the complexity class C} can be
recursively enumerated [4]. Thus we can assume that ¢, , @,,, ¢,,, -~ is an
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enumeration of the functions in C%, or choose a larger complexity bound T with
an enumerable complexity class.

Let ¢;, ¢;,, ¢;,, - - be a recursive sequence of constant functions such that
$;,00 = k.

We now define the stages in the computation of .

Stage 1. Let y, = y,.

Stage i. By the ith stage, let Y, ¢,, - -, ¢y, be defined. We define ¥,
N; <j = N;;,,as follows: compute ¢, (j) dovetailed forj = N; + I, N; + 2, -,
until

(@) ¢ (j) > N;and ¢ (1) converges, or

(b) ¢ (j) £ N, for more than N, distinct values of [ (where j, is from the
enumeration of ¢;, ¢;,, ---).

This computation is eventually halted by (a) or (b). In case (a), let n = ¢, (j).
Let g be the first p greater than n for which y (1) # ¢ (1) gotten by dovetailing the
computation of y (1) forp =j+ 1,j + 2,---. Let N;,;, = q. We want y,, # ¢;,
so we define Y, =y, for p<n, ¢, =y,, and ¥, =y, for n <p =g, (eg,
see Fig. 1.)

N; h qg=N;.
X L 1 17
l// O e
FiG. 1

Incase (b),let N;,; = N, + land Yy ,, = xy,+, and proceed to Stage i + 1.
If ¢,, translates ¢ into ¥, then we would have

¢, = '//d’ki(p)

for all p. This is not the case if the computation was halted by (a), because of the
definition of . In case (b), at least two different ji, j,, exist such that ¢, (j;) = ¢, (i)
but then

lpd’k;(-];) = lpd’k.(jm) and d)jl # ¢jma

an inconsistency. Thus we see that no ¢, from C? can translate ¢ into the optimal
GN ), as was to be shown.

Next we show that optimal GN’s require computationally arbitrarily complex
S!-functions.

THEOREM 11. For every computational complexity measure ® and recursive
function t, there exists optimal GN ¢ such that for no S\-function is i[S}(n, i)] in C?
for all n.

Proof. Using the previous result we construct two optimal GN’s ¢ and ¢ such
that ¢ cannot be translated into ¢ by a mapping in C?. Let S} be defined for ¢.
Then for some n,, ¢p3(n,, i, x) = @(i, x), and therefore

P*(ng, i, x) = ¢s{(no,i)(x) = Pi(x).

But then o = 1i[Si(n,, i)] is a translation of ¢ into ¢, and therefore 1i[Si(n,, i)]
is not in C?, as was to be shown.
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Similarly, we show that optimal GN’s require arbitrarily complex functions
satisfying the recursion theorem.

THEOREM 12. For any recursive function t and complexity measure (¢, D),
there is an optimal Goedel numbering \ such that every function ¢, satisfying the
recursion theorem condition: for all j,

Vo = Vusnin
is of complexity greater than t.

Proof. We define the desired y inductively, diagonalizing over all the possible
t-bounded ¢, .

Without loss of generality, we may assume that ¢ is an optimal Goedel
numbering. If it is not, we may construct another complexity measure (¢’, ®) with
the same complexity classes such that ¢’ is an optimal Goedel numbering: start
with an optimal Goedel numbering y (we know there are infinitely many of these);
let ¢; =y, for every j, where g is a recursive isomorphism from ¢ to y.

Let ¢}, ¢;,, --- be a recursive subsequence of ¢ consisting of the constant
functions ¢;(x) = A(x)(i), j; > i + 3. ¢ must have such a recursive subsequence
by the S," theorem.

Let

p(n) = min {j; |c > n} and g(n) = min {j; |d > p(n)}.

Note that these are both recursive functions and that they are indices in ¢ of
constant functions which compute indices in ¢ of other constant functions. For

any n, Suppose ¢p(n) = l(x)(a)’ d)a = A(X)(b), d)q(n) = A(X)(C), and d)c = A(X)(d),
then

n<a<b<phn <c<d<gh).

Since for sufficiently large t the functions of complexity ¢ can be recursively
enumerated, we assume without any loss of generality that ¢, , ¢,,, - - -isa recursive
enumeration of the functions of complexity t.

¥ will be defined as a recursive permutation of ¢ in which no index is increased
by more than three, so there will be no question about i being an optimal Goedel
numbering. We assume that ¥, ¥,, ---, Yy, are defined by the ith stage and
proceed to extend the definition to Yy .y, ---, ¥y,+q. Let k = k; and N = N,.
Compute ¢,(j) and ¢; (¢ () for | = N + 1, N + 2, -- -, until one of the following
cases holds. In each case, i is defined for certain critical indices so that for some j,

Yo # Vot

Case 1 1 g () = uli). m > N. ?‘“d [> o + 3 let Yy = ¢, Y1 = gy
Vo = ¢p(jm)’ '//jm = ¢jm’ and N;,, = q(j,)- Then

Yy, = Y1 = Paiy # Pooy = Y = Yo, i

Case 2. If ¢(jp) = j;» let ¥, = Ax)(@) = Ppy» Vo= ¢, and N,y = q(j).
Then

Yy imiin = Va = Ga # Opiy = Vi = V(-
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Case 3. If ¢ (j) =1, let ¥, = baiiys Vi = Mx)(a) = (;Sp(j,), Y, = ¢, and
N;y1 = q(j). Then
Vi = Ya = Pa # gy = Wi = V-
Case 4. If ¢(j) # 1, #j,, > N, and m = max (j, (i), let lpj, = ¢j,,
Y, = d)p(m)’ l/’m(j) = d)q(m)’ N, = q(m). Then
‘/’wj,(ask(jz)) =V = pom # Paom = Yoriin-
Furthermore, y; is defined for all other j (N; <j < N, ) to be ¢;, ¢;_, ¢;_,
or ¢;_ 5, shifting the indices as little as possible; i.e.,
forj:= N; + 1 until N, , do
if (Y; not yet defined)
then l//j L= (Dmin {il ; not yet used to define any y,} .

For example, in Case 1 we have Fig. 2.

é N; ! N m Jm p g =Ny
T L Tty [ : 7 77
U L BN’
X XY ~ T \
v . i1 1 1 0 B |
N; i N m Jm p q
FiG. 2

To see that this computation must halt, suppose Cases 1, 2 and 3 fail for every
I > N;. It follows that Case 4 succeeds for large enough I, since:

&) # 1 (by Case 3)
dul) # Jy (by Case 2)
o) > N; (because (¢,(ji) = N for a.e. [) = Case 1).

Thus for no ¢, in C® can we have that

Youi = lemuna
as was to be shown.
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REALIZATION WITH FEEDBACK ENCODING . I:
ANALOGUES OF THE CLASSICAL THEORY*

DENNIS P. GELLERY

Abstract. For a finite state machine M to realize a machine M’, we usually precede M by a memory-
less input encoder to translate inputs intended for M’ into the input alphabet of M. In this paper we
introduce a modification to this paradigm by introducing feedback from the state of the realizing
machine to the input encoder. The resulting form of realization depends in a very strong way on
(graph) structural properties of the two machines. The characterization theorem, giving necessary and
sufficient conditions for one machine to realize another in this way, involves a new class of mappings
between digraphs. We also investigate a corresponding algebraic structure theory.

1. Introduction and definitions. A major concern of classical automata theory
has been the realization of either the state behavior or the input-output behavior
of machines. The main thrust of the research has always been to realize the given
machine by a loop-free network; that is, by a network for which the digraph
obtained by taking the modules as points and the flow lines between them as
directed arcs has no directed cyclés. In such a network there is no feedback, except
possibly within modules.

As noted by Holland [8], “feedback is a prominent structural feature of most
systems which exhibit complex behavior”. Nevertheless many networks can be
modeled by cascades, i.e., feedback-free networks. The modules of the new net-
work are taken to be the strong components of the original network (see, for
example, [13]). This construction, of course, greatly increases the complexity of the
component modules.

There are advantages both to excluding and including feedback in networks.
On the one hand, there is a large body of techniques available for analyzing feed-
back-free systems and also for deriving feedback-free realizations of a given be-
havior [6]. On the other hand, a feedback-free realization can be artifactual: it
often consists of merely masking those parts of the network with feedback, the
strong components, and considering them as “black boxes”. We thus have a
trade-off between simplicity of the components and simplicity of the interconnec-
tions. It is certainly to be expected that by restricting in some way the form that
feedback is allowed to take, we can strike a suitable balance between the two
extremes.

Thus one motivation of the study we are about to undertake is the desirability
of defining a restricted form of feedback which will prove tractable in both theory
and application. Another is the following. Suppose that we have some given state
behavior which we want to realize by a sequential machine. If the behavior is so
realizable, then, in fact, techniques exist for doing this in an optimal way. However,
it is often the case that additional restrictions are placed on the realization. For

* Received by the editors January 18, 1973, and in final revised form March 7, 1974.

+ Human Sciences and Technology Group, School of Advanced Technology, State University
of New York at Binghamton, Binghamton, New York 13901. This research was supported in part
by the National Institutes of Health under Grant GM-12236 and in part by the National Science
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example, one might want the realizing machine to be expressible as a cascade of
modules from a well-defined set. This, of course, has been studied by Zeiger [12],
Krohn and Rhodes [9] and others. In general, it turns out that the behavior of the
cascade which is derived properly includes the desired behavior. For another
example, take the fault diagnosis problem. Here we might want a realizing machine,
for example, which, if it fails in some way, allows us to determine the cause or
location of the fault, or perhaps even to correct it. Even the simplest fault diag-
nosis properties cannot, in general, be incorporated into the reduced machine
which realizes the given behavior, and it is usually necessary for the realizing mach-
ine to have more states or inputs (and thus, more state circuitry) than the reduced
machine. A second motivation for the study to follow, therefore, is to develop a
form of realization which will allow us to add additional constraints and at the
same time will not cause the same state set growth as the classical theory.

A machine, or finite-state automaton M, consists of a set Q of states, a set I of
inputs, where both Q and I are finite, and a map 6:Q x I — Q. We will often omit
explicit reference to §, and write instead d(q, i) = gi. Of course, é can be extended
to have domain Q x I™, where I is the set of all nonempty strings from I. We
say that a machine M realizes a machine M’ if there are maps ¢:Q =2 Q' and
h:I' =] such that for all g € Q, x' € I', ¢(q)x’ = ¢p(gh(x’)). The map h is called
the input encoder, and ¢ is a homomorphism or SP-homomorphism. If ¢ is one-to-one,
then it is an isomorphism. A machine M simulates a machine M’ if there are maps
¢:0 — Q' and h:I' - I'* such that ¢(q)x' = P(gh(x")).

A Mealy machine M = {Q, I, 9, A, Y consists of a machine {(Q, I, §> together
with a finite set Y of output symbols and an output function A:Q x I — Y. If for
any states ¢q, and g, and any inputs x, and x,, g,X, = ¢,X, implies that A(q,, x,)
= AMq,, Xx,), then the output is a function of the next state, and we will write
Mg, x) = A(gx); such a machine is a Moore machine. We can extend A to have do-
main Q x I* in two ways. First, if x = yx, e I*, where x, € I, then A(g, x)
= Mgy, x;). On the other hand, f:Q x I*" - Y* is the map B(q,x, --- x,)
= AUg, x)Mgxy, X,) - -+ AMgxy -+ X,_1, X,). For a Moore machine, the last ex-
pression is- f(q, x; - - x,) = AMgx)Agx;x,) -+ Agx;x, -+ x,). It is common,
instead, to write B(g, x, --- x,) = A@AMgx,) --- Agx, --- x,) (see [1, p. 79]). We
will be ignoring the output A(g) of the starting state to facilitate later theoretical
analyses, although one could certainly take advantage of this information in
practice.

If M and M’ are machines with output, then M realizes M’ if there are maps
¢:Q2 Q' h:I' 2], g:Y — Y’ such that ¢(q)x’ = ¢(qh(x')) and A'(P(q), x')
= g(Ag, h(x"))).

Given machines M, and M,, let Z be a map Z:Q, x I, —» I,. The cascade
M, o, M, with connecting map Z is a machine M with Q = Q, x Q,, I =1I,,
and (q;, 4,)x; = (4,X1,9,2(q,, x,)); we say that M, is the front component and
M, is the tail component.

The operation of cascading machines is, in general, not associative. On the
other hand, if we write M, -, M,°, M,, we can remove the ambiguity by
completely specifying the maps Z;. If we have a cascade M of n machines M;, we
can writte M = [[M; = N, o, N,, where, in general, both N, and N, can be speci-
fied as cascades of the M.
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A digraph D consists of a set V = V(D) of points together with a collection
(repetitions permitted) X = X(D) of ordered pairs, called arcs, from V x V. If
uv = (u, v) is an arc, we write uv € D and say that u is adjacent to v, v is adjacent
Sfrom u, uv is incident from u and incident to v. A graph G consists of a set V' of points
together with a set (repetitions not permitted) X of unordered pairs of points,
called lines. If there is a line between u and v, we denote it by uv or vu. Two digraphs
D and E are isomorphic (D =~ E) if there is a one-to-one correspondence between
their point sets which preserves adjacency. Such a correspondence between
V(D) and V(D) is an automorphism of D.

A walkin adigraphisasequence W = {(x,, - - -, x,» of arcs, where x; = u;_u;.
We may abbreviate this and write W = ugu, --- u,. A digraph D is strong, or
strongly connected, if there is a walk W = v, --- v,v, such that each point of D
appears at least once as one of the v;.

In much of what follows, we will be dealing with maps between digraphs.
Although it will be convenient to treat these as mappings between the point sets
of the digraphs, we will provide a slightly unconventional definition (see [3]).
The reflexive closure D® of a digraph D is the smallest superdigraph of D which
has a loop at each point. For a point u € D let S(u) be the set of arcs incident from
u, and let S(u) be the set of arcs incident to u. Given digraphs D and E, by a mapping
from D onto E we will mean a mapping ¢: X(D) — X(E®) which is onto X(E) and
which satisfies: for each u e V(D) there is a u’ € V(E) such that ¢(S(u)) = Sw)
and ¢(S(u)) = Su'). A consequence of this definition is that ¢ can be considered
as a map from V(D) onto V(E), and it will at times be convenient to do so. A
mapping ¢:D — E is said to be walkwise (see [10]) if for every walk (x}, x5,
.-+, x;» in E there is a walk {x, x,, ---, x> in D such that ¢(x;) = x;.

A mapping ¢:D — D’ is an admissible homomorphism, or admissible, if when-
ever ¢(u) = ¢(v) and uw € D there is a point w such that vw € D and ¢(w) = $(w).

THEOREM 1. Every admissible homomorphism is walkwise.

Proof. Let ¢: V(D) —» V(D') be admissible, let W' = w --- w;, be a walk in
D', and suppose that w)---w,_, has a walk preimage u, ---u,_,. Since
w,_,w, € D', there are points w, ;€ ¢ '(w,_;) and w,e ¢~ '(w,) such that
w,_w, € D. But then, by admissibility, since ¢(u,_,) = ¢(w,_,), there is a point
u, in D such that ¢(u,) = ¢$(w,) = w, and u,_,u, € D. Therefore u, - -- u, is a walk
in D, and the result follows by induction. [0

If M = {Q, I, 6> is a machine, the digraph D(M) of M has for its points the set
Q and for its arcs the collection of arcs uv such that for some x € I, ux = v; if there
are n inputs x; such that ux; = v, then there are n arcs from u to v. Note that this is
not quite the same concept as the state-transition graph or diagram (see [2, p. 72]),
in which the arcs are labeled with input symbols and, when the machine has out-
puts, the output symbols also appear as labels either on the lines (for a Mealy
machine) or on the points (for a Moore machine).

2. Realization with feedback encoding. Let M = (Q, I, 6> and M" = (Q', I,
0'> be machines, and let h:Q x I' —» I be a map such that for each g € Q the map
hg,-) = h,;:I' > I defined by h(x) = h(q, x') is one-to-one and onto, and let
¢:Q 25 Q. Then M realizes M’ with feedback encoding if for all g € Q and all
x' eI, plg)x" = P(qh(g, x')).
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As in classical realization, the function h encodes inputs for M’ into inputs
for M. In this case, however, the machine exerts a measure of control over the
encoding process by making the encoding dependent on the current state of the
machine. For a simple example, let M and M’ be the machines in Fig. 1. If ¢(q,) = r;
and h is defined by the table

h a b
ol 1 0
q, 0 1

then M realizes M’ with feedback encoding.
We first show the necessity of the one-to-one restriction on the feedback
encoder h.

0 1 1 b a b
0 a
M M’
FiG. 1

THEOREM 2. Let M’ = {Q’, I, &) be any machine, and let M = {Q, I, ) be
a machine such that

1 101 z 101,

(i) for each q; € Q there is an input x; such that for all q; € Q, q;x; = g;.

Then there are maps ¢:Q -2 Q" and h:Q x I' —> I such that for all g€ Q
and x' eI,

P(@)x" = ¢p(gh(g, x")).

Proof. Let ¢ be any map from Q onto Q. Then if ¢(q)y" = ¢(q;), define
h(g;, y') to be the reset input x;; there may be many states g; for which ¢(q;)
= ¢(q;)y’, and any one of these may be chosen. Then for any g€ Q and x' eI,
Hg)x" = ¢(gh(q, x)).

In other words, without the one-to-one and onto restriction, we could model
any machine by a reset machine, whose transition function is independent of its
present state, by, in effect, lumping all the behavior into the h map. While it is often
desirable to transfer some of the complexities of a machine to a combinatorial
circuit in this way, there is a (perhaps ill-defined) point at which it becomes fatuous:
if our purpose is to study the complexities of sequential machines, i.e., machines
with memory, it does us no good to define a canonical form in which all the
complexity resides in a memoryless component.

Often we wish to realize a machine M’ by a submachine of another machine
M. In the present context this can be done by choosing a subset I of I and restricting
h so that for each g, h, is a one-to-one map onto I

THEOREM 3. Let M, realize M, with feedback encoding, and let M, realize M,
with feedback encoding. Then M, realizes M| with feedback encoding.

Proof. Let the realization of M, by M, be defined by ¥:0; — 0, and g:0,
x I, — I5, and that of M, by M, be defined by ¢:Q, - Q,and h:Q, x I, - I,.
For any gq;€Q;, let g, be W(g;) and let g, be ¢(q,). For any x, el
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41X = P4;h(qz, x,)). But hig,,x()€l,, so ¢(q,hq,,x,) = ¢(¥(q38(q3, hlg,,
x1)))). Let © be the composition ¢ o ¥ and define f:Q, x I, —» I, by f(q;,x,)
= g(q3, h(‘¥(q3), x,)). If we can show that for each g, € Q5 the map f,: 1, — I is
one-to-one and onto, then T and f'will define a realization with feedback encoding
of M; by M;.

For each g5 and each x; € I;, we know that there is an x, € I, such that
g(g5,x,) = x5. Also, there is an x, € I; such that A(W¥(q;),x,) = x,. Thus
f(as, x,) = g(q;, h(P(q5), x;)) = x5, and so f, is onto. Now, since f,(x;)
= g(q5, h(¥(q;), x,)) and since both g, and h¥, are one-to-one, it follows
immediately that f,  is one-to-one. [

The outdegree od(u) of a point u in a digraph D is the number of arcs uv in D;
a digraph is outregular if all its points have the same outdegree. The following
lemma is proved in [5].

LEMMA. Let ¢p:D — D’ be admissible, and suppose that D and D’ are both
outregular of degree d. Then for any u and v, the number n of arcs fromu to ¢~ *(p(v))
is the same as the number n’ of arcs from ¢(u) to ¢(v).

THEOREM 4. If M realizes M’ with feedback encoding, then there is an admissible
homomorphism from D(M) onto D(M'). Conversely, if there is an admissible homo-
morphism from D(M) onto D(M'), and if |I| = |I'|, then M realizes M' with feedback
encoding.

Proof. Let the realization be defined by maps ¢:Q — Q" and h:Q x I' > I.
Suppose that ¢(u) = ¢(v) and that uw € D(M). We must show that there is a W
such that vw € D(M) and ¢(w) = ¢(w). Since uw € D(M), there is an input x such
that ux = w. Since h,:I' — I is onto, there is an x’ € I’ such that h(x") = x. Then
P(u)x’ = ¢p(w), so that Pp(v)x’ = P(w).

Let w = vh,(x'). Then ¢(w) = ¢(w), and, since w = vh,(x’), v is certainly an
arc of D(M). Therefore, ¢ considered as a map from D(M) onto D(M’) will be
admissible once we can verify that it is onto X(D(M)). Since M realizes M’ with
feedback encoding, if there is a single arc u'v’ € D(M’), then this arc must have a
preimage arc in D(M). But if there is more than one arc between u’ and v’ in D(M'),

then there are inputs, say x, ---, x, such that u'x]; = u'x), = - =u'x, =0
Then for each u € ¢~ *(u), there are vy, - - - , v, such that uh,(x;) = v; and ¢(v;) = v'
fori=1,---,r. Then each arc uv, e D(M) is a preimage for one of the arcs be-

tween u' and v'. While it may be the case that the v; are not all distinct, since h, is
one-to-one we are assured that there will be r distinct arcs from u to points in
¢~ (v'). Thus, ¢:D(M) — D(M’) is admissible.

For the converse, suppose ¢ is an admissible map from D(M) onto D(M’) and
that |I| = |I'|. Let u be a state of M and suppose that ¢(u)x’ = w'. Since ¢ is a map-
ping from D(M) to D(M'), there must be states # and W in M such that ¢(ii)) = ¢(u),
¢(w) = w', and @tw € D(M), But then, by admissibility, there is a w € M such that
¢(w) = w' and uw € D(M). Thus we define h,(x’) to be that input x which induces
the arc uw. It is clear that once we verify that this assignment can be done so that
h,:I' = I is one-to-one and onto, the pair (¢, h) will define a realization with feed-
back encoding. But the one-to-one and onto properties will be satisfied just when
the cardinality of the set of arcs from u’ to w’ is the same as the cardinality of the
set of arcs from u to points in ¢~ *(w’), and this follows from the lemma. Thus, M
realizes M’ with feedback encoding. 0
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COROLLARY. If M isomorphically realizes M’ with feedback encoding, then
D(M) is isomorphic to D(M').

It is immediate that if M realizes M’, then M realizes M’ with feedback en-
coding. We thus have the following additional corollary.

COROLLARY. If ¢ is an SP-homomorphism from M to M’ and if |I| = |I'|, then
¢ is an admissible homomorphism from D(M) to D(M').

Hedetniemi [7] asked whether the elementary homomorphisms of autono-
mous machines, as defined by Yoeli and Ginzburg [11], are always walkwise.
That this is so follows from Theorem 1 and the preceding corollary.

COROLLARY. Every SP-homomorphism is walkwise.

A number of properties of admissible homomorphisms are presented in [5].
One which is particulary surprising involves the notion of an admissible partition;
an admissible partition of a digraph D is a partition induced on V(D) by some
admissible homomorphism with domain D. Unlike the partitions with substitution
property for automata, each of which is, of course, an admissible partition, the
admissible partitions do not form a lattice. The join of two admissible partitions is
admissible, but the meet may not be. Referring to Fig. 2, n;, = {uv; w,w;; wow, }
and ©, = {uv; w;w,; w,w,} are admissible, but their meet 7, A w, = {UD; W, ; W,;
W33 W,} 1S not.

wy

W,

W3

FiG. 2

As in the classical theory, we can study realization of machines by cascades
of other machines, where, of course, the realization will involve feedback encoding.
The results will be seen to be generalizations of the results for realization without
feedback encoding.

Given an ordered n-tuple x = {x,x,, -, X,», define proj; x to be the jth
element, x;. )

THEOREM 5. If a cascade M, o, M, realizes M isomorphically with feedback
encoding, then there is an admissible homomarphism from D(M) onto D(M ;).

Proof. Let the realization with feedback encoding be defined by maps ¢:Q,
x Q, » Q and h:(Q, x Q,) x I - I,, so that for any input x eI and any state
(q1,92) in Q; x Q,, d(g1,92)x = d(g1,92)h(q15q5), X)) Let p = ¢~ ', and for
a state g € Q, let g(j) be the state proj; p(q). Now, define an equivalence relation on
the states of Q by g = ¢ if and only if g(1) = ¢'(1).
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Suppose that g, = ¢, and that for some x € I, g;x = ¢5. Let

S, = {proj, p(q,y)ly € I} = {q,(Dh(p(q,), y)ly e I}
and

S, = {proj; p(q,y)ly € I} = {q,(Dh(p(q,), y)ly € I}.

Since q,(1) = g,(1) by hypothesis, and since {h(p(q,), y)ly € I} = {h(p(q,), y)ly € I},
it follows immediately that

S1 = {q:(Wh(p(q,), )} = {q:(Dh(p(q;), y)} = S,.

Thus there is some state g, € Q and an input y € I such that g,y = g, and g,(1)
= q,(1);1e.,q, = q5. Thus proj, p:Q — Q, defines an admissible homomorphism
from D(M) onto D(M ). O

This also follows from the Hartmanis and Stearns results [6], for M, induces
an SP-partition on the cascade, and this converts to an admissible partition on M.

COROLLARY. If M’ is a submachine of a cascade M, o; M, such that
{proj, (¢")lg' € @'} = Q, and if M’ realizes a machine M isomorphically with feed-
back encoding, where |I'| = |1,|, then there is an admissible homomorphism from
D(M) to D(M,).

THEOREM 6. Suppose there is an admissible homomorphism from D(M) to
D(M,), where |I| = |I,|. Then there is a machine M, such that M can be isomor-
phically realized with feedback encoding by a submachine of a cascade M, o; M, .

Proof. Suppose that ¢ is an admissible homomorphism from D(M) onto
D(M ;). We must exhibit a machine M, and a connecting map Z such that M, o, M,
isomorphically realizes M with feedback encoding. Now, the map ¢ induces a
partition m on the states of M ; suppose that there are r partition classes P; and that
the largest of these contains s states. Number the states in each P;as 1,2, -- -, n;,
where n; < s,and form a new partition #’ with s blocks B;, where B; consists exactly
of those states, at most one from each P;, which were numbered i. Then each
state ¢ € M can be associated with exactly one pair (P;, B) of blocks such that
q € P; N B;. Clearly, the blocks P; are identifiable with the states of M ;. We know
from Theorem 4 that there is a map h:Q x I, — I which is one-to-one and onto
and which, taken together with ¢, defines a realization with feedback encoding of
M, by M. We can represent the state of M associated with blocks P; and B; by
q;;- Now suppose under some input x, q;;x = ¢,,,. Then ¢(qg; j)h,;jl(x) = A(Gm)-

Machine M, will have the blocks B; for its states. Now if g;x = ¢q,,, and
X' = h,;j‘(x), we will want (P;, B)x" = (Px', B,Z(P;, x)) = (P, B;Z(P;, x')) = (P,
B,,). We already know that P,x’ = P,, so we must define M, and Z in such a way
that B,Z(P;,x') = B,,. Let M, have r inputs y;. If (P;, B)x" = (P, B,,), then in
M, we define By, = B,,; since not every pair (P;, B;) defines a state of M, this may
leave us with don’t-care conditions, which can be assigned arbitrarily. Now we
define Z(P;, x') = y,, where Px' = P,. With these definitions, it follows that if
4ijX = Qum> then (P, B)x' = (P, B,Z(P;, X)) = (P,, B;y,) = (Py, B,). If p is the
map which assigns to (P;, B)) the state g,;, then for each x € I, p((P;, B)))x = p((P;,
B)h, }(x). Thus if g:({P;} x {B;}) x I — I, is defined by g((P;, B)), x) = h,,}(x),
then p and g will define an isomorphic realization with feedback encoding of M
by that submachine of M, o, M, consisting of the pairs of states (P;, B;) for which
P,NB; # ¢. O
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Combining these results, we have Theorem 7 as follows.

THEOREM 7. A machine M can be isomorphically realized with feedback en-
coding by a submachine M' of a cascade M, o, M ,, where |I'| = |1,|, if and only if
there is an admissible homomorphism from D(M) onto the subdigraph of D(M,)
induced by the states in {proj, (¢')lq' € Q'}.

COROLLARY. A machine M can be isomorphically realized with feedback
encoding by a submachine of a cascade M, o, M, if and only if there is an admissible
homomorphism from D(M) onto the digraph of a submachine of M .

Having established Theorem 7, it is natural to investigate what happens if
the feedback to the & map in a realization with feedback encoding by a cascade is
from only one of the components of the cascade. Unfortunately, as we shall see,
there does not seem to be too much to say about such situations. Following
Fleck, et al. [2], if D(M) =~ D(M’) we say that M and M" are graph-isomorphic.

THEOREM 8. Let M and M, be machines. Then M has an SP-homomorphic
image which is graph-isomorphic to M, if and only if M can be isomorphically
realized with feedback encoding by a cascade M, o, M, in such a way that the
encoding map h has domain @, x I.

Proof. If M, is graph-isomorphic to an SP-homomorphic image M, of M,
then in any isomorphic realization of M by a cascade M, o, M,, M, can be re-
placed by M, together with the appropriate feedback encoder, which of course
is independent of the state of M,.

On the other hand, let the realization with feedback encoding be defined by
the maps ¢:Q, x Q, » Q and h:Q, x I - 1,. Let p = proj, ¢~ ' be the ad-
missible homomorphism guaranteed by Theorem 5; p:Q — Q,. For each state
q;> write ¢~ '(q;) = (q{1), q/(2)). Now, suppose that p(q,) = p(q,), 4;x = ¢, and
qsx = q,. Then

P((g,(1), 4,(2Nh(g,(1), x) = d(g2(1), q5(2)))

D(a5(1), 43(2Nh(g3(1), X) = P((ga(1), 4(2)),

where q,(1) = q,(1)h(g,(1), x) and q,(1) = g5(1)h(g5(1), x). But since p(q;) = p(qs),
it follows that p(q,x) = p(q;x), so that p induces an SP-partition on M, and hence
an SP-homomorphism ¢ to a machine M,. When ¢ is reinterpreted as a digraph
mapping, it is identical to p; thus M, is graph isomorphic to M,. O

We will give two examples to illustrate feedback encoded realizations by
cascades. In each example, there will be an advantage to using realization with
feedback encoding. In one example, there is no cascade realization without feed-
back encoding, while in the other, we present a cascade of a two-state machine and
a three-state machine; without feedback encoding it would be necessary to use a
cascade of a two-state machine with a four-state machine.

Example 1. Let M be the machine

and

M 0 1
1 1 5
2 2 6
3 4 3.
4 6 2
5 5 1
6 3 4
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Notice that M has the SP-partition {15;2346}. Consider the following two
machines and connecting map Z:

M, | 0 1 M, | 0 1 V4 ‘ 0 1

q, q, q2 ry ry ry o, q, 0 1.

q: q; q1 ry ry r3 q: 1 0
r3 r3 ry

Then the cascade M, o, M, is

M, o, M, 0 1

P = qr, qiry = Py gary = Ps
P, =qr, qir; = P, qyry = P
Py =qrs qir3 = P qary = Py .
Py = qory qars = P qir, = P,
Ps = g,ry gyt = Ps qry = P
Ps = qyrs Gyt = Py qirs = Py

Under the maps ¢: P, — i and h,

-0 O = O O
OO = -

M, o, M, realizes M with feedback encoding.
Example 2. Let M, be as in the previous example, and let M, instead be
isomorphic to M,, with states {¢,Ji = 1, 2, 3}. Under the connecting map

x ifi # 3,
Z(qia X) = { s
1 —x ifi=3,
the cascade M, o, M, is:
M-, M, 0 1
q17 q17y q27>
q17> qi7> q273
qi73 qi73 927y
q27y q27 qsrz
q27; q272 93’3
q2rs3 q273 q3ry
EU UELS q17y
qs3rs q3’s3 q172
qsr's EL q173

Now, with the maps ¢(q;r;) = 3(i — 1) + j and
x ifj # 3,

Haiy ) = {1 —x ifj=3
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the following machine M is isomorphically realized with feedback encoding by
Mo, M,:

M 0 1
1 1 5
2 2 6
3 4 3
4 4 8
5 5 9
6 7 6
7 8 1
8 9 2
9 3 7

However, in this case, M has no nontrivial SP-partitions.

It should be clear by this point that whether or not a machine M has an
isomorphic cascade realization with feedback encoding depends on the structure
of D(M). We will now strengthen this impression by giving a large class of families
F of digraphs such that if some cascade has a submachine whose digraph is in F,
then one component of the cascade also has a submachine whose digraph is in F.

Recall the following common notations. If integer n divides integer m, we
write n|m, and if not we write nym. The greatest common divisor of a set {i,,- - , i,}
of integers is denoted (i, - - -, i,).

The following simple result from number theory will be useful.

If (iy, - -+ , i, n) = g, then for any r there is a solution to Z§=1 w;i; = r (mod n)
if and only if g|r.

Now let D be a digraph with n points in which each point has outdegree t, and
suppose that there is an automorphism g of D which is an n-cycle; that is, for any
point v € D, the points v, g(v), g*(v), - - -, g"~ (v) are all distinct. Label the points by
choosing v, arbitrarily and then setting v; = giv,). Let S = {iy, -+, iliy £ i v},
where the arcs from v, are v,v; , V,0;,, - -, V,V;, .

LEMMA. (i) For any v; € D, the arcs from V;Are v, Ulipiys s Uil -

(i1) If mln, there is a diagraphD, (D) with m points which is an admissible homo-
morphic image of D and whose automorphism group contains an m-cycle.

Proof. (i) Ifv,v; € D, then g"(v,,)gj(vik) € D;thatis, vv;,, € D.But this accounts
for ¢ arcs from v;, and there are only t.

(i) Define D, (D) to be a digraph whose points are the m sets w; = {v;, v; .
Vit 2m> *** }» Where ww; € Dy (D) if and only if there are v, € w;, v; € w; such that
v,vp€D. The w;, as subsets of V(D), are the orbits of the automorphism g"™.
Consider the map ¢:D — D, (D), which takes each v, to that set w; of which it is an
element. If ¢(v;) = ¢(v;), then some power g* of g™ maps v; to v;. If vu € D, then
g*(v)g*(u) = yg*(u) e D, and, since u and g*(u) belong to the same orbit of g"™,
¢(u) = P(g*(u)). Thus ¢ is admissible. [

By (i), we completely specify the digraph by giving the number of points, n, and

J+ik

the set S. Thus, we write D = D(i,, i, -- -, i;,n). Also, if M is a machine with
D(M) = D, then we write D, (M) for D, (D).

THEOREM 9. If M with digraph D(M) = D(iy, - - -, i,, n) is a submachine of a
cascade M, o, M, and if the g.c.d.(iy, ---, i, n) = 1, then there is a machine M.,

with digraph D, (M) such that either (i) mln, m > 1, and M., is a submachine of M , or
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(i) m = n and M,, is a submachine of M ,.

Proof. Let M be a submachine of M, o, M,. By Theorem 7, there is an ad-
missible homomorphism ¢ from D(M, -, M,) onto D(M,)— for the purposes of
this proof we will be concerned only with the restriction of ¢ to M.

Assume first that |¢(M)| > 1. Note that M has digraph D(i, - -, i,, n), and
label its states cyclically as qq, -, g,—;- We will first show that unless ¢ is an
isomorphism from M, for some (minimal) k > 0, ¢(q,) = ¢(q,)and,foralll <j <,
¢(qi,-) = ¢(‘1k+ij)‘

Let k be the smallest integer for which there is a state g; such that ¢(q,)
= ¢(qg;.,): by symmetry we can take i = 0, relabeling cyclically if necessary. Since
q, is adjacent to g, for each element s of the set I' = {i, - - -, i,}, it follows from the
admissibility of ¢ that for each se T, ¢(q,) is equal to the image of some point
adjacent from g,. Thus, by the lemma, for each 1 < r < ¢ there is an s, € I" such
that ¢(q;,) = @(gy+s,)- If, for each such r, s, = i,, then the claim holds. Otherwise,
let 1 < R <t be the smallest integer such that sp < iz. Then ¢(q;,) = d(qy+s,)
and, since sg — ig < 0, (k + sg) — ig < k, a contradiction to the minimality of k:
this verifies the claim.

Since ¢(q,) = ¢(q,) and, for all se I, ¢(q,) = P(g,.4), it follows by a simple
inductive argument that if « = w,i; + --- + w,i,, then ¢(q,) = ¢(q;.,), for any
nonnegative integers w; . But (iy, -+ -, i,, n) = 1 by hypothesis, so that for any ¢
there is a solution to Y w;i; = ¢ (mod n). It follows that for all ¢ and d, ¢(q.)
= .+ ra)-

Finally, for ¢ > b, ¢(q,) = ¢(gq,) must imply that ¢ — b is a multiple of k.
For otherwise, we can writec — b = dk + f,0 < f < k, and conclude from the fact
that ¢(q,) = d(qy-4) that &gy 4) = ¢(g.), a contradiction to the minimality of
ksincec — (b + dk) = f < k.

Clearly k must divide n, for otherwise it follows from the preceding that all
points g; would have the same image. Thus, D(¢(M)) = D,(M).

We consider now the case in which all points g; of M do have the same image
under ¢. We can write the states of M as q; = (q*, q{2)), where g* = ¢(q,) and the
q,2) are states of M, which induce a submachine with digraph isomorphic to
D(M). This digraph is induced in the following way: if x is the input which takes g,
to g, in M, then the input which takes q(2) to ¢,2) in M, is Z(g*, x). Therefore, in
fact, the states ¢,(2) induce a submachine of M, which is isomorphic to M. [

COROLLARY. If the machine M., has D(M,) = D,(M) = D(j, - - -, j,, m),
then(jy, -+, j,,m) = 1.

Proof. The parameter j, for M,, is the residue of i, modulo m; that is, 0 < j,
<m — 1 and j, = i, (mod m). Now suppose g =(j;, - - -, j,» m). Then g|m and for
each k, glj,. But since j, = i, (mod m), there is an [, = O such that i, = j, + ml,,
so that gli,. Also, since glm and m|n, g|n. Thus g|(i;, - -, i,, n). Hence g = 1. 0

We now proceed to consider the complexity of cascade realizations, with
feedback encoding. These results are motivated by Zeigler’s [13] generalization of
the Burks—Wang conjecture. Up to now, we have been concerned only with cas-
cades of two machines, but it is clear that we can generalize our results to more
general iterated cascades.

Consider, for example, Theorem 9. Suppose that M, as defined in the theorem,
is a submachine of a cascade [ | N;. Generalized cascade is a binary procedure, so
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we can find the major connective and write [[ N, = L, <, L,. The theorem
guarantees the existence of a machine M,, in either L, or L,. Since the parameters
for M,, satisfy (j,,---,j,, m) = 1, if that component of the cascade L,-, L,
which contains M, is itself a cascade, we can repeat the procedure. Eventually we
will find a submachine M, with digraph D,(M) of some component N of the cas-
cade [ | N;. This proves the following corollary.

COROLLARY. If M with digraph D(M) = D(i,, - - -, i,, n) is a submachine of
a generalized cascade l_[ N;, and if (iy, -+, i,, n) = 1, then there is a submachine
M, with digraph D(M) of some component N, of the cascade, where r > 1 and r|n.

Suppose now that we have a cascade N = [| N;, and let machine N; have p,
states. We define the size of the cascade, denoted size(N), to be the max {p;}. Let
S, be the collection of all generalized cascades N having size(N) < . We will show
that S, is not universal for isomorphic realization with feedback encoding, i.e., that
(for any o) there is a machine M which cannot be isomorphically realized with
feedback encoding by any element of S,. In fact, we will show a slightly stronger
result. First, however, we note that this statement would not be true without the
restrictions we have placed on the h maps, as shown by the following corollary to
Theorem 2.

COROLLARY. Let M = {Q,, Iy, 6,,> be any machine. Then there is a cascade
N =<Qy, Iy, 0y> =][N; of size 2 and maps p:Qy — Qn, h:Qy x Iy > Iy,
where p is one-to-one, such that foreachq € Q\yand x € I,;,qx = p~ (p(q)h(p(q), X)).

The proof of this corollary is somewhat tedious (see [3]). It proceeds by
letting N, be the complete reset machine with 2" states and 2" inputs, and then
showing that N, is a cascade of size 2. Define N, from N, by replacing each input
by two inputs with the same action. Then for n = {log, |Q,|}, N, is isomorphic to
N, _, o, N, and for each r, N, is isomorphic to N,_, o, N.

We now return our attention to restricted feedback encodings.

THEOREM 10. For any o and any t, there is a t-input machine M which cannot
be isomorphically realized with feedback encoding by any submachine of any element
of S,.

Proof. Let p be a prime larger than both ¢ and ¢t and consider any p-state
machine M with digraph D(i,, - - -, i,, p). Such a machine can, in fact, always be
constructed such that i, # 0. If M is isomorphically realized by a submachine N of
an element [ N, of S,, then N also has digraph D(iy, - -, i,, p). Then since p is
prime, Theorem 9 assures us that at least one component N, of the cascade con-
tains a submachine with digraph D)(N) = D(N). But this submachine has p > o
states so that N; has more than ¢ states, and hence size(n N)>o O

COROLLARY. For any ¢ and any t, there is a t-input machine M which cannot
be isomorphically realized by a submachine of any element of S,,.

In the classical theory of realization, a similar result holds for both homo-
morphic realization and for simulation [13]. We will see in the next section that the
corresponding result does not hold for simulation with feedback encoding. For
homomorphic realizations, we can prove a result slightly more restricted than
Theorem 10.

If a cascade M, -, M, contains an n-cycle C,, ie., a strong, autonomous,
n-state machine, then by the corollary to Theorem 5, M, contains an admissible
homomorphic image of C,. It can be shown (see [5]) that any admissible homo-
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morphic image of C, is some C,,, where m|n. Thus, for some m|n, M, contains C,,.
If C, is defined by input x and has states {q,, -, g,_,, consider the string
y = Z(qo(1), x)Z(q,(1), x) - - - Z(g,,- (1), x). It can be shown (next lemma) that the
states, in M,,

40(2), 4oy, 4oy, -+, g2y !

are all distinct, and that g,(2)y"™ = g,(2). The string y thus induces a string cycle
in M, ; we call njm the string period. If p is a prime which divides n, then either p|m or
pl(n/m), so one of M, or M, must have at least p states. Thus, size(M, o, M,) = p.
We would like to be able to continue this process and show that if any cascade M
contained C,, and p|n, then size(M) > p. If pjm and M were a cascade, we could
indeed continue, since M, contains a cycle C,. At some point in this “unfolding”,
however, we may come across the situation where the machine which is guaranteed
to have at least p states is the tail component of a cascade, and then we have the
problem of decomposing a string cycle of string period ¢, where p|t, into string
cycles, one of whose string periods is a multiple of p. This can always be done.

LeMMA (Zeigler [13]). Let M be a cascade M, o, M, which contains a string
cycle of period n. Then there is some k|n such that M | contains a string cycle of string
period k and M, contains a string cycle of string period n/k.

We are now ready to state a complexity result for homomorphic realization
with feedback encoding.

THEOREM 11. For any o, there is a machine which cannot be homomorphically
realized with feedback encoding by any submachine of any element of S,, .

Proof. Let M be C,,, where p > o is a prime. If a submachine N of [IN:es,
homomorphically realizes M, then, by the corollary to Theorem 4, D(N) is an
admissible homomorphic preimage of C,. By the restrictions on the feedback
encoder, for some n, N is C,,. Applying the lemma as outlined above, we can con-
clude that one of the N; has at least p states, contradicting the hypothesis that
p>o O

We stated that this result is more restricted than Theorem 10. In fact, since for
autonomous machines the notions of homomorphism and admissible homomor-
phism coincide, it really says nothing new. The distinction between Theorem 10
and 11 is that we have no detailed knowledge about admissible homomorphic
preimages of complex structures, such as the digraphs D(iy, - - - , i,, n) of Theorem
10. Undoubtedly there is some relationship between these digraphs, their admis-
sible homomorphic preimages, and the admissible homomorphic images of these,
but what this might be is unclear at present.

3. Simulation with feedback encoding. In this section we briefly examine the
concept of simulation with feedback encoding. We also introduce two semigroups,
one of which is the S*-semigroup of Fleck et al. [2], and show their relationship to
realization and simulation with feedback encoding. Many of the proofs in this
section are quite similar, and only a few will be given; the rest of the proofs in this
section can be found in [3].

If M =<0Q,1,6) and M’ = {Q', I, 0') are machines, then M simulates M’
with feedback encoding if there are maps

¢:Q 2% 0 and h:Q xI'— I
such that for each ge Q and x' € I, p(q)x' = ¢(gh(q, x')).
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If M and M’ are the machines in Fig. 3, it is clear from Theorem 4 that M does
not realize M’ with feedback encoding. But the pair of functions (¢, h), where
¢(q;) = r; and h has the following table, do define a simulation with feedback
encoding

Let S and S’ be semigroups with zero, where, without confusion, we will use
the same symbol, 0, for both the zero of S and the zero of S'. A map ®:S — S’ isa
zero-free homomorphism if it satisfies:

1. ker(®) = {0};

2. ifab # 0, then ®(a)D(b) = D(ab);

3(1). if ®(a)b’ # 0, then there is some be ®~!(b') such that ab # 0;

3(ii). if a'®(b) # 0, then there is some a e @~ !(a’) such that ab # 0.

We will see examples of zero-free homomorphisms which are not homomor-
phisms later. For the present, we give some basic properties of zero-free homomor-
phisms.

THEOREM 12. (a) Let S, S, and S5 be semigroups, and let ®:S, —» S, and
Y:S, — S; be zero-free homomorphisms. Then

(i) if D(a)d(b) = O, then ab = 0;

(ii) Y@:S,; — S; is a zero-free homomorphism

(ii1) if @ is one-to-one, then ® is an isomorphism.

(b) If®:S, — S, is a semigroup homomorphism with

ker (@) = {0},

then @ is a zero-free homomorphism.

Let M = {Q, 1, ) be a machine. An ordered three-tuple (s, x, t) is a triple for
M, or simply a triple, if s,teQ,xel*, and sx = t. A triple is elementary if the
length I(x) = 1,ie.,if xel.

Let AM) be the set of all triples of M together with a distinguished zero
element 0. We introduce an operation on #(M) by the following rules:

(s,xy,r) ift, =t,,
0 ift, #ty;

b0 = 0b =0 for each beAM).

(Sa X, tl)(tZa Vs 7‘) = {



26 DENNIS P. GELLER

THEOREM 13. For any machine M, (M) is a semigroup.

Proof. Clearly, the operation is defined for each pair of elements inA{AM). Thus,
we need only show associativity. Let by, b,, by e AAM). Since 0 commutes with
every element of (M), if any of the b; are 0, then certainly (b b,)by = b,(b,b;) = 0.
Suppose that b, = (g, x,r,), by, = (r5,),5,), by = (s3,2,t). If r, =r, and s, = s3,
then b,b, = (q,x),s,), b,by = (ry,yz,t), and (b b,)b; = (q,,(xy)z,t) = (g, x(yz),
t) = by(b,b;). Ifry # ryands, # s,,thenb,;b, = b,b; = 0,50 (b,b,)b; = b (b,b3)
=0. If r, =r, and s, # s,, then b,b; = 0 and b,(b,b;) = 0. Now, b,b, = (g,
xy,s,), and so (b;b,)by = 0. Similarly, if r, # r, and s, = s,, then (b;b,)b,
= b,(b,b;) = 0. Thus #(M) is a semigroup. 0

Suppose that M realizes M’ with feedback encoding, where the realization is
defined by maps ¢ and h. Although, for each s € Q, h,is a map from I' to I, h can be
extended to a map h, from I'* to I in the following way. If x' e I', h(x) = hy(x);
if x', y' el'", h(x'y) = hy(x')hg, (¥'). We must, of course, verify that if w'z’ is a
different way of writing x'y’, then h(w'z’) = hy(x'y’).

LEMMA. (a) For each s € Q, hy is a function.

(b) ForeachseQ,x' el'", p(s)x' = P(shy(x)).

(c) ForeachseQ,xel” there is a unique x' € I'" such that h(x') = x.

Proof. (a) We proceed by induction. The result is true for strings of length 1
since kg is a function, and true for strings of length 2 since, for such a string, there
is only one decomposition into smaller strings. Suppose it to be true for strings of
lengthn — 1,andletx’ = w) --- w,,whereeachw;eI'.Choosel £i<j<n— 1.
We must show that

hy(wy - wh(shy(w) -+ wi), Wiy - - W)

i

= hyw} - WHR(SRW] - W), Wiy g e ).

~

Let s, = hyw, --- w}). By induction, we can write
Esl(wli+1 W) = Esl(W;+1 T W;)ESZ(W;+1 EERCAR
where s, = s, (W, --- w)). Also by induction,
hyw) - wihg (Wi, -+ wh) = hyw) - w).
Thus
oWy = Wil Wiy o W) = hw)y - Wl (W) y - ),
and the two expressions are equal.

(b) Let seQ and x" = w) -+ w,, where each wieI'. If l(x’) = 1, then the
result holds since h(x') = hy(x’). Assume the result holds when n < m — 1 and let
n=m. Choose 1 £i<n— 1. Then

DX = [POWy -+ wilwipy o Wy = Gsh(W) - W)Wy oo W

If s, = shyw) --- w)), then

os)x' = PGS IWisy - W, = ¢(Slh.sl(wli+l W),

which, by part (a), is equal to ¢(shy(x")),
(c) This follows immediately from part (a) and the fact that it is true for h, by
the properties of a feedback encoder. 0
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From this point, we will use the symbol A, for both h,and h,. For a state s e Q
and a string x e I'* we will write h] !(x) for the unique string x' e I'* such that
h(x") = x.

THEOREM 14. If M realizes M’ with feedback encoding, then there is a zero-free
homomorphism from M) onto S(M').

Proof. Let the realization be defined by maps ¢ and h. If b = (s, x, t) is a triple
of M, define ®(b) = (¢p(s), h, '(x), ¢(¢)). By the lemma, P(s)h; }(x) = P(sx) = H(1),
so that ®(b) is a triple for M'. Also, define ®(0) = 0. We will prove that ® is a zero-
free homomorphism from M) onto AM’). First, we show that @ is onto. Let
b = (s, x,t") be a triple of M’. Choose s€ ¢~ '(s'), and let x = h] '(x'). If t = sx,
then ¢(t) = ¢(sx) = P(s)x’ = t', so D((s, x, t)) = b’

Clearly ker (®) = {0}. Suppose that b, = (s, x,t) and b, = (¢, y,r), so that
b.b, = (s,xy,r) # 0. Now

(b)) D(by) = (p(s), hy '(x), $(0) - (d(1), b (v), B(r))
= (¢(s), by ()h,” ' (v), (r)).

But hy'(x)h, 1(y) = hy '(xy), s0 ®(b)D(b,) = (d(s), hy '(xy), $(t)) = O(b,b,).

Suppose that ®(b)d’ # 0, where b = (s, x, t). Then ®(b) = (¢(s), X', ¢(1)),
so that for some yel'",reQ,d = ($(t),y,r). If d=(t, h(y), th(y)), then
®(d) = d' and bd # 0. Similarly, if d'®(b) # 0, then there is a d such that O(d) =
anddb # 0. O

COROLLARY. If M isomorphically realizes M' with feedback encoding, then
F (M) = F(M).

We can now give the examples mentioned above of zero-free homomorphisms
which are not homomorphisms. Consider the map ® guaranteed by Theorem 14.
If s, and s, are two states of M for which ¢(s;) = ¢(s,), then any triples of the
form b, = (r, x, s;) and b, = (s,, y, t) have product b b, -= 0, while

Db )D(by) = (4(r), xy, $(1)) # O.

We will also prove a converse to this theorem. If b = (s, x, ¢) is a triple of
machine M, define i(b) = s and f(b) = t. A state s of M is reachable if there is a
triple b such that f(b) = s.

Let S be a semigroup with zero. For any se S, define s* = {t|st # 0} and
sT = {t|ts # 0}. We can then define equivalence relations =, and =, on S:
s=,tifst =t ands=rrifs" =1¢'.

LEMMA. For any machine M in which every state is reachable the relation
=, on S (M) has finite index which isequal to 1 + |Q|. In fact,b, =, b, ifand only if
f(by) = f(by), and [0], = {0}.

LEMMA. For any machine M in which every state is reachable, the relation
=1 on (M) has finite index equal to 1 + |Q|; [0]1 = {0}, and b, =+ b, if and only
ifilb,) = i(by).

THEOREM 15. Let M and M’ be machines in which each state is reachable. If
[I| = |I'| and there is a zero-free homomorphism ®:%(M) 22 S (M'), then M
realizes M’ with feedback encoding

Proof. We first show that b, =, b, implies that ®(b,) =, ®(b,). Suppose that
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b, =, b, and that ®(b,)d’ # 0, so that d’e(D(bl)L. Then there is a d such that
®(d) =d and b,d # 0. Since b, =, b,, b,d # 0. Then @®(b,)D(d) = D(b,)d’
= ®(b,d) # 0 since ker () = {0}. Thus d’e(l)(bz)l Similarly, ®(b,)* < ®(b,),
so ®(b,)* = ®(b,)*, and hence ®(b,) =, ®(b,). By a similar argument, b, =+ b,
implies ®(b,) =+ O(b,).

It then follows from the lemmas that f(b,) = f(b,) implies that f(®(b,))
= f(®(b,)) and i(b,) = i(b,) implies that i(D(b,)) = i(P(b,)). Therefore ® induces
maps ¢ Q Q' and ¢ ,:Q — Q' such that ®((s, x, 1)) = (¢(s), X', ¢ ,(t)). Now, sup-
pose that b, = (r, x, s) and b, = (s, y,t), so that b, b, # 0. Then ®(b,) = (¢,(r), X',
¢ (), ®by) = (¢(s), V', ¢,(1)). But we know that ®(b,)D(b,) # 0; thus for each
reachable state s, ¢(s) = ¢ (s). Since every state is reachable, ¢; = ¢, = ¢, amap
from Q to Q'. Furthermore, ¢ is onto, since ® is. Let x e I ", x’ e I, be such that for
some triple b = (s, x, t), ®(b) = (P(s), X, P(t)). If we write x = yz, where neither y
nor z is empty, then b = (s, y, sy)(sy, z, t). Thus O((s, y, sy))P((sy, z, t)) = Ob)

= (¢(s), X, ¢(1)). But this is an impossible situation: the second components of
D((s, v, sy)) and ®((sy, z, 1)) are nonempty strings, say )’ and z/, so that x" = y'z,
a contradiction of the hypothesis that x’ € I'. Thus every preimage of an elementary
triple of M’ is an elementary triple of M.

We now show that if b’ = (5, X, t') and ®(s) = s, then there is a triple b with
i(b) = s such that d)(b) = b’ Since s is reachable, there is some triple d = (r, y, s).
Now, O(d) = (4(r), V', P(s)), so D(d)b’ # 0. Thus, since ® is a zero-free homomor-
phism, there is a triple b such that db # 0 and ®(b) = b'. But db = 0 implies

i(b) = f(d) =s.

Now let |I| = |I'| = n. Choose any s’ € Q' and any s such that ¢(s) = s'. If the
n elementary triples b’ with i(b}) = s" are b; = (5, x}, 1), then for each b] there is a
triple b; with ®(b;) = b;and i(h;) = s. Furthermore, as we have shown, each such b;
is an elementary triple. Also, since |I| = |I'| = n, there are exactly n elementary
triples b with i(b) = s. Therefore, for each s € Q and each x’ € I’ there is a unique
x € I such that ®((s, x, sx)) = (¢(s), X, P(sx)); we can then define a map h:Q x I
— I by setting h(s, x') = x, where ®((s; x, sx)) = (¢(s), X, ¢(sx')). The pair (¢, h)
defines a realization with feedback encoding.

COROLLARY. If M and M’ are machines in which each state is reachable with
(| = |I'|, and if (M) = F (M), then M isomorphically realizes M' with feedback
encoding.

We can get a result parallel to Theorem 15 for the case in which one machine
simulates another. Let S and S’ be semigroups with zero; we say that S’ zero-free
divides S if there is a subsemigroup S, of S which contains the zero of S such that
there is a zero-free homomorphism from S, onto §".

THEOREM 16. Let M and M’ be machines such that M simulates M’ with
feedback encoding, where the simulation is defined by maps ¢ and h. If the extended
maph:Q x I'" — I" isone-to-one for each s € Q, then & (M’) zero-free divides ¥ (M).

Note. A sufficient condition for the extended map to be one-to-one will be
given below.

Let M and M’ be two machines, and h:Q x I' - I*; we say that a subset
Q, < Qisclosed under h if, for each s e Ql, x" el',sh(x") e Q,.If there is also a map
¢:Q, 2o Q" which satisfies ¢(q)x" = ¢p(gh(q, x')), then we will say that M’
divides M with feedback encoding ; we call Q, the core of the division.



REALIZATION WITH FEEDBACK ENCODING . I 29

COROLLARY. If M’ divides M with feedback encoding in such a way that the
map hg:I'* — I is one-to-one for each s, then #(M’) zero-free divides S (M).

It is the corollary to Theorem 16, rather than the theorem itself, which has a
converse. We need one additional concept from the theory of semigroups. If S is a
semigroup and s, t, € S, then s divides t, written s|t, if there is an r such that either
sr = torrs = t;tis prime if there 1s no s which divides it. Note that for any machine
M, the only primes in & (M) are the elementary triples.

THEOREM 17. Let M and M’ be machines such that every state of M’ is reachable
and S (M) zero-free divides S (M). Then M’ divides M with feedback encoding, and
the extended map h;:1'* — I is one-to-one for each s.

We have thus shown that the semigroups (M) reflect quite accurately the
relationship of M to other machines as far as realization or simulation with feed-
back encoding. One important feature of the classical semigroup S(M) of a machine
is that for every finite semigroup S, there is a machine such that S = S(M). A similar
result cannot be possible for the semigroups #(M); for example, it is clearly im-
possible for (M) to ever be a group. We can, however, characterize those in-
finite semgroups % such that, for some machine, & = $(M). To do this, we need
some preliminary definitions.

Let P be a partially ordered set under the relation <. If a, b € P, we say that b
covers a if a < b and there is no ¢ € P such that a < ¢ < b; the cover of a, cov (a),
is the set of all b which cover a. We will call a partially ordered set P an n-tree if it
has the following properties:

(1) P has a least element;

(1) for each ae P, [cov (a)| = n;

(ii1) if a # b then cov(a) N cov (b) = P.

For any semigroup S, we can define a relation < by defining a < b if there is
an element ¢ such that ac = b,and a < bifeithera = bora < b. Thisrelation may,
but need not, be a partial order, since it is not necessarily antisymmetric.

THEOREM 18. Let & be an infinite semigroup. Then there is a machine M with
I} = n such that & = L (M) if and only if

(1) & has a zero, 0;

(i) the relations = | and =1 have the same finite index, and [0]; = [0], = {0};

(ii1) if st # 0, then ste[s]y N [t],.

(iv) each block of the equivalence relation =, except for [0]+, is a disjoint
union of n n-trees under the relation <.

Before proceeding, we mention one interesting auxiliary property of the semi-
groups &(M). Suppose that the machine M is actually a finite-state acceptor; that
is, there is a starting state g, and a set of final states F € Q, so that we can associate
with M the event E(M) < I™* of strings x for which g,x € F.

THEOREM 19. If M is a finite state acceptor, then there is a right ideal R and a
left ideal L of (M) such that

E(M) = {proj, (s)lse L N R — {0}}.
Proof. Let L = {s|f(s)e F} U {0} and R = {s|i(s) = qo} U {0}. Then L is
a left ideal since, for any t € #(M) and se L, if ts # 0, then f(ts) = f(s) € F. Simi-
larly, R is a right ideal. Then L N R — {0} is the set {sli(s) = g, and f(s) e F}, so
that the second components of the strings of L (1 R — {0} are all the walks from
qo to F, ie., E(M). O
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For any machine M, the #*-semigroup &*(M) has for its elements all finite
sets of triples (we will write O for the empty set F of triples), where if U = {b,|i = 1,
~-,ny and V=1{d]j=1,---,m} are elements of ¥*(M), then UV = {bdJi
=1,---,n;j=1,---,m}. We list some of the properties of #*(M) in the next
theorem [2]; a state s is terminal if for all xe I, sx = s.

Assertion 1. If M isomorphically realizes M’ with feedback encoding, then
FHEM) = S*M).

Assertion 2. If M and M’ are machines in which each state is reachable and
there is at least one nonterminal state and if ¥*(M) =~ *(M’), then M isomor-
phically realizes M’ with feedback encoding.

These results make it seem reasonable to expect that we can find generaliz-
ations to homomorphic realization or simulation with feedback encoding. Sup-
pose, for example, we had M realizing M’ homomorphically with feedback en-
coding, the realization being defined by maps ¢ and h. It would be natural, as would
in fact be done in proving Assertion 1 above to define, for each triple b = (s, x, t)
of M,

¢*(b) = (d(s), hy '(x), P(8)).

(¢* is just the map ®: P (M) - L (M’) of Theorem 14) We would then define
O({bli =1,---,n}) to be {¢p*(b)}. Let S = {b;} and T = {d,}, S, Te ¥*(M),
and suppose ST # 0. For each pair b; and d, for which b;d, # 0, it will follow that
¢*(b;d,) = ¢*(b;)e*(d,), so that ®(ST) = O(S)®(T). But should there be a pair
b;, d, such that b;d, = 0 but ¢*(b;)¢p*(d,) # 0, then ®(ST) & B(S)P(T), so that ©
would not even be a zero-free homomorphism. Such a pair b;, d, would certainly
exist unless |Q| = |Q'].

The preceding discussion, of course, only shows that one particular approach
to the problem is infeasible.

THEOREM 20. Let M and M’ be two machines, where M is strong. If there is a
zero-free homomorphism ®:F*(M) —» S*(M') and a map ¢:Q — Q' such that for
each singleton b = {(s, x, t)} € F*¥(M), ®b) = {(P(s), X', d(¢))}, then |Q] = |Q'].

Proof. Suppose not, and let ¢(q,) = ¢(g,) = ¢'. Since ¢, is reachable, there is
some bl = {(I‘, X, ql)} e‘-(/*(M) For Y,z€ I+’ let bZ = {(ql’ Y qu)a (anZ’ qZZ)}-
Since bib, # 0, ®(b,)D(b,) = {(¢(r), X'V, P(q1)), (), X'z, P(q,2)} = (b, by)
= {(¢(r), (xy), #(q,y))}. Among other things, this would imply that if g5 is reach-
able from ¢, and ¢, is reachable from ¢,, then ¢(q;) = ¢(q,). Since M is strong,
every state is reachable from every other, so that ¢ must be one-to-one. [

The hypothesis that M be strong is probably more than is needed to reach the
conclusion of the theorem, but it certainly does show that the & *-semigroups are
not especially useful in a study of realization, with or without feedback encoding.
On the other hand, Fleck, et al. made the following conjecture, which we can use
the concept of simulation with feedback encoding to settle.

Conjecture. Let M and M’ be any two strong machines with the same number
of states. Then ¥"*(M) is isomorphic to a subsemigroup of ¥*(M’), and S*(M’) is
isomorphic to a subsemigroup of *(M).

We first prove a crucial result, to which we alluded earlier. It gives both the
sufficient condition which we mentioned in connection with Theorem 16 and also
shows that simulation with feedback encoding is an essentially uninteresting con-
cept.
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THEOREM 21. Let M be a strong machine with at least two inputs, and let M’
be any machine with |Q'| < |Q|. Then M’ divides M with feedback encoding, and the
feedback encoding can be chosen in such a way that the maps h,:1'* — 1" are one-
to-one.

Proof. Since M is strong, for any s, t € Q, there is a string w,, with /(w,) = 1
such that swy, = t.

Let Q be any subset of Q with cardinality |Q'|, and ¢:Q -<2°s Q' be any map.
Let I' = {x), .-, x,} and let # # 7 be two elements of I. For each se€ Q, x;e I,
let t = ¢~ '(sx)) and define hy(x]) = n'qw,,, where g = sn’if. Then ¢(shy(x})) = ¢(s)
x}, o that M’ divides M with feedback encoding; if |Q| = |Q'[, then M simulates M’
with feedback encoding. Each map h; is certainly one-to-one on strings. We show
that the extended maps are also one-to-one.

Let j, -+ j, and k, --- k,, be two strings from (I')*, and let h(j, ---j,)
= hyk, - k,) = w.Then, by definition, there are states r, t € Q such that

But there is a unique positive integer n such that the prefix of w having length
n + 1is the string #"#7. This uniquely determines j; = k, = x/,so thatr = t = sx..
Then h(p -+ j,) = hik, --- k,), and we can repeat the above process until we
arriveatm =m'andj, = k,,p=1,2,---,m. O

COROLLARY. If M is strong with at least two inputs and M’ has |Q’| < |Q|,
then $*(M’) zero-free divides S*(M).

COROLLARY. If M is strong and M’ has |Q’| £ |Q|, then M’ divides M with
feedback encoding.

Proof. We need only cover the case in which |I| = 1. As in the theorem, we
choose any Q = Q with |Q] = |Q’| and any map ¢:0 =2 Q. For seQ and
x;el, let t = ¢“(¢(s)xfi), and define hy(x}) = w,. Then ¢(s)x; = P(shy(x})), so
M’ divides M with feedback encoding. 0

THEOREM 22. Let M be a strong automaton with n states and at least two
inputs, and let M’ be an automaton with n' < n states. Then *(M') is isomorphic to
a subsemigroup of S*(M).

Proof. For the proof of the theorem, see [4].

COROLLARY. Let M and M’ be strong machines, with |Q| = |Q’|. Then, unless
M is autonomous but M' is not, ¥*(M') is isomorphic to a subsemigroup of S*(M).
The corollary settles the conjecture except for the case where M is autonomous but
M’ is not, and in that case the conjecture is false.

THEOREM 23. If M is a strong machine with n states and at least 2 inputs, then
F*(M) cannot be isomorphically embedded in *(C,).

The proof, in [4], proceeds by showing that for the complete reset machine
R,, Y*(R,) cannot be isomorphically embedded in #*(C,). But, by Theorem 22,
S*(R,) is isomorphically embedded in #*(M).

5. Summary. We have studied various properties of realization with feedback
encoding, and, at this point, we should look back to see what we did and what we
did not do.

Most of the study of the properties of these realizations was motivated by the
classical theory of automata. Thus, for example, admissible homomorphisms play
the same role for realizations with feedback encoding that SP-homomorphisms
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play for realizations. There are subtle differences between these two classes of
mappings, however. On one hand, as we pointed out in §2 admissible homomor-
phisms do not exhibit all the lattice properties of SP-homomorphisms. Thus, the
full power of the Hartmanis—Stearns techniques [6] cannot be applied to admis-
sible homomorphisms. On the other hand, admissible homomorphisms, being
defined on digraphs rather than on machines, are somewhat easier to manipulate
and study. In this regard, an added advantage is that, as mappings between di-
graphs or graphs, they have interest independent of their applications to machines.

There appears to be little more that can be said about the basic properties of
realizations with feedback encoding. One problem upon which we did not touch
is the meaning of realization with feedback encoding when applied to logical nets.
For example, Zeigler [13] shows that for any integer r, there is a machine M such
that any logical net which isomorphically realizes M has a strong component S
which contains a point whose indegree, in S, is greater than . While we strongly
suspect that a similar result would hold for isomorphic realization with feedback
encoding, it is not clear how to attack the problem. Zeigler’s proof techniques
depend heavily on behavioral properties, which, of course, are blurred by realiz-
ation with feedback encoding, and so resolution of the problem would probably
depend on a better understanding of the relationship between net structure and
transition graph structure.

The semigroup of a machine is quite important to the theory of realization.
While we studied the ¥semigroups in great detail in §3, our motivation was to be
able to develop decomposition properties, and we must conclude that this goal is
very likely unattainable. For we showed that zero-free homomorphisms or
divisions between Ssemigroups are both necessary and sufficient for realizations
or divisions with feedback encoding, which makes it difficult to suppose that a
finite algebraic structure with similar properties could be found. And certainly,
even if decomposition properties could be related to the %semigroups, there is no
real hope of usefully applying these infinite structures to the problems of finite
automata theory.

In §2 we showed that cascade realizations with feedback encoding can be
more economical, in terms of the sizes of the state sets of the component machines,
than realizations without feedback encoding. Another application, to the problem
of designing realizing machines with distinguishing sequences, is discussed in
[3] and a forthcoming sequel to this paper. Perhaps other applications could have
been developed, but these are sufficient to show the value, and limits, of realization
with feedback encoding. For—and this cannot be stressed too strongly—there are
no clear rules on when to use the techniques we have developed. Even when we can
guarantee the applicability of the techniques to any machine, whether or not they
are of any value will depend quite strongly on the specific problem. We have shown
the potential power of realization with feedback encoding, but in any application
it will be just one of a number of tools which can be tried, and will surely work
better in some cases than in others.
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REALIZATION WITH FEEDBACK ENCODING. II:
APPLICATIONS TO DISTINGUISHING SEQUENCES*
DENNIS P. GELLERTY

Abstract. We continue the work of a previous paper by developing techniques for realizing (with
feedback encoding) a given machine by one which admits a distinguishing sequence. We allow no
expansion of state set or input set size, and attempt to minimize the number of additional outputs
needed. With feedback encoding, this usually behavioral problem becomes one involving only (graph)
structural properties of the given machine. In particular, we cast the problem of reducing the number of
instances of sets of states merging under an input as one involving coloring a bipartite graph derived
from the machine.

1. Introduction. In this paper, we apply the concepts of [2] to the problem of
realizing a given machine by one with a distinguishing sequence. While the
reader is assumed to be familiar with the results of [2], we will briefly review some
of the more important definitions and notations.

A machine, or finite-state automaton, M, consists of a set Q of states, a set I
of inputs, where both Q and I are finite, a transition function 6:Q x I - Q, a set
Y of outputs, and a function A:Q x I — Y called the output function; M will be
represented by the quintuple <Q, 1,4, Y, A). We write gx for (g, x). If A truly
depends on both Q and I, we have a Mealy machine. By contrast, if we can associate
output symbols with the states so that A(qg, x) is the output associated with state
gx, we have a Moore machine; in this case we sometimes express 4 as a map from
QtoY.

If I'" is the set of finite strings of input symbols, then we can express § as a
map from Q x I* to Q by writing &(q, xy) = 3(8(q, x), y) for any xelI* and
y € I. We can similarly extend / in two different ways. For xe I'* and ye I, i(q, xy)
= Agx, y). Alternately, for x,, x,, -+, x, € I, B(q, XX, - -+ x,) = Mg, x1)Aq, x,x,)
-+ Mg, xyX, -+ x,). Note that if x = x;x, --- x,€I", then the length #(x) of x
is n.

Sometimes we are only concerned with the transition functions of machines,
and then we omit reference to Aand Y. If M = {(Q,1,6)> and M’ = {Q’, I', ") are
machines, then M realizes M’ with feedback encoding if there are maps ¢ :Q °2'$ Q'
and h:Q x I' - I such that for each qe Q, the map h(q, -) = h,:I' — I defined
by h(x) = h(q,x) is one-to-one and onto, satisfying the condition for all ge Q
andall x' eI,

d@)x = ¢lqh(q, x')).

If the map h, called the input encoder, did not actually depend on Q, then this
would essentially be the same as the usual definition of realization.
A digraph D consists of a set V = V(D) of points together with a collection

* Received by the editors January 18, 1973, and in revised form January 2, 1974.

+ Human Sciences and Technology Group School of Advanced Technology, State University of
New York at Binghamton, Binghamton, New York 13901. This research was supported in part by the
National Institutes of Health under Grant GM-12236 and in part by the National Science Foundation
under Grant No. GJ-519.
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(repetitions permitted) X = X(D) of ordered pairs, called arcs from V x V. If
uv = (u, v) is an arc, we write uv € D and say that u is adjacent to v, v is adjacent from
u, uv is incident from u and incident to v.

A walk ina digraph isa sequence W = (x,, :+-, x,» ofarcs, where x; = u;_ ,u;;
we may abbreviate this and write w = ugy; -+ u,. If uy = u, but the other points
are distinct, the result is a cycle C,. A digraph D is strong if there is a walk uqu, - -
u,u,y containing all the points of D.

In any digraph the number of arcs incident to a point u is its indegree, id(u)
and the number of arcs incident from u is its outdegree od(u).

The reflexive closure D® of a digraph D is the smallest superdigraph of D
which has a loop at each point. For each point u of D let S(u) be the set of arcs
incident from u and let S(u) be the set of arcs incident to u. Given digraphs D and E
a mapping from D°®$ E is a mapping ¢ :X(D) — X(E¥) which is onto X(E) and
which satisfies : R R -

for each ue V(D) there is a u' € V(E) such that ¢(S(u)) = S(u') and (S(u))
< S(u).

A mapping ¢:D — D' is an admissible homomorphism, or simply admissible, if
whenever ¢(u) = ¢(v) and uw e D, then there is a point W such that vwe D and
(W) = Pp(w).

If M =<Q,1,6) is a machine, the digraph D(M) of M has V(D(M)) = Q
and X(D(M)) = {uv|lu,ve Q and for some x € I, ux = v}; if there are n inputs x;
such that ux; = v, then there are n arcs from u to v.

The following is Theorem 4 of [2].

THEOREM. If M realizes M’ with feedback encoding, then there is an admissible
homomorphism from D(M) onto D(M"). Conversely, if there is an admissible homo-
morphism from D(M) onto D(M') and if |I| = |I'|, then M realizes M’ with feedback
encoding.

2. Distinguishing sequences. Having presented some of the theoretical pro-
perties of realizations with feedback encoding, we now turn our attention to a
specific applications area. Actually, we have already discussed one application
in [2], where we showed that the use of feedback encoding can lead to more efficient
cascade realizations.

Given a behavior which is to be realized, one often places additional require-
ments on the realizing machine ; perhaps the simplest such requirement is that the
machine be reduced. Another requirement is that the machine have a distinguishing
sequence, an input string whose output sequence uniquely identifies the machine’s
starting state. In this chapter we will develop techniques for realizing some machine
M, with feedback encoding, by a machine M having a distinguishing sequence.
It is important to note that the machine which has the distinguishing sequence is M,
and not M together with the feedback encoder.

In [2] we were concerned only with the realization of state-behaviors, but
here we will instead study the realization of input-output behaviors. We will need
to define the realization with feedback encoding of a machine having outputs in
two ways, one for the Moore case and one for the Mealy.

KM =<Q,L,6,Y,A) and M' = {Q". I', &, Y', Ay are Moore machines, then
M realizes M’ with feedback encoding if there are maps ¢:Q°*$Q", h:Q x I' - I,
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a feedback encoder, and g: Y — Y/, such that

P(g)x" = P(gh,(x) and A($(q)) = g(A(q))-

Since in most of what follows the realizations will be isomorphic, the output
decoder, g, may often be just a one-to-one correspondence, and can be omitted if

we assume, without loss of generality that A'(¢(q)) = A(q), giving the alternate
conditions

P(a)x" = Plahx),  A(P@)= Aq)

Similarly, if M and M’ are Mealy machines, then M realizes M’ with feedback

encoding if there are maps ¢:Q=2%Q" h:Q x I' - I, a feedback encoder, and
g:Y — Y’, such that

d(@)x" = Plgh(x)), A (P(q),x) = g(Ag, h(x)
or, if we take Y = Y’ and g to be the identity map,
P(@)x" = Plgh(x)), V(@) x) = Ag, h(x)).

Example 1. Let M, and M, be the Mealy machines in Fig. 1. Then M, realizes
M, with feedback encoding, if we define ¢(r;) = g; and give h the function table

FiG. 1

From Example 1, we can see the relationship between the state transition
graphs of two Mealy machines when one realizes the other isomorphically with
feedback encoding. Not only are the digraphs isomorphic, but the isomorphism
preserves the output labels, so that only the input labels are permuted.

As is well known, the concepts of Mealy and Moore machines are essentially
interchangeable [5, p. 35]. This interchangeability carries over to realizing
machines.

THEOREM 1. Let M and M’ be Mealy machines and M, M’ their Moore equiva-
lents. If M realizes M’ with feedback encoding, then M realizes M' with feedback
encoding.
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Recall that for a state g and string x; --- x,,, B (x; -+ x,) = Aq, x;)Agx,,
Xz) -+ Mgxy -+ X,-1,X,); of course, in a Moore machine, this reduces to ,(x; - -
X,) = Mgx)Mgx,x,) - -+ Mgx, -+ x,). Defining 8 in this manner, we are omitting
the output associated with the current state, ¢, and therefore ignoring a potentially
useful item of information. Since this information is usually available, especially
in actual circuits, it is worthwhile to examine the effects of this omission on the
work to follow. All the constructions which we give will be valid for either definition
of B, but bounds involving the lengths of input sequences will be larger by 1 than
they would be with the alternate definition of 8. The advantage to the form taken
here, as we shall see, is to make it possible to treat certain behavioral characteristics
of a machine as though they were purely structural.

We say that a string x is a distinguishing sequence for a machine M if for any
states q # q', B,(x) # B (x). Clearly [5], any machine which has a distinguishing
sequence is reduced, but the converse does not hold. In the case that all the symbols
in a distinguishing sequence x are identical, we say that x is a repeated symbol
distinguishing sequence [8].

Before we begin our study in detail, a word is in order about just what it is
that we wish to accomplish. The existence of a distinguishing sequence is properly
a behavioral, rather than a structural, property. Nevertheless, feedback encoding
techniques can, for some machines, produce realizing machines with distinguishing
sequences and yet cause no increase in state size, input set size, or output set size.
We will develop some results which will give techniques, in some cases, for finding
realizing machines with distinguishing sequences. These techniques will not cover
all the possibilities, however. Rather than simply giving techniques, we are more
concerned with trying to demonstrate that feedback encoding techniques can be
an effective tool. The usefulness of these techniques does not lie solely in the theo-
rems which we are presenting.

In a machine M, two states q, and g, are said to merge if, for some input
xel, q;x = q,x; states q, and g, converge if, under some input x, they merge and
if, also, A(g,, x) = Mg,, x). If ¢, and g, converge to g5 under x, we write (q;, g,)x
= ¢5. Note that in a Moore machine, two states converge if and only if they merge.

LEMMA [5]. If a reduced machine is convergence-free, then it has a distinguishing
sequence.

The converse is not true; a machine need not be convergence-free to have a
distinguishing sequence. However, if a machine is reduced and k states converge
to a single state, then by state-splitting techniques, and adding additional output
symbols, the convergence can be eliminated ; this requires adding on the order of
{k/2} new states and output symbols [8]. Of the two, addition of new states is the
more costly, and the techniques we present will be geared towards producing no
increase in state set size, although some increase in output set size will not always
be avoidable. We will first concentrate on the problem of designing realizing
machines which have repeated symbol distinguishing sequences.

Let {s;> = {80,515, "> Sm—1» be a sequence of symbols, where it is under-
stood that any reference to s; is for j modulo m. For any integer n, we say that
{s;) has property P(n) if there is an integer i, for which s; # s; .

Let M =<Q,{1},0, Y, 1) be a strong autonomous machine with m states,
where ¢;1 = q;,,, and let (M) be <Agp,1), -+, MGm-1,1)>-
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THEOREM 2. A strong autonomous machine M is reduced if and only if , for all
n=12--,[m/2], (M) has P(n).

Of course, Theorem 2 just says that (M) has no proper subperiods. If {s;>
has P(n) for each 1 < n < [m/2], we say that it has property P; conversely, if
{s;> does not have P(n) for some n we say that P fails (for n).

LEMMA. Let {8;> = {Sg,S15"** 3 Sm_17-

(a) If P fails for n, it fails for the greatest common divisor (n, m).

(b) If P fails for n, and n,, it fails for (n, n,).

Proof. (a) Let g = (n,m). It will be sufficient to show that s, = s,. Since, by
hypothesis, s = s, = 55, = - -+, we need only show that, for some k, kn = g (mod
m). This congruence has a solution when (n, m)|g; but g = (n, m), so that s, = s,.

(b) Let g = (n,,n,). In this case we look for k, and k, which satisfy nk,
+ nyk, = g(mod m). Since (n,,n,,m)|g, there is a solution to the congruence,
and again, s, = s,.

THEOREM 3. Let 5o # So. If {Sg, ", Sm_1y does not have P, then {5,,s,,

~y Sm_yy has P.
Proof. Let n* = min {un|P fails for n}. We show that for n < n*, <{5,,s,,
-, Su—1, has P(n).

If n* = 1, then the s; are identical, and hence the new sequence has P. If
n* = 2, then m = 4. Thus §, # s,, so P does not fail for n = 2. But since s, must
have been different from s, (as otherwise we would have had n* = 1), we still have
S, = S # Sy, so the new sequence also has P(1). In general, we know m = 2n*.
Now suppose for k < n*,s; # s; 4, Then since P fails for n*, s; .« = s;, # i, 44
= i +1+m Furthermore i, + n* # i, (mod m) and i, + k + n* # i, + k(mod m),
since m = 2n*. Thus if we change s, to §,, we can not, for n < n*, cause P(n) to fail
for the sequence {sg,S1,8;, ", Sm_1y. But, since 5o # Sg, So # Sx = Sg, SO
the new sequence has P(n*).

Now, let n¥ = min {n|P(n) fails for (s;>} and n% = min {n|P(n) fails for {3,,
Si» s Sm—10}. Then n% > n¥. But we could have started with (5o, s;, -+, Sp—1»
and changed §, to sy, giving <s;>. Thus n¥ < n¥. This is impossible, so {5,
Si, ' Sm_1y has P.

The next result holds for both Moore and Mealy machines; a subdigraph of a
digraph is spanning if it contains all the points of the digraph.

LEMMA. Let M be a machine and suppose that in the labeled digraph con-
sisting of D(M) together with state and output labels, there is a spanning cycle
whose output sequence has property P. Then M can be isomorphically realized
with feedback encoding by a machine M' with a repeated symbol distinguishing
sequence.

Proof. We choose M’ to have the same labeled digraph as M. Let the states,
in their order along the cycle, be ¢9,49,, -, g.— 1. We will define an encoding
map h such that at each state g;, one input x; for which ¢,x; = ¢;, is coded as
h,(x;) = 1"eI', and assign the other values of h arbitrarily, preserving set iso-
morphism. Then in M’, the input symbol 1’ will define a strong autonomous
submachine M” of M’, which, by hypothesis will be reduced. But it is known [8]
that a reduced autonomous machine has a (repeated symbol) distinguishing
sequence, y. Since M” has the same state set as M, y is a repeated symbol dis-
tinguishing sequence for M'.
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A 2-factor of a digraph is a spanning subdigraph in which each point u has
id (u) = od (u) = 1;a 2-factor is a union of directed cycles. Suppose that a machine
M has a 2-factor Z = Z, U --- U Z, consisting of ¢ directed cycles. As in the
preceding lemma, we can define a machine M’ which realizes M isomorphically
with feedback encoding, such that Z is the subdigraph induced by a single input
symbol, x. We now need only make sure that the autonomous submachine
defined by x’ is reduced. This can be done, in the worst case, by adding t new output
symbols, wy, - -+, w,. By Theorem 3, if we change one output label in Z; to w;,
Z; will be reduced. Furthermore, since w; # w;, no state in Z; can be equivalent
to a state in Z;. Of course, in general we could expect to need fewer than ¢ new
output symbols. In the next lemma we list some of the known conditions for a
digraph to have a 2-factor; if D(M) satisfies any of these conditions, then M can
be isomorphically realized with feedback encoding by a machine with a repeated
symbol distinguishing sequence. By S in part (a) we mean the set of points adjacent
from S.

LEMMA. (a) A digraph D has a 2-factor if and only if for each set S of points,
ISI < 78] [1].

(b) If a strong digraph D has p points and, for each point v, id (v) + od (v)
= p, then D has a spanning cycle [3].

(c) If a strong digraph D has p points and for every pair of points u and v such
that uv ¢ D, od (u) + id (v) = p, then D has a spanning cycle [11].

Of course, the fewer the number of cycles in a 2-factor, the fewer the number of
output symbols which will have to be changed. On the other hand, the more cycles
in the 2-factor, the shorter will be the length of the distinguishing sequence. This
trade-off is expressed in the next theorem: by [r > 0] in the theorem we mean
the logical variable which takes the value 1 if ¥ > 0 and 0 otherwise.

THEOREM 4. Let M be a machine with p states and suppose that D(M) has a
2-factor which contains t cycles, of which r are 1-cycles (loops). Then M can be
isomorphically realized with feedback encoding by a machine which has a distinguish-
ing sequence. Furthermore, the length L of the distinguishing sequence and the
number N of output symbols which must be changed satisfy

L<p-2t+r+1, N<t—[r>0], L+N<p.

Proof. We have already indicated how the existence of a 2-factor implies the
existence of a realizing machine which has a distinguishing sequence. In the worst
case, we need to change one output symbol on each of the t — r cycles of length
greater than one, both to reduce the cycle (see Theorem 3) and to make the cycles
inequivalent. In the worst case, this requires adding ¢ — r new output symbols,
although this can undoubtedly be reduced in practice. Each of the r loops is already
reduced, so we need to add or change at most r — 1 output symbols to make them
inequivalent. This gives N<(t—r+(r—1)=t—1if r>0and N1t if
r=0;hence N <t — [r > 0]. The length L of the distinguishing sequence is at
most the length of a distinguishing sequence for the largest cycle, which is one less
than the length of the cycle [5], [10]. For a given t and r, the longest cycle is attained
when all but one of the t — r cycles of length greater than 1 are 2-cycles, using
2(t — r — 1) of p — r states. The remaining cycle then has length p — (2(¢t — r)
—2)—r=p—2t+r+2,sothat L<p—-2t+r+ 1 Now,ifr>1, L+ N
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<t—-14+p-2t+r+1=p—t+ r which takes its maximum when all cycles
are l-cycles,so that t =r. f r=0,then L+ NSt+p—-2t+1=p—t+1,
which takes a maximum when t = 1, and the 2-factor is a spanning cycle. Thus
L+ NZ=p

Thebound L < p — 2t + r + 1 < p compares quite favorably with the bound
L < (p — 1)p? given in [4], although it is not known if the latter is a best possible
upper bound.

Notice that while the theorem describes a sufficient procedure, it is certainly
not necessary.

The simplest way for a machine to satisfy the conditions of the theorem is for
each of its states to have the same indegree ; such a machine is called homogeneous
in [9], where it is shown that any machine whose reduced machine is strong is
behaviorally equivalent to a homogeneous machine. Theorem 4 could then be
applied to the homogeneous machine. Of course, the homogeneous machine has a
much larger state set, but this disadvantage may be offset, as Miller and Winograd
[9] note: “McNaughton and Booth [7], however, found that in the 2-input case
a particularly uniform circuit structure (for the homogeneous machine) resulted
for the state to state circuitry ... the uniform structure may be quite advantageous
in practice, and ... can be readily seen to extend to the p-input case.”

On the other hand, even if there is no 2-factor, we can use the techniques
outlined above to produce a realizing machine with a distinguishing sequence.

Note first that any machine can be isomorphically realized by a machine
with a repeated symbol distinguishing sequence, by choosing an autonomous
submachine and adding output symbols so as to make it reduced [8]. With feedback
encoding, a similar technique applies, but there is more freedom in choosing the
substructure to reduce, and consequently less output augmentation may be
necessary.

Any autonomous machine, whether or not it is a union of directed cycles,
is a functional digraph: a digraph in which each point has outdegree exactly 1.
Given any functional subdigraph D of D(M), we can, with feedback encoding,
make D the digraph of an autonomous submachine M, and then add output
symbols to make M reduced. Thus, for a machine M, we would choose a functional
subdigraph D which was as ‘“close to” being reduced as possible, and then add
output symbols so as to make it reduced. The technique in doing this is first to
make each cycle of D reduced, and to make the cycles inequivalent, as we would if D
were a 2-factor. We then continue, making each component of D reduced. Two
states can be equivalent only if they belong to the same component and there is a
homomorphism which identifies them ; homomorphisms of autonomous machines
(as we noied in [2], the notions of SP and admissible homomorphisms coincide for
autonomous machines) have been studied in detail in [12]. We can therefore state
the following remark.

Remark. Any machine can be isomorphically realized with feedback encoding
by a machine with a repeated symbol distinguishing sequence.

A reduced machine will fail to have a distinguishing sequence only if two
states converge under some input. Using classical techniques, once a convergence
is found to interfere with the existence of a distinguishing sequence, state-splitting
and/or augmentation of outputs must be employed. With feedback encoding,



REALIZATION WITH FEEDBACK ENCODING. II 41

however, it is often possible to eliminate the convergence without adding states
or output symbols. We first state a theorem indicating when this can be done for a
2-input (Moore) machine.

THEOREM 5. Let M be a Moore machine with two inputs x, and x, and exactly
one convergence: (q}, q3)x, = q*. Then, if there is no state q such that gx, = q3,
M can be isomorphically realized with feedback encoding by a convergence-free
machine with the same output function.

Proof. Note first that since M has only one convergence, gix, # g3x,. Let
43X, = q3 and gjx, = g3 (see Fig 2).

FiG. 2

We can recode inputs at g}, eliminating the convergence, unless there is a
state g such that glx, = ¢3; similarly, we can recode at g unless there is a g}

such that gix, = g%. Suppose that we can recode neither at ¢! nor at gl (see
Fig. 3).

FiG. 3

If, for example, there is no state g} such that g;x; = gix,, then we can
recode the inputs at g} without causing a new convergence; this, in turn, permits
us to recode the inputs at g3, and hence eliminate the convergence.

Continuing in this manner gives rise to sequences of states

1 1 1 1 1 1
5 q-1-90-91-92> 9354945
and

2 2 2 2 2
5 qd-1590-91-925 935 "

such that if j > 1,
alx, =gy, ajx; =4}
andifj < 1,

1, _ 2 1, _ 2
qjX1 = qj, qjX2 = qj-1-
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Since M is finite, the process of extending these sequences must have repeti-
tions. Suppose the first repetition is that two of the g7 coincide. If we are at the stage
of choosing g% and find that it is the same as some previously chosen g, then g2
must be an x, image of two distinct states, by virtue of the way ¢7 is chosen, unless

= 1. (As can be seen from Fig. 3, we choose ¢ as the x, image of the previously
chosen state with superscript 1. Each point g7 which has been chosen is an x,-
image, except for g%, which was chosen as the x,-image of two distinct states.)
If k # 1, this implies that M has two convergences, which is a contradiction. If
k = 1, then assume without loss of generality that j > 0 and continue the process
at the “other end” of the sequence. It then becomes impossible for the process
to fail for lack of a new gL, for this would have to imply that M has a second
convergence.

The process therefore must stop because of an inability to choose a new
g}+; (or gj_,). But then we can progressively relabel inputs at g}, g}, -+ (or
at g}, qj+,, ---) until we finally relabel at g} (or g}), eliminating the convergence.
At no time have we changed any output label; this proves the theorem.

The technique used in Theorem $ is applicable to Moore or Mealy machines.
More important, it may be used successfully with machines which have more
convergences than specified in the theorem. One straightforward generalization is
given by the following corollary.

COROLLARY. If M has exactly n convergences (¢', q5)x' = ¢, where the x\,
i =1,---,n are distinct, and if there are n additional inputs x5 such that there is
no state q for which gx = ¢', then the convergences can be eliminated.

Proof. For each i, apply the theorem to that submachine of M defined by the
two inputs x} and x}.

The corollary, of course, was phrased to insure that the n applications of the
theorem would not conflict. Certainly, we can expect that the same techniques will
apply to many machines which do not meet the strict condition of the corollary,
by breaking up the convergences one at a time. Unfortunately, the extent to which
the technique can be reapplied depends both on behavioral and structural pro-
perties of the given machine. While useful as a heuristic, this approach to
eliminating convergences cannot easily be expressed in algorithmic form with
clearcut rules for chocosing—given at some stage a convergence (¢, 43, - * » 4,)X;
= g—which subconvergence (g;, g;)x; = g to break up and which input x, # x,
to use.

In contrast to this essentially local attack on the problem of eliminating
convergences, we will develop a global procedure for reducing, not the number of
convergences, but rather the number of merges. With Moore machines as we
have defined them, the concepts of ““merge” and “converge” are, of course, identi-
cal, but this, as has been pointed out, is not always a useful identification to make.
Thus the global technique we propose may often be inefficient, as it will reduce many
merges which are not convergences. For machines which have a large number of
convergences, however, we can expect the technique to substantially decrease the
number of additional states or outputs which are required for a diagnosable
realization. Unfortunately, since the technique deals with merges and not con-
vergences, exact results on the number of additional states or output symbols
which will be saved are not available. In fact, it is possible to devise examples
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where the procedure, while reducing the number of merges, increases the number
of convergences. This will become clearer as we get into the actual mechanics of
the procedure.

Let D be a digraph, and number the points u,, - - -, u, so thatid (u,) = id (u,)
< -+ £id(u,). The indegree sequence of D is the sequence <id (u,), id (u,), - -,
id (u,)>. Suppose that D is the digraph of a Mealy machine, D = D(M), and let
M have t inputs. Let Z(D) be the quantity Y ». max {0,id (u;) — t}. For any arc uv,
let &(uv) be the input label on the arc. We will say that there are n merges at a state
u if there are n + 1 arcs v,u, v u, -+, v,,,u such that &(v,u) = &vu) = -
= &(v,44); note that if all these arcs had the same output label, it would be
necessary to add n new output symbols to eliminate all the convergences. Let ZE(u)
be the total number of merges at u and Z(M) be the total number of merges in M.

LEMMA. For any machine M with t inputs, Z(M) = '_:'.(D(M )).

Proof. We will show that for each state u, Z(u) = max {0, id (u) — t}. Clearly,
the equation holds for each state u with id (u) < t. If the number of different input
labels on arcs leading to state u is m < t, where id (u) > ¢, then E(u) = id (u) — m.
Thus if id (u) > ¢, then E(u) = id (u) — m = id (u) — t.

THEOREM 6. Any machine M can be isomorphically realized with feedback
encoding by a machine M’ with E(M') = E(D(M)).

To prove this theorem, we need to investigate those properties of the assign-
ment function € which will guarantee that 2(M) = f(D(M )). To this end, we intro-
duce some additional notions from graph theory.

A graph G consists of a set V = V(G) of points together with a set X = X(G)
of unordered pairs of distinct elements from ¥, called lines; if X is instead a collec-
tion, with repetitions, then G is a multigraph. Concepts like incidence, adjacency
and walks are the same as for digraphs, except that there is no longer any notion
of direction. A component of a graph is a maximal subgraph any two of whose
points lie of some walk. A set of lines is independent if no two are incident to the
same point. A bigraph is a graph G whose point set V can be partitioned into two
sets V; and ¥, such that all lines of G join points of V; with points of V,. A line-
coloring of a graph is an assignment of colors to the lines in such a way that any
two lines which are incident with the same point receive different colors. The
smallest n such that G can be line-colored with n colors is the line-chromatic number
¥'(G). Clearly, the line-chromatic number of a graph G is not less than A(G),
the maximum of the degrees of the points of G. For a bigraph, a stronger statement
can be made ([6, p. 171]): for any bigraph G, x'(G) = A(G).

Now, let M be a machine with states {v,, -, vp}, and form a bigraph G
with points {v;,v,]i =1, -+, p}, where v,; is adjacent to v,; if and only if v;v;
€ D(M); these are the only lines in G. Note how the degrees of the points of G are
related to these of the points of D(M): deg(v,;) = od (v) and deg(v,,) = id (v)).
If we “color” each line v,,;v,; of G with the corresponding input symbol {(vv)),
then if two lines are incident with the same point v,;, they are colored differently,
since M is a deterministic machine. If lines x and y with &(x) = &(y) are incident to
point v,;, there is a merge. As the preceding lemma shows, there must be merges
at states v; with id (v;) > ¢, the number of inputs. To prove Theorem 6 we will show
that inputs may be assigned to the arcs of D(M) in such a way that the resulting
machine is complete and deterministic, hence realizing M with feedback encoding,
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and the only merges occur at v; with id (v;) > t. If the line-chromatic number of the
associated bigraph G is y'(G) = t, we will color the lines of G from a set of colors
{By, -, Bae)} in such a way that only colors from {f,, ---, B} are used to color
lines incident with points v,; with deg(v,;) < t. If we translate each color B; in
{Bi,+, B} to the input symbol x; and assign input symbols from {x,,---, x,}
to lines colored from {f,.,---, B,} in such a way as to give a complete
deterministic machine M’, then there will be no merges at states v; with id (v;) < t.
Furthermore, if id (v;) > ¢, then since in the coloring of G each color g, ---, B,
appears once on a line incident with v,;, the number of merges at v; will be
exactly id (v;) — t. Thus we will have E(M’) = E(D(M)). To prove Theorem 6,
it is then necessary only to demonstrate that a coloring of the prescribed type
always exists.

THEOREM 7. Let G be a bigraph in which max {degulue V,} = n = d,, and
suppose that the degrees greater than n which are realized in V, are n <d, < d,
< -+ <d, = A Then there is a line-coloring of G from {B,---, Ba} such that
all lines colored B, .y, -, P,, ., are incident to points of degree greater than d;,
fori=0,---,r—1.

To prove the theorem, we first develop a sequence of lemmas.

LEMMA. Let G be a bigraph such that all points of maximum degree are in
V,. Then G can be line-colored from {f,, ---, B,} such that the only lines colored
Ba are incident with points of maximum degree.

Proof. We suppose the result to be true for bigraphs with g — 1 lines. Let
G have q lines and let all points of maximum degree be in V,; let x = uv be incident
with one such point v. If A(G — x) < A(G) = A, then v was the only point of
maximum degree in G. So any line-coloring of G — x from {B,, -, Ba—1}
extends to a line-coloring of G in which only x is colored §,.

If A(G — x) = A(G) = A, then we can color G — x with A colors so that all
lines colored f3, are incident with points of maximum degree; in particular, no line
colored B, is incident with v. If there is no f8,-line at u, then x can be colored §, in G.
Otherwise, there is a f,-line uv, (where deg v, = A). Since deg u < A, there is some
color o which does not appear at u. Clearly, however, there is a line v,u, colored a.
Thus we get a sequence (u = ug,v,,U;,0,, -+, » such that each v; has maximum
degree, each uv;,, is colored B, and each v;u; is colored . At each step of this
process we are choosing a new point. If we have just chosen v, then u; cannot be a
previously chosen u, :u; # u, as « does not appear at u, and u; cannot be some
other previously chosen u,, for otherwise there would be two lines colored o
incident to u,. Similarly, if u; has just been chosen, v;,,; cannot be a previously
chosen v,, or otherwise there would be two lines colored S8, at v,. Of course, since
G — x is a bigraph, no v; can be equal to any u,. Then since G — x is finite, this
process must terminate when we are unable to choose a new u; or a new v, ;.
Since degv; = A, the process cannot stop with a v;, so it must stop at some u;
at which there is no ,-line. We have thus defined a component of the subgraph
G — x|, 4,> and can interchange the colors « and f, in this subgraph, preserving
the validity of the coloring. But now 8, does not appear at u, so x can be colored
with f3,.

LEMMA. In a bigraph G, suppose max {degulue V,} = n and that there are
at least two degrees greater than or equal to n realized by points of V,, the two
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largest being n < A’ < A. Then there is a line-coloring of G from {B, - -+, Ba} such
that all lines colored B, . |, - -+ , Ba are incident with points of maximum degree.

Proof. Clearly the result is true whenever n = 1. Suppose it to be true for
n — 1, and suppose that in G, max {degulue V;} = n. Note that if A — A’ =1,
then the result holds by the previous lemma.

Suppose now that the result is true for A — A’ =t — 1, and thatin G, A — A’
= t, where v,, - - -, v, are the points of degree A. We remove an independent set
X of r lines, one adjacent to each of v,,---, v,, to get G':A(G) = A(G) — 1. If,
in G', max {degulue V;} = n, then G’ can be colored with A(G) — 1 colors in
the prescribed manner: the only lines colored S, 14, -, fa—; are incident with
the v,. Now, the lines of X can be colored §,.

Otherwise, max {degulue V;} = n — 1. By induction on n, a line-coloring
of G’ with the desired properties can be achieved, and this coloring uses only
A — 1 colors, as above. Again, the lines of X can be colored f,.

LEMMA. Let G be a bigraph in which max {degulue V,} = n, A(G) = A > n,
and suppose there are no points of degree n + 1,---, A — 1. Then G has a line-
coloring from {B,,---, Ba} such that all lines colored B, ,---, Ba are incident
with points of maximum degree.

Proof. We know the result is true, for any n, if A = n + 1. Also, the result is
trivially true whenever n = 1. Suppose that the result holds when max {deg ulu
€V} =n—1, and let G have max {degulue V,} = n. Since we know that the
result holds for A = n + 1, suppose that it holds for A=n + k — 1, and let G
have A(G) = A = n + k. Suppose the points of degree A are v,, ---, v,. Remove
an independent set X of lines which covers {v,,---,v,}, and let G — X = G".
If, in G', max {deg ulue V;} = n, then the resulting graph satisfies the conditions
of the theorem with A = n + k — 1, so there is a line-coloring where all lines
colored B,.,, -, B,+x—1 are incident with the v;. Then the lines in X can be
colored f, ., and the result holds.

Otherwise, in G’, max {degulue V;} = n — 1. Then the result holds for G’
by induction unless there were points of degree n in V,. If so, G’ satisfies the condi-
tions of the previous lemma with A'(G') = n, A(G') = A — 1, and so there is a line-
coloring of G’ from {B, -+, -1} such that all lines colored S 4y = Bosqs =+
Pa—, are incident with the v;. By coloring the lines of X with f, the result holds.
If V, had no points of degree n, then by the inductive hypothesis on #, in the line-
coloring of G’ all lines colored B,, B,+1, - » Ba— are incident with the v;. We can
again color the lines of X with 8, proving the theorem.

Proof of Theorem 7. The result is trivial for n = 1. Also, by the last lemma, it
holds whenever r = 1, so we can assume it true for bigraphs in which max {deg u|
ueV,;} <n—1 and also for bigraphs in which max {degulue V,} =n and
r — 1 degrees greater than n are realized in V,. Let G have max {degulue V,} = n,
and let degrees n < d; < --- < d, = A be realized in V,. We first prove the result
in the case d, — d,_, = 1. Suppose we remove an independent set X covering the
points of degree d, to get a graph G'. If the maximum degree of the points in V; is
reduced to n — 1, then G’ has a line-coloring of the desired type; in particular,
all lines colored B, ,,---, fBa4,_, are incident with points of degree d,_, in G/,
those being the points of degree d, _, or d, in G. Then by coloring the lines of X with
B, the desired coloring results. If in G’ the maximum degree of the pointsin V; is n,
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then the inductive hypothesis on r guarantees the desired coloring for G’, and
again we can color the lines of X with f3,.

Now suppose the result holds for d, — d,_;, =t — 1 and suppose that in
G,d, —d,_, =tLetv, -, v,be the points of degree d, = A. We can remove an
independent set of lines X which covers {v, ---, v,}, giving a graph G' with
maximum degree A — 1 and next largest degree d,_,; note that (A — 1) — d,_,
=t — 1. If, in G, max {degulue V,} = n, we get a line-coloring of G’ from {f,,
-++, Ba—1} with the desired properties by the inductive hypothesis on t. If not,
we get a line-coloring by the inductive hypothesis on n. Either way, we can color
the lines of X with f,.

Fi1G. 4.

Example 2. Consider the machine M in Fig. 4. There are convergences at
states g3, q, and g5, and M certainly does not have a distinguishing sequence.
The associated bigraph G has A(G) = 3, and so can be line-colored with three
colors. After coloring G in accordance with the theorem, we get the machine in
Fig. 5, which has only two convergences.

As we have noted, the procedure which we have outlined reduces merges rather
than convergences, and, for machines M in which Z(D(M)) is small but nonzero,
may actually increase the number of convergences. Nevertheless, there are two
cases in which the procedure can be shown to be of definite advantage. We state
these as corollaries.

COROLLARY. If M has t inputs, then M can be isomorphically realized with
feedback encoding by a convergence-free machine if and only if every state q has
id(q) =t.
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FiG. 5.

Such machines, of course, also satisfy Theorem 4, this corollary, therefore,
provides an alternate method of attack.

Any machine M can be isomorphically realized with feedback encoding by a
machine which has at most Z(D(M)) convergences, since every convergence is a
merge. Of special interest is the case when M has more than é(D(M )) convergences.

COROLLARY. If M has more than Z(D(M)) convergences, then M can be iso-
morphically realized with feedback encoding by a machine with fewer convergences.

3. Conclusion. We have covered both special-case and general applications
of the concept of realization with feedback encoding to the distinguishing sequence
problem. In some cases, such as Theorem 4, the results should have real value in
the cases to which they apply. In the more general settings, such as Theorem 6,
the practicality may be less obvious: a more effective algorithm than the inductive
proof of Theorem 7 would be desirable, and the theorem focuses on merges rather
than convergences.

In this paper, and in [2], we have tried to show the potential of the notion of
feedback encoding, much of which rises from its transformation of “‘behavioral”
properties to “‘structural” ones. At this stage, the concept is probably best looked
upon as a heuristic which might be tried in a particular problem. Work still needs
to be done on estimating the costs incurred by the techniques proposed and on
developing reliable algorithms which will indicate whether a particular problem
is amenable to them.
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COMPUTATIONAL COMPLEXITY OF INNER PRODUCTS OF
VECTORS (AND THAT OF OTHER BILINEAR FORMS) OVER
A NONCOMMUTATIVE RING (AUXILIARY FUNCTIONS
ALLOWED)*

ROBERT MANDLt anxo THOMAS VARI]

Abstract. We prove that the minimum number of ring multiplications necessary to compute the
inner product of two n-vectors over a noncommutative ring is n, even if any number of auxiliary
functions (each being a polynomial in the elements of exactly one of the vectors) are allowed **for free”.
This is the “noncommutative” analogue of a result of Winograd’s stating that the minimum number of
multiplications needed to compute the inner product over a commutative ring is #, if auxiliary functions
are not allowed, and, respectively, ~ (n/2), if auxiliary functions are allowed. More generally, given a
bilinear form whose matrix is S, the minimum number of multiplications necessary to compute it over
a noncommutative ring is rank(S), whether or not auxiliaries are allowed. The method used is a modifi-
cation of Floyd’s linear algebra approach: the inner product x - y (or any other bilinear form) is regarded
as a quadratic form in the 2n indeterminates x,, -+, X,, ¥, - - - , ¥, (rather than as a bilinear form in
the two separate sets of n indeterminates).

The same method can also be applied to bilinear forms over commutative rings; when the form is
the inner product, the method yields an improved lower bound, thereby closing the difference between
Winograd’s achievable upper bound [n/27 and his proven lower bound [n/2].

Another result of Winograd’s, that the minimum number of binary operations necessary for
computing the inner product is 2n — 1 (even if auxiliary functions are allowed), can also be extended to
noncommutative rings.

Key words. fast matrix multiplication, computational complexity, inner product, auxiliary functions

1. Introduction. The interest in the computational complexity of inner
products of vectors over noncommutative rings arose from work on fast matrix
multiplication. It is known that two n x n matrices can be multiplied with only
O(n'*#27) multiplications of matrix elements (exactly n'°82” if n is a power of 2) [4]; if
the matrix elements are from a commutative ring, the matrix product can be
obtained in ~4n® ring multiplications ([7]; see also [5]). Although Strassen’s
method, for sufficiently large n, requires fewer multiplications than any other
known method, Winograd’s is better for small values of n (3n® < n'®27 if
log,n < 1/(3 — log, 7) ~ 5.19, ie., for n < |2°!°] = 36; moreover, it has been
determined from practical tests [1] that Winograd’s method is faster than
Strassen’s for n < 250), and if for even one such value of n some procedure,
similar to Winograd’s but not using commutativity, yielded the matrix product
with fewer multiplications than Strassen’s, then that procedure could be extended
to a general method (faster than Strassen’s) in the same way in which Strassen
parlayed his “2 x 2-using-7” procedure into a general method. For some general

* Received by the editors December 6, 1972. This work was supported in part by Project MAC,
an MIT research program sponsored by the Advanced Research Projects Agency, Department of
Defense, under ONR Contract N00014-70-A-0362-001.
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1 York University, Downsview, Ontario, Canada.
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remarks and results on the influence of commutativity (or lack of it) on the com-
plexity of algorithms, the reader is referred to Hopcroft and Kerr [3] (especially
p- 30 and p. 395).

It is thus necessary to determine whether the inner product of n-vectors can
be computed, without using commutativity, through fewer than n multiplications.
This question was asked by A. R. Meyer in September 1970, and the present paper
(also written in September 1970, except for the Introduction) answers it in the
negative. Of course, we have to allow auxiliary functions, since otherwise the
minimum number of multiplications is # even if the ring is commutative [6]; for
these rings it is known that the presence of auxiliary functions reduces the minimum
to n/2[9].

The method used in our proof follows Floyd’s linear algebra approach [2],
but with the following difference: the inner product x-y is regarded not as a
bilinear form in the two sets of indeterminates x,, X5, ---, X, and y{, Y5, -, Yy,
but rather as a quadratic form in the 2n indeterminates x,, X5, -+, X,, V1, V25 " »
y,. The algorithms considered involve additions, subtractions, multiplications by
constants, and general multiplications (not by constants); we are counting only
the latter (multiplications by nonconstants). Each operand is an indeterminate or
a constant or an allowable auxiliary function (a polynomial in the components
of x or in the components of y; its value is available ““for free”) or the result of a
previous operation.

2. Preliminary reductions. The following three theorems effect preliminary
reductions of the form of the algorithm ; they correspond to Floyd’s Theorems 1-3
[2], but in the present formulations products are not assumed to be commutative
and auxiliary functions are allowed free. We shall assume that the algorithm steps
situated between each general multiplication and the next following general
multiplication have been consolidated into a “macro-step”. Since polynomials
in a vector are not defined, we shall sometimes shorten “polynomialin x,, - -- , x,”
to “polynomial in x”’.

THEOREM 1. Without loss of generality, we may assume that the expressions
being multiplied have no constant terms.

THEOREM 2. Without loss of generality, we may assume that the expressions
being multiplied have no nonlinear terms.

THEOREM 3. Without loss of generality, we may assume that the general products
are of the form

(1 (Z“ijxj + thjyj) (Zcijxj + Zdijyj).
J J J J

The proofs are the same as Floyd’s and will not be repeated here.
The inner product is therefore computed according to a formula of the form

) X'Y=Z[(Z+Z)(Z+Z)]+P(X)+Q(y),

i

where P and Q are polynomials.



COMPUTATIONAL COMPLEXITY OF INNER PRODUCTS 51

Remark. Without loss of generality, we might assume that for each i,
Yaf + ) Y (b + df) #0
J J

(because otherwise the resulting quadratic forms would depend on x alone or on y
alone, and could be incorporated in the “free polynomials”). This is not essential
to the argument.

Both “free polynomials’ are homogenous of the second degree (since so are
x -y and Z (+)(+)), and therefore they may be written in the form
Xy
X2

P(X)=Z Zpijxixj=(x1 Xy oo x,)P : = x'Px,
i X

Xn

where P = mat;; (p;;) = Zi Zj p;;E;; and prime denotes transposition, and

Q) = Yawy; = =yQy.

3. The main theorem.

THEOREM 4. The minimum number of multiplications required to compute the
inner product of two vectors over a noncommutative ring is n, the dimensionality of
the vectors, even when auxiliary functions (polynomials depending only on x, or
only on'y) are allowed “‘for free”.

Proof. Let us define

D11 Din |l ]
P2, Pan ‘;
. | 0
|
|
pnl pnn {
|
M0=P®Q= ————————— : —————————— R
: q11 din
|
0 : q21 92,
| . .
| . .
|
L | qnl qnn-
Z=(x; X3 - Xo Vi V2 0 V)
vi=(a, a, -+ a, by by --- b,
Wi=(Cy Ca ottt Cyody dip -+ dy),
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Then the ith product can be written as (z' v,)(w; z), or, using the associativity of
matrix multiplication, z' M; z, where M; is the (“external”) product v,w;, a
(2n) x (2n) matrix. The identity (2) becomes

3) U z=%@Z M z2)+72 M, z,
or
(4) M0+M1+M2+"'=U".

Thus we see that the inner product of two n-vectors can be computed by at most
n — 1 multiplications if and only if one can find “suitably formed” matrices
My, M,, -+, M,_,,M,_ such that (4) is satisfied :

) My +M, + - +M,_, =Ur",

or, more exactly, iff there exist two n x n matrices P, Q and n — 1 pairs of 2n-
vectors v;, w; such that

n—1

®) P@Q) + ) vw, =U"
1

Since for each i, rank (v;w;) = 1 (except in the trivial case |v,| = |w;| = 0), we neces-
sarily have rank 3"~ 'v,w) < n — 1. All the n x n submatrices of )"~ ' M,
have therefore null determinants, and in particular this is true of the one in the
upper right corner. Since the addition of M, does not affect that corner (M,
= P @Q), the upper right n x n submatrix of Zg" M, is singular, while for I,,,
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the similarly placed submatrix of U", we havedet (I,) = 1 # 0. Thus the assumption
that n — 1 multiplications are sufficient has led to a contradiction, and the neces-
sity of at least n multiplications is proved.

4. Generalizations.

THEOREM 5. The minimum number of multiplications required to evaluate a
bilinear form Y ;Y ;s;xy; of full rank over a noncommutative ring is n, the dimen-
sionality of the vectors, even when auxiliary functions (polynomials depending only
on X, or only on'y) are allowed “for free”. (A bilinear form is of full rank if its nullity
is 0, i.e., if its rank equals the dimensionality of the vectors upon which it operates.)

Proof. The proof is similar to the proof of Theorem 4.

THEOREM 6. The minimum number of multiplications required to evaluate a
bilinear form Yy ;s;x,y; over a noncommutative ring is equal to the rank of the
associated matrix S, even when auxiliary functions (polynomials depending only on X,
or only on'y) are allowed “for free”.

Proof. The proof is similar to the proof of Theorem 4.

5. Bilinear forms over a commutative ring. For the case when the evaluation
of bilinear forms is effected without the benefit of auxiliary functions, Floyd’s
Theorem 5 [2] yields the following corollary.

COROLLARY. The minimum number of multiplications required to evaluate a
bilinear form ) ;> ;s;x,y; over a commutative ring (no auxiliary functions allowed)
is max(n(S)), v(S)), where n(S) and v(S) are, respectively, the positive index of inertia
and the negative index of inertia of S.

Floyd proved this for quadratic forms; if a bilinear form could be evaluated
with fewer multiplications, then so could a quadratic form (by identification),
thus yielding a contradiction and proving the corollary.

We remark that, by our Theorem 6, if the ring is not commutative, the-mini-
mum number of multiplications is not the larger of the two indices of inertia, but
their sum (= rank(S)).

Turning our attention now to the case when the evaluation of the bilinear
forms is effected with the benefit of auxiliary functions, we denote by R the upper
right n x n submatrix of the 2n x 2n matrix M, + M; + M, + ---, and by
Lits lower left n x nsubmatrix. When the ring was not commutative (see Theorem
4) the problem reduced to the existence of vectors v;, w; such that R = Sand L = 0.
In our case, however, a term ax; y; could be represented as fx;y; + (x — B)y;x;, and
therefore we are content if we achieve R + L' = S. For a given S, the minimum
number of multiplications necessary to compute the associated form is the mini-
mum, over all n x n matrices X, of the numbers of the form max (rank (X'), rank
S — X)), ie,itis

miny max (rank (X), rank (S — X))

(noticing that rank (X') = rank (X)). This is certainly a lower bound for the number
of multiplications, but it seems to be quite intractable in its general form. We shall
therefore derive another bound, possibly worse but a little more tractable. Let
us restrict ourselves to matrices X of the form mat;;(e;;s;;) where the &’s are
0 or 1; this corresponds to the following: when a term ax;y; is represented as
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Bxy; + (« — P)y;x;, B is restricted to the two values o and 0. (We are trying to
maximize the number of null entries in the matrices R and L). Thus the new
bound is
- min  max (rank (mat;(g;s;;)), rank (mat; (€;;s;,)))
(Vi, j)eijBe{0,1}

(@ means 1 — a), and we conjecture that this new bound is no worse than the
previous one.

Particular case. The form to be evaluated is the inner product; S =1I,. In
this case, we have

rank X = rank (mat;; (¢;;s;;)) = trace (mat;e;;s;;)) = trace (mat;; (¢;;))
= Y &; = the number of I’s in X,
and similarly

rank (S — X) = .-+ = the number of I’sin S — X.

Noticing that rank (X) + rank (S — X) = const. = n, we shall write the minimax
in the form

min max (n — k, k),
k=n
k inieger

which readily evaluates to [1n/2]. We have thus rederived Winograd’s result [9] and
at the same time improved it from |n/2 | to [n/2]. Since the achievable bounds [7]
for n even and for n odd both coincide with the new bound, the new bound is
exact, and the abovementioned conjecture passes the test in this particular case.

6. Minimal number of binary operations. We conclude this paper by making
a few remarks on the total number of binary operations (of all kinds) required to
compute the inner product of n-vectors over noncommutative rings. First, Wino-
grad’s result for commutative rings [8], stating that 2n — 1 operations are neces-
sary, holds also for noncommutative rings since its proof did not use commutativity
(except in examples). Second, this lower bound can be improved, in both cases
(commutative/noncommutative rings), to

(2n — 1) + (number of auxiliary functions actually used).

In particular, this implies that for the case of commutative rings, where

(min # multipl) + (min. # add.js) = (n — 1) + [—ﬂ - Bnl —l<m—1
and the two minima are not achieved simultaneously, any attempt at reducing
the number of multiplications will cause an increase in the number of additions,
which not only offsets the saving in multiplications but actually exceeds that saving,
the excess being equal to the number of auxiliary functions actually used. This is
exemplified by the fact that when we use Winograd’s procedure for reducing the
number of multiplications from n to n/2, the number of additions increases from
n—1to 3n+ 1, ie, by 2 units more than the saving in multiplications, and
exactly 2 auxiliary functions are used by the algorithm.
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FAITHFUL REPRESENTATION OF A FAMILY OF SETS
BY A SET OF INTERVALS*

KAPALI P. ESWARAN}

Abstract. Let Q = {q,,q,, -, q,} be a family of finite, nonempty sets, and S = U, {q;}.
Suppose there exists a one-to-one function f that maps elements of S into points in the real line R
such that for each g; e Q there is an interval I; containing images of all elements of g; but not images
of any elements not in g;. Then the function f and the set of intervals {I,,I,, - --, I,,} are said to faith-
fully represent Q. Necessary and sufficient conditions and an algorithm for faithful representation of
Q are developed. An important kind of file organization, called the consecutive retrieval file organiza-
tion, is shown to be a direct application of the property of faithful representation.

Key words. faithful representation, linear (total) ordering, consecutive retrieval file organization,
intersection graph, complete graph, covering of a graph, directed semantic graph, Hamiltonian path,
acyclic graph, query inverted file organization

1. Introduction. Consider a family of sets Q = {q,, 42, -, ¢}, Where
g;, for 1 <i < m, is finite and nonempty. Let S = U0 14:} = {a1,a,, -, a,}
denote the set of elements belonging to the sets in the family Q. Elements belonging
to the set S — g; are called foreign with respect to g;. Suppose there exists a one-to-
one function f that maps the elements of S into (points in) the real line R such that
for each g; € Q, there exists an interval I; containing images of all elements € g;
but not images of any foreign elements with respect to g;. Then we say that the
family Q is linearly orderable (L.O.) and the function f and the set of intervals
{I,,1,,---,1,} faithfully represent the sets in Q. Hereafter, Q shall denote a
family of sets {q,,q,, -, qn; and S the set U, 014} = {ai,a,,---,a,}.
The statement that (f; I,,I,,---, I,) faithfully represents Q means that the
function f and the intervals I,, I,, -- -, I, faithfully represent Q.
Example 1. Let Q = {q,,4,,93}, 41 = {a1,0,,0a3}, 4, = {a,,a;,as} and
q3 = {as,as}. Let f(a,) = 1, f(as) = 2, f(a;) = 3, f(as) = 4 and f(a,) = 5. Let
. =1[1,3],1, =[2,4] and I = [4, 5] correspond to ¢q,,q, and g5, respectively.
Then (f;1,,1,, I,) faithfully represents Q. This is shown in Fig. 1 [

15(g5) 15(g3)
1T

2 R
(al) (a3) (az) (as) (a4)

F1G. 1. The preimages of i = 1,2, 3,4 and 5 are given below for each i in parenthesis. Intervals with
the corresponding sets are also shown
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One of the applications of the above model is in the area of information
retrieval. Let us assume that we know the family of queries Q regarding a file F.
We need to arrange the file on a linear storage medium. A storage medium S is
called linear if the storage locations of S can be arranged linearly and the access
time between any two storage locations is an increasing function of the distance
between them. Tapes, tracks of a disk, books in a library shelf and shops in a
street are examples of a linear storage medium. We shall assume that the storage
devices are one-dimensional, i.e., the shops in the street have just the ground
floor, etc.

Suppose that the query family Q is such that there exists a 1-1 function f
which maps the records belonging to the file F into storage locations of a linear
storage medium satisfying: (i) for each query g; € Q, there exists a sequence S; of
consecutive storage locations containing all records pertinent to g;, and (ii) S; does
not contain any record not pertinent to g;. We then say that the family of queries Q
has the consecutive retrieval property (CR property) [1]. A file organization having
this property is called a CR organization. Note that each record is stored only
once. By knowing the first and the last pertinent records of a queryin a CR organiza-
tion, all relevant records of all queries can be retrieved. If the queries in Q are
equally likely, then a CR organization for Q guarantees minimum overall retrieval
time and minimum storage space. We can see that Q has the CR property if Q
can be faithfully represented when we consider each record in the file as an element
a; and each query g; as a set of elements.

The paper is in four sections. The results in § 2 concern a family of sets where
every pair of sets in the family has at least one common elément. Section 3 deals
with the conditions under.which the family Q, U Q, is faithfully representable,
where Q, and Q, are faithfully representable families having pairwise nondisjoint
sets. Section 4 extends the conditions of § 3 to a family of sets which is a union of
more than two such families. Given a family of sets Q, we proceed as follows.
(i) We shall express Q as a union of subfamilies such that the sets in each of the
subfamilies are pairwise nondisjoint. (i) We will check if each one of these sub-
families are faithfully representable. (iii) We will verify if the union of such faithfully
representable subfamilies is faithfully representable.

The idea fits well under a graph theoretic background. There is a correspond-
ence between a family Q of pairwise nondisjoint sets and a graph representation
of Q called the intersection graph of Q.

2. Intersection graphs and faithfully representable families.

Lemma L. If Q is linearly orderable, then Q' < Q is linearly orderable.

LEMMA 2. Let Q = {‘ha‘h, T qm}’ S = Uq;eQ {ql} = {al’aZa ) an}' and
g; = {a;} for 1 £j < n Then Qis L.O.iff Q is L.O., where Q = Q U {q;}, i€ {l,
2’ ceey n} .

By Lemmas 1 and 2, we can assume that as far as faithful representation (linear
ordering) is concerned, no set in Q is a singleton.

The intersection graph of Q is denoted by Q(Q) and is defined as follows: for
each set g; € Q, there exists a corresponding node g; in €(Q) and vice versa and
for i # j, g; is connected with g; iff ¢; N q; # ¢. A graph G is called complete iff
every pair of distinct nodes of G is joined by an edge in G.
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Let {G,,G,, -+, G,} beaset of subgraphs of a graph G such that every node
and edge of G is in at least one of the subgraphs G,,G,,---, G,. Then {G,,
G, -+, G,} is said to cover G. All these definitions and the ones that follow are
more or less standard in graph theory (see [2], [3]).

Example 2. Let Q ={q,,9,,93,94,95,96-497,9s}- Let q, = {a;,a,,a,},
q> = {az,a3,a4,a5}, qs = {02,03,04}, qs = {a4aa5aa6}a qs = {04,05,06,1)1},
46 = {b1, b3}, q; = {a;,as} and g5 = {a;,a,}.

Wehave S = U, o {q:} = {a,,a,,05,a,,05,a4,a,,ag,b,,b,}. Q(Q)is given
in Fig. 2. Let R be the connectivity relation of Q(Q), i.e.,, §; R g, iff there is an
edge between g; and g; in Q(Q). Then

Set of nodes of G,
272
G, =[141,492,93},R],
GZ = [{6_1276_13’ 64’21.5}aR],
G3 = [{‘?Sa%}aR]
and

G4 = [{‘77a ‘78}a R]

are some of the complete subgraph of Q(Q). We also see that G,, G,, G; and G,
cover Q). 0O

s

F1G. 2. The intersection graph Q(Q) of Q

LeMMA 3. If Q(Q) is complete and Q is faithfully representable, then
qi€Q

Proof. Let Q =1{q,,45, -, 4qn}, and let {f;1,,1,,---,1,} faithfully
represent Q. The proof is by induction on m. The basis of the induction is obvious.
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Assume that the lemma is true for m = k — 1. Consider m = k. (i) Intervals
1,,1,, -, I,_, overlap (ie., there exists an element in § whose image is in I,
I, ,1I,_,) since g, N g, Nqs - q,_, # & by induction. (ii) The interval I,
must overlap with each one of the intervals I,,1,, -+, I,_, since g, N ¢q; # & for
i=1,2—---,k — L (i) and (ii) imply the existence of an element a,€ S such that
a,isin I,I,,---,I,. Since (f;1,,1,,---,I,) faithfully represents Q, a, is not
foreign to any setin Q, ie, N, oq; # . O

Lemma 3 and the following lemmas lead us to Theorem 1, which gives
necessary and sufficient conditions for a family Q having pairwise nondisjoint
sets to be faithfully representable. We shall draw a correspondence between the
ordering of the elements of the sets of such a family and a Hamiltonian path in a
graph defined on the elements. Let us define that graph.

Define a directed semantic graph G = [V, R, I]. V is a finite nonempty set of
nodes. R is an irreflexive relation on V such that for all a;,a;e Vi # j, a; R a; iff
there is an edge from g; to a;in G. R is the connectivity relation of G. I is a subset of
V. Nodes in I are called direction-changer nodes and are denoted by an * in G.
Nodes in V —1 are non-direction-changer nodes. {a;,a;} denotes the edge
between g; and a;, ignoring the direction on the edge. (a;, a;) denotes the directed
edge from node g; to node a;. A path in a directed semantic graph (DSG) G is a
sequence of distinct nodes aq, a,, - -+, a;,a; 1, -+ , a,0f Gsuch thatfor0 < i < k,
(a;, ;. ) is an edge of G when in direct mode and (g,  , a;) is an edge of G when in
reverse mode, where the modes are defined as follows. If a path starts with a non-
direction-changer node, then the mode is direct. If it starts with a direction-changer
node, the mode is reverse. Whenever a direction-changer node is reached from a
non-direction-changer node, the mode is switched. (If a direction-changer node is
reached from a direction-changer node, no change of mode occurs.) If P = q,,
a,---,a,is a path of G, then a, is called the starting node of P, a, the end node
of P and a,,aqa,, ---, a,_, the intermediate nodes of P. A Hamiltonian path in a
DSG G is a path that passes through all the nodes of G.

Example 3. Consider the DSG G in Fig. 3. @, and a, are direction-changer
nodes. <@,,a,,as,dsy, {a,,a3,d,y are examples of paths in G. <a,,a,,as,
G4,0s, {ds,a,4,a3,0,,a, are some of the Hamiltonian paths in G. [

FIG. 3. The DSG G(Q) of Q

We now define the DSG of a family of sets Q. Let I = M, ., q;. Let R be an
irreflexive relation defined on S as follows: a;Ra; iff i # j and for all g, €Q,
a; € q; implies a; € g,. Note that R is transitive. The DSG of Q is denoted by G(Q)
and is [S, R, I']. §' is the set of nodes of G(Q) and is {Gy,d,, ", d;, - » Gy
where node @; corresponds to element a;€ S and vice versa. a; Ra; iff a;Ra;.
We can use the same symbol R for a relation between two elements of S and for the
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connectivity relation of G(Q) since there is no confusion. I’ is the set of direction-
changer nodes of G(Q), with a, e I' iffa, e I.
Example 4. Let Q = 1(11612,(13} 41 = {a,a,, a3}, ¢4, = {az,a3,a4,a5} and
q; = {az,as,a4} Then S = {al,az,as,a4,a5} For instance, a; Ra,, a, Ra,.
Note that a, is not R-related to a,, since g5 contains a; and not a, . G(Q) is shown
in Fig. 3.

LEMMA 4. Let G(Q) be the DSG of Q and h be a Hamiltonian path in G(Q).
Then there does not exist a subpath h' of h such that the starting and end nodes of
K are direction-changer nodes and the intermediate nodes are non-direction-changer
nodes.

Proof. Let I = (.o q;. Assume, to the contrary, that there exists a subpath
W ofh = <a;,a;yy, - -,a;_,,a;y, where g; and a; are direction-changer nodes and
Qi1 1>8i42, " d;_, are not. Smce a;, a;el and a1, aj—1€(S — I), we have
that (a;,,,a;) and (a;-,,a;) are edges of G(Q) and (a;, a;,,) and (a;,a;-,) are not
edges of G(Q) (see Fig. 4).

In the subpath F’, since there are no direction-changer nodes between a;
and a;, we should have either (i) edges (a;, a;+,) and (a;- ,, a;) or (ii) edges (a; {, @;)
and (@;,a;-,). In either case, we have a situation that contradicts the earlier
statement that (a;, g, ,) and (d;,a;_,) are not edges of G(Q). [

LEMMA S. Let h = {a,, -+, @;, G;+ 1> """, Gj—1, @}, " , 4,y be a Hamiltonian
path of G(Q) Iflal’ J} S qpeQ then {al’ Ai+1>8i+25 " Aj—1, aj} S dp-

Proof. Let I = M, q;. We have three situations 1-3 below.

1. Both g; and g; are direction-changer nodes. By Lemma 4, all the nodes
between a; and a; are also direction-changer nodes. Then the elements corres-
ponding to G; 4, ;4 ,, - -, ;- belong to I. Hence the lemma.

2. Both g; and a; are not direction-changer nodes. For this situation, we
have the following possible cases.

Case (i). Let h visit all the direction-changer nodes after leading a;. Then
(@;,8;41), (i1 1,8;42), "+, (@;_, a)) are edges of G(Q). Since (g, a,) = if g, € g,
then a,, € g, for all g, in Q, we have a;,a;, 1, -, a;_,,a;€q,.

Case (ii). Let h visit all the direction-changer nodes before reaching a;.
An argument similar to that in Case (i) leads us to the conclusion that a;, a;_,, - -
a;_1,a;€q,when a;,a;eq,.

Case (iii). The direction-changer nodes are between a; and @; in h. Let @; and
a,, be the starting and end nodes of the subpath of h that consists only of the
direction-changer nodes (by Lemma 4). Then the path h is

bl

Chyy s Gy ey Gyt s G o5 By oo Ay -
_V__/

direction changers
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By Case (i), all the elements that correspond to nodes between a; and a,_, in h
belong to gq,, and by Case (ii), all the elements corresponding to nodes between
a,+x+1 and a; in h belong to g,. The direction-changer nodes correspond to the
elements of I which are subsets of all sets in Q. Hence we have the lemma.

3. Either g; or a; is a direction-changer node. Without loss in generality,
suppose a; is. Let a,,, be the end node of the subpath of & that consists only of
the direction-changer nodes. By Case (ii) above, {a;,a;_;, -, ;1y4+1} S qp-
We know that {a;,a;,,, -+, a4} €I = q,.Hence {a;,a;,,, -, a;_,,a;} < q,.

The following lemma is the counterpart of Lemma 4 and is easily proved by
contradiction [6].

LemMMA 6. Let Q(Q) be complete and suppose Q is faithfully representable.
Let I = N oq;andlet (f;1,,1,,---,1,) faithfully represent Q. Then there does
not exist ay,a.,a, such that a,,a,€1 and a,e(S — I) and f(a,) is between f(a,)
and f(a,).

The theorem that follows gives the necessary and sufficient conditions for a
family Q whose intersection graph is complete to be faithfully representable.

THEOREM 1. Let Q(Q) be complete. Q is faithfully representable iff there exists
a Hamiltonian path in G(Q).

Proof. The sufficiency part of the theorem is easy to prove as follows. Let
h = {a,,a,, -, a,» be a Hamiltonian path in G(Q). Consider h as an n-tuple.
Define a function f, corresponding to h so that f, maps elements of S = {a,,
a,,---,a,} onto integers 1,2, --- , n as follows: f(a;) = j iff the jth member of h
is a;. For each g; € Q, define an interval

I; = [min { fi(a,)}, max {fla,)}].

ap€qi

It can be oberved that I; contains the images of all elements in g;. To see that I;
does not contain images of any element not in g;, suppose, to the contrary, that it
does. Then there exist a,, a,,,dc,, "+, 4, =+ -, A, 4, belonging to S with a,, ¢ g;
and fi(a,) is between fy(a,) and f,(a,) and {a,,a,} < gq;. By the definition of f,,
this implies that the node a,, is between @, and &, in h, which contradicts Lemma 5.
Hence (f;1;,1,, - -, I,,) faithfully represents Q.

Now we proceed to the necessity part of theorem 1. By Lemma 3,1 = N, g;
# . Letl ={a,a,,,, - ,a,,}. Let(f,;1,,1,, -, 1,) faithfully represent Q.
We can define a total ordering on the elements of S such that a; precedes a; in the
total ordering iff f,(a;) < fi(a;). Without loss of generality, we can assume that f,
is such that

flay) < filay) < - < filay) < fil@per) < -0 < filape) <00 < filay)

images of clements € /

(by Lemma 6).

All the intervals contain the images of elements belonging to I. Hence, when-
ever an interval I; contains fi(a,), it has to contain fy(a,), fi(as), =* -, fi(a,+).
Then, a, € q; implies {a,,a;, - - a,, - a,,,} S ¢g;. For if any of the elements of
{ay,as,---,a,_,} is foreign to g;, we will have a contradiction, ie., that (f,:
I,,1,,---,1,) does not faithfully represent Q.
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Thus we have that (@,,a,) is an edge of G(Q). By considering intervals that

contain fy(a,), fi(as), - -+, fula,-,) and repeating the same argument as above,
we see that (a,,as),(a;z,a4), -+, (@,-1,a,) are among the edges of G(Q).
A similar argument as above shows that (@,, @, 1), (@,- 1, 8y-2), =+ 5 @ps141

a,.) are also edges of G(Q). Since the relation R is symmetric for I, every pair of
nodes belonging to I' = {d@,,@,+, "+, d,4,} is connected and directed both
ways. But the nodes € I' are precisely the direction-changer nodes of G(Q). Hence

<al’529 ) ap—laap’ s Ao Aprptts T an>

is a path of G(Q) which is Hamiltonian. []
Example 5. Consider the family Q in Example 4. The DSG of Q is given in
Fig. 3. h = {a,,a,, s, a,,dsy is a Hamiltonian path in G(Q). Hence Q is faithfully
representable.
Define f,:fy(a,) =1 as a, is the first member of h. Similarly, f,(a,) = 2,
az) =3, filas) = 4 and fi(as) = 5. Let
I, = [min (f,(a), max (fW@))] = [filay), filas)] = [1,3].

ai€qy

Similarly, I, = [2,5] and I3 = [2,4]. Thus (f,;1,,1,,I;) faithfully represents Q.
See Fig. 5.

r Iy(g,) |
I Ii(q,) 'i
e
$ t —+- t +
1 2 3 4 5 R
(al) (az) (as) (ay) (as)

FIG. 5. A faithful representation of Q

3. Union of two linearly orderable families whose intersection graphs are
complete. In the remainder of the paper, let Q, and Q, denote two families of
sets. @, N Q, need not be empty. G(Q,) and G(Q,) represent the DSG of Q, and
Q,, respectively. S, denotes the set U .0, {¢;} and S, theset U .o, {¢;} - S indicates
(S; U S,). We shall first prove some results regarding the elements of S; 1 S, in
an ordering that implies a faithful representation of Q; U Q,. We shall then intro-
duce some definitions regarding the orderings of elements in S, and S, in graph
theoretic terms. Finally, we shall prove a theorem to check if Q; U Q, is faithfully
representable when Q,,Q, are faithfully representable and Q(Q,), (Q,) are
complete.

LemmA 7. Let Q, U Q, be faithfully representable and Q(Q ), Q(Q,) be complete.
Let I =S, NS, and f be a function that defines a linear ordering of the elements
of S such that (Q, U Q) is faithfully represented. Then there does not exist a,,a;,a;
such that a, € (S — I) and {a;, a;} < I and f(a,) is between f(a;) and f(a;).

Proof. The proof is by contradiction. Suppose that there exist such a,, g;
and a;. Without loss of generality, we shall assume that f(a;) < f(a,) < f(a)).
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By Lemma 1, Q, and Q, are linearly orderable. Then by Lemma 3,

I,=Ngqg#7 and I,= N q,# O-
qi€Q qi€Q>
As a;,a;€ S, there exist sets q,,q, € Q, such that a,eq, and a;eq,. I, < q. and
I, < q,.

Case (i). a;€ 1,. Then the interval I} corresponding to g, contains f(a;), f(;)
and hence f(a,). Since the linear ordering defined by f faithfully represents @, U Q,,
a, is not foreign to g,.

Case (ii). a;€ I, . By the same arguments as in Case (i), we have a, € q,.

Case (iii). If a;,a;¢ 1, then there exists an element a,€ I, such that either
fla) < f(ay) or f(a) < f(a). In either case, a,eq, or a,eq, since f faithfully
represents (Q; U Q,).

Thus there exists a g; € Q, such that a, € g;. Hence, a,€ S,. By similar argu-
ments, a, € S,. This means that a, € I, a contradiction. [

Lemma 8. Let Q, U Q, be faithfully representable and €(Q,), Q(Q,) be
complete. Let =S, NS, # &, S, or S,. Let f define a linear ordering of the
elements of S faithfully representing (Q, U Q,). Let a, and a, be such that
f(a,) = min, {f(a)} and f(a,) = max, {f(a;)}. Then

(i) for all a;e(S, — I), either f(a;) < f(a,) or f(a) > f(a,), ie., there does

not exist a,, a, € (Sy — I) such that f(a,) < f(a,) and f(a)) > f(ay);

(i) for all a;e (S, — 1), f(a) < f(a) <= for all a;e (S, — 1), f(a;) > f(a).

Proof. (i) This is proved by contradiction (see [4]) by observing the fact that
Q, and Q, are faithfully representable and I, = N, , ¢; # Fand I, = N, 4, q;
# .

(1)) =. We have f(a;) < f(a,) for all a;e(S,; — I). Assume, to the contrary,
that there existsan a; € (S, — I)such that f(a;) < f(a,). By Lemma7, f(a)) < f(a,).
Since a; is foreign to all sets containing elements of S; — I, we have

f(a;) < min f(a,).

areSy

There exists a set g;€Q, such that g, 2 {a;; UI,. As g, N (S, — I) = &, f(a)
< min, ., f(a,) for all a,eI,. Now consider the set g, € Q, such that g, = {a,}
U I,. The interval corresponding to g, contains the images of elements of S; — I
which are foreign to all sets in Q,. This leads to a contradiction.

<. The same arguments as above direct us to the conclusion that if for all
a;e(S, — 1), f(aj) > f(ay), then for all a;e (S, — 1), f(a) < f(a). O

Let P=<ay,a,, -,a;,8;41, -+, 0, be a path in G(Q). We say that
each g; in P, for 1 < i < k, has both left and right neighbors. The left and right
neighbor of a; are a;_, and a;, , respectively. a, has only a right neighbor, namely,
a, and g, has only a left neighbor, which is a, _ ;. The left neighbor of @, is said to be
empty and so is the right neighbor of a,.

Two paths P, and P, are equal (or nondistinct) iff the starting and end nodes
of P, are the starting and end nodes of P,, and for all g; € P, such that g is not the
starting node of P;, the left neighbor of g; in P, = the left neighbor of @; in P, and
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for all @; e P, such that a; is not the end node of P,, the right neighbor of &; in
P, = the right neighbor of @; in P,.

Let h, and h, be Hamiltonian paths in G(Q,) and G(Q,), respectively. Let
I =S, N'S,. We see that h, induces a subpath in the set of nodes that correspond
to I in G(Q,). The starting and end nodes of this subpath are nodes that correspond
to some elements in I, and the subpath contains all the nodes which correspond to
the elements of 1. Let h] denote this subpath. Similarly A is the subpath induced by
h, in the set of nodes that correspond to I in G(Q,). We say that the Hamiltonian
paths h; and h, are consistent (written h, ~ h,) iff exactly one of the following
holds:

(i)S, NS, = I = &, or (ii) k] = h’ and the left neighbor of the starting node
of hi is empty in h; or h, and the right neighbor of the end node of 4! is empty
in hy or h,.

Example 6. In Example 5, we saw that h, = (a,, a,, a,, a4, asy is a Hamil-
tonian path in G(Q,) where Q, is given in Example 4.

Let Q, = {4,,43,94, 95} Where q,,q5,q, and g5 are given in Example 2.
One can draw G(Q,) and observe that h, = <a,,a;, 44, s, de, b, » isa Hamiltonian
path in G(Q,). Let

I=808,= {a,,a,,a;,a,,as} N {a,,as,a4,0as,0a6,b,}
= {a2aa3’a4’a5}'

Then k! = (a,, ay, a, , s » = h}. The starting node of h{ = a, , and the end
node of h{ = as . The left neighbor of a, is empty in h,, and the right neighbor
of a5 is empty in h,. Hence h; ~ h,. 0O

THEOREM 2. Let (Q,) and Q(Q,) be complete. If Q, U Q, is faithfully re-
presentuble, then there exist Hamiltonian paths h, in G(Q,) and h, in G(Q,) such
that hy and h, are consistent.

Proof. By Lemma 1 and Theorem 1, there exist Hamiltonian paths in G(Q,)
and in G(Q,).

Case (i). I =S, N S, = . The theorem is true.

Case (ii). I # . Let f be a function that defines a linear ordering of the
elements € S faithfully representing Q, U Q,. We have the following situations 1-3.

1. I =8,,ie,S8, =S, and § = S,. Define f,(a;) = f(a;) for all ;€ S, and
f2(a;) = f(a;) for all a;e S,. Clearly, f, (f,) defines a linear ordering, say O, (0,),
of the elements S, (S,) faithfully representing Q, (Q,). Since f,(a;) = fi(a;) for all
a;€S,, we have that for all a;, g, € S,, g, precedes g, in 0, iff g, precedes a, in O, .
By Lemma 7, there does not exist an a, € (S, — S,) and a,, a,€ S, such that fi(a,)
is in between fi(a,) and f(a,). Hence, if h; and h, are the Hamiltonian paths in
G(Q,) and G(Q,) corresponding to O, and 0,, respectively (see proof of Theorem 1),
then h, = h} = h!. The left (right) neighbor of the starting (end) node of h, is
empty. Thus h, ~ h,.

2.1 =8,,ie,8; € S,. The proof is similar to that of part 1 above.

3. 1#ForS,orS,. LetI={a,,a,, -, a,}. Without loss of generality,
we can let f be such that f(a;) < --- < f(a,). By Lemma 8, we can assume without
any loss in generality that for alla; e (S; — I), f(a;) < f(a,)andfor all g; (S, — I),
f(a) > flay).
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Now, define f}, f>:fi(a;) = f(a;) for all ;€ S, and f,(a;) = f(a;) for all g;€ S,.
Clearly, f; and f, define linear orderings, say 0, and 0,, of the elements belonging
to S, and S,, respectively, such that Q, and Q, are faithfully represented. Let h,
and h, be the Hamiltonian paths corresponding to @, and 0, in G(Q,) and G(Q,)
(see the proof of Theorem 1). Then h! = <a,,a,, -, @,y = h}. a, is the starting
node of h{ and its left neighbor is empty in h,. The right neighbor of g,, the end
node of h!, is empty in h,. We thus have h, ~ h,. [

4. Union of linearly orderable families whose intersection graphs are com-
plete. In this section, we consider the union of linearly orderable families having
pairwise nondisjoint sets. Necessary and sufficient conditions for the union to be
linearly orderable is given in terms of a new graph called the partial order graph.
An algorithm for faithful representation is also given.

Let Q = {Q,,Q,, ", 0Q,} be a set of families of sets with Q, M Q; not
necessarily empty. For 1 < i < m, let Q(Q) be complete and let S; denote the set
U gseo: 145 S indicates U;-; .., S; = {a,, a5, -, a,}. Let hy,hy, -, h, be
pairwise consistent Hamiltonian paths in G(Q,), G(Q,), - - -, G(Q,,), respectively,
where, for 1 < i < m, G(Q)) is the DSG of Ql Define a directed graph G(Q) = (S,

R]. §' is the set of nodes of G(Q) and is 1a1,a2, -+, @, ,a,H, where node a;
corresponds to element a; €S and vice versa. a;Ra a; iff there exists a Hamlltoman
path h, 1 < k < m, in which @, precedes a; - g; Ra iff (a;, a;) is an edge of G(Q).
G(Q) is called a partial order (P. O) graph of 0 correspondmg t0Q4,0Q,, -, Q.

An undirected path or simply a path in a directed graph G is a sequence of
distinct nodes @y, a,, - - - , @ suchthatfori = 1,2, ---, (k — 1), {a;, a;, ,} are edges
of G. Note that we ignore the direction of the edges in G. A connected-directed
graph is a directed graph in which there is a path between every pair of distinct
nodes. A component G’ of a directed graph G is a subgraph of G such that G’ is
a connected-directed graph and is not properly contained in any other con-
nected-directed subgraph of G. A directed path in a directed graph G is a sequence
of distinct nodes a,,a,, - -, a, such that for 1 £i < k — 1, (@;,a;,,) are edges
of G. A Hamiltonian path in a directed graph G is a directed path that passes
through all the nodes of G. If P = {a,,a,, - -, a,y is a path in G and (G, a,)
is also an edge of G, then P is also a directed cycle. We can distinguish by context
whether we mean by P a directed path or a directed cycle. If G does not have any
directed cycles, then G is called acyclic. The length of a cycle is the number of
nodes in the cycle.

THEOREM 3. Let G{,G,, -+, G, be a set of complete subgraphs of Q) that
cover Q). Let Q; = Q be such that G; = Q) for | < i < m. Q is faithfully
representable iff there exists a P.O. graph G(Q) corresponding to Q,,Q,, -, Q..
and any G(Q) acyclic.

Proof. The “only if”* part of the theorem: since every subfamily of Q is faith-
fully representable (Lemma 1), there exists a P.O. graph G(Q) of Q.

Suppose, to the contrary, that there exists a G(Q) containing directed czcles.
Let C =<ay, -+, a;,d;+,, ", dxy be a cycle of minimum length in G(Q).
(@;,a;) or (a;,a;) is an edge of G(Q) iff there exists a S,, 1 £ p £ m, such that
S, 2 {a;,a;}. Since hy,h,, ---, h, are pairwise consistent, the length of C must
be at least 3. Furthermore, since C is of minimum length, no set S, contains more
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than two elements corresponding to nodes in C. Hence, without loss in generality,
we can assume that a;, a;, , € S;for | <i < (k — 1)and g, a, €S,.

Since Q is faithfully representable, there exists a function f defining a linear
ordering of the elements of S faithfully representing Q. Considering Q;, we observe
that f(a) is not between f(a;) and f(a;,,) for I=1,2,---,i—1L,i+2,---,k
since {a;,a;,,} < §; and q, is foreign to all sets in Q,. Considering Q,,Q,, -- -,
Q. -, and applying the above argument, we get a contradiction that f(a,) is between
and is not between f(a;) and f(a,) for [ =2,3,.--, k — 1. Thus, Q is faithfully
representable implies G(Q) exists and any G(Q) is acyclic.

The “if " part of the theorem: to prove the sufficiency of the conditions, we
shall show how to construct, for any family Q satisfying the conditions, a function
f and a set of intervals faithfully representing Q.

Let G,G,, -+, G, be the components of G(Q). Define function f as follows:
(i) for all a;,a e Gk, 1 < k < p, f(a;) < f(a;) iff there exists a directed path from
a; to ay, (ii) for all g, eG and all q; €G,and k < I, f(a) < f(a;). Since G(Q) is
acyclic, such a functlon exists. For each ¢;€Q, define I, = [mmapeqi fla,),
max, ., f(a,)]. Interval I; contains the images of all elements of q;.

To see that I, does not contain images of any foreign elements with respect to
q;, Suppose, to the contrary, that it does. Then there exist a,,a,€q;;a.,, ", a,
€ — g, such that for 1 £ k £j, f(a, ) is between f(a,) and f(a,). Without loss
in generality, we can assume that f (@) < fla.,) < -+ < fla.,) < f(ag). Then
(@, a,,) is an edge of G(Q) and a,, is the right nelghbor of g, in some Hamiltonian
path h, used to define G(Q).

Our q; belongs to at least one complete subgraph, say G,, that was chosen to
cover Q). Let Q, be such that Q(Q,) = G,, and let h; be the Hamiltonian path
in G(Q,) that was used in the definition of G(Q). If a, precedes &, in h,, then (a,,
a,) will be an edge of G(Q) and hence @,, a,,, - -, g, " » A, Gy Will be a directed
cycle of G(Q), which is not possible. Hence let @, precede a, in h,. Since a., is
foreign to g;, by Lemma 6, g, is not between a, and a, in h,. Thus h; # h,.

The right neighbor of a, is not empty in both h, and h,. The right neighbor of
a,in h, = a,,, which is not the right neighbor of a, in h,. This leads us to the contra-
diction that h, and h, are not consistent. [

Example 7. Consider the family of sets Q in Example 2. We found that G,,
G,, G; and G, are complete subgraphs that cover (Q). Thus Q1 =1{4,,492,93},
Q; = {Q2a‘13,q4,‘15} Q5 = {45,496} and Q, = {q;,4s}. G(Q,) is given in Fig. 3
and discussed in Examples 4 and 5. hy = <a1,a3,a3,a4,a5> was found to be a
Hamiltonian path in G(Q,). Similarly,

h2 = <52’a3’a4’as"a6ab1>a

hy = <a4’asaa6751752>,
and

hy, = <ag,a,,a9)

are Hamiltonian paths in G(Q,), G(Q5) and G(Q,), respectively. h,, h,, h;, h, are
pairwise consistent. We can thus define a G(Q). G(Q) is given in Fig. 6. For sake of
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F1G. 6. G(Q) of the family of sets Q in Example 2. Note that not all the edges of G(0) are shown
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clarity, we have not shown all the edges of the graph. We find G(Q) to be acyclic
and thus conclude that Q is faithfully representable. [

THEOREM 4. If G, and G, are complete subgraphs of Q(Q) such that G, and
G, cover Q), then Q is faithfully representable iff there exist consistent Hamiltonian
paths in G(Q,) and G(Q,), where Q, < Q, Q, = Q and XQ,) = G,, AQ,) = G,.

Proof. The ““only if” part of the theorem is Theorem 2 (see § 3). If there exist
consistent Hamiltonian paths in G(Q,) and G(Q,), then there exists a G(Q). By
arguments similar to the ones in the proof of Theorem 3, one can show that G(Q)
is always acyclic. Then, by Theorem 3, Q is faithfully representable. [

Based on the fact that every pair of Hamiltonian paths used in the definition
of a P.O. graph G(Q) of Q is consistent, we have the following lemma.

LEMMA 9. There exists a directed path between every pair of nodes in each
component of G(Q) (i.e., if a; and a ; are two nodes belonging to the same component
in G(Q) then there is a path from @; to a jor froma;toa). U

LeMMA 10. Let G be a directed graph such that there exists a directed path
between every pair of nodes of G. If G is acyclic, then there exists one and only one
Hamiltonian path in G.

Proof. The proof is by induction on the number of nodes n of G. Assume that
the lemma is true for n = k — 1. Let G be a graph satisfying the hypothesis of the
lemma and n = k. Then there exists one and only one source, s, in G (a source is a
node with at least one outgoing edge and zero incoming edges). Delete from G
the node s and all the edges incident on s, and obtain the graph G. In G, any path
between nodes i and j (i,j # s) does not pass through s. Hence G satisfies the
hypothesis of the lemma. The number of nodes of G is k — 1. By induction, there
exists one and only one Hamiltonian path in G. Let it be s, ---, s,,. (5, 5;) is
the one and only edge between s and s, in G. Then s, s,, - - -, s,, is 2 Hamiltonian
path in G and is the only one. [

From Lemmas 9 and 10, the following theorem is immediate.

THEOREM 5. There exists one and only one Hamiltonian path in every component
of G(Q) if G(Q) is acylcic. [

We now present an algorithm to obtain a function f and a set of intervals
{1,,1,,---,1,} such that (f;I,I,,---, I,) faithfully represents Q.

(i) Obtain a P.O. graph G(Q) of Q. If there does not exist a G(Q) or if G(Q)
is not acyclic, Q is not faithfully representable.

(i) Let G,,G,, -+, G, be the components of G(Q). Get the Hamiltonian

paths H,H,,---,H,inG,,G,, -, G

P
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(iii) Define function f as follows: (a) for all g, € G,, a j€E G, k<rf(a)<f (a),
and (b) for all a;, c'zjeG,,, i#j,1=k=p, fla) < f(a) iff G; precedes
a;in Hy.

(iv) for all g; € Q, define I; = [min, . f(a;). max, ., f(a)]. ‘

THEOREM 6. The function and the intervals defined by the above algorithm

imply that the family Q is faithfully representable.

Proof. By theorem 5, H,, H,, - - -, H,, exist. The rest of the proof is the same

as the proof of the “only if” part of Theorem 3. [

5. Conclusions. We have given necessary and sufficient conditions and an
algorithm for faithful representation of a family of sets. The complexity of the
algorithm is discussed in [6].

We mentioned earlier that the faithful representation corresponds to the
consecutive retreval (CR) file organization. If any record in a file is stored more than
once in a file organization, then that record is called redundant. When a file is
inverted on queries, we get a query inverted file organization (see [5] and [6]).
A CR file organization is then a query inverted file organization with zero re-
dundancy. When a family of queries does not possess the CR property, we may
beinterested in finding a query inverted file organization with as small a redundancy
as possible. This is discussed in [5] and [6].

If Q does not have the CR property, we may like to find a file organization with
minimum overall retrieval time possible with the constraint that each record be
stored only once. This is discussed in [6].
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A DECISION PROCEDURE FOR THE FIRST ORDER THEORY
OF REAL ADDITION WITH ORDER*

JEANNE FERRANTE? anp CHARLES RACKOFF{

Abstract. Consider the first order theory of the real numbers with the function + (plus) and the
predicate < (less than). Let S be the set of true sentences of this theory. We first present an elimination
of quantifiers decision procedure for S, and then analyze it to show that it takes at most time 22", where
¢ is a constant, to decide sentences of length n.

We next show that a given sentence does not change in truth value when each of the quantifiers
is limited to range over an appropriately chosen finite set of rationals. This fact leads to a new decision
procedure for S which uses at most space 2°". We also remark that our methods lead to a decision
procedure for Presburger arithmetic which operates within space 22°". These upper bounds should be
compared with the results of Fischer and Rabin [2] that for some constant c, real addition requires
time 2" and Presburger arithmetic requires time 22",

Key words. real addition, decision procedures, quantifier-bounding, elimination of quantifiers,
Presburger arithmetic.

1. Introduction. In this paper we present an efficient decision procedure for
the first order theory of the real numbers with the function + (plus) and the
predicate < (less than). Of course, the decidability of the theory in question is a
consequence of Tarski’s theorem that the real numbers under +, - (times), and < is
decidable [5]; however, Tarski’s procedure is far from efficient for the restricted
theory we are interested in. We propose to exhibit a procedure which is nearly
optimal in its computational efficiency. Fischer and Rabin [2] show that there is
a constant ¢ > 0 such that any nondeterministic Turing machine which decides
real addition (even without order) requires, for almost every n, time 2°" to decide
some sentences of length n. We will present a deterministic procedure for the theory
of addition on the ordered set of real numbers which uses at most space 2" and
time 22*" (where d and g are constants) to decide sentences of length n. Thus there
appears to be a gap of approximately one exponential between upper and lower
time bounds. But since the upper bound is deterministic and the lower bound is
nondeterministic, this gap should be viewed in the light of a long-standing, un-
proved conjecture of automata theory which states that nondeterministic time ¢
is equal in power to deterministic time 2",

The procedure we give replaces unbounded quantifiers by quantifiers ranging
over a finite set of rationals; truth of a sentence about the real numbers will thus
be determined by checking finitely many instances of a matrix. In order to prove
the correctness of our procedure, we first present an elimination of quantifiers
procedure with the important feature that it does not require the sentence to be
put in disjunctive normal form at each quantifier elimination.

In § 2 we define the language under consideration. In § 3 we give our elimination
of quantifiers procedure. Our method utilizes an idea used by Cooper [1]in deciding
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integral addition. In § 4 we show—via an analysis of § 3—that each quantifier in a
formula can be replaced by a suitably bounded quantifier, and then show that

the desired space bound can be achieved. In § 5 we remark on further applications
of our methods.

2. Notation. We now define a language . of the first order predicate calculus:

& has variables xq, X, X0, - - - (i.€., the subscripts are written in binary);

£ has a constant symbol i (written in binary) for every integer i;

% has rational constant symbols composed of integer constant symbols, that
is, if @ and b are nonzero integers, then (a/b) is a rational constant symbol of .# ;

& has terms of the form (a,/b,)y, + (ay/b,)y, + --- + (a,/b,)y, (abbreviated
1 (ay/b;)y;), where(a;/b;)is arational constantfor 1 < i < nandwherey,, -+, y,
represent distinct variables of .%. The constant symbol 0 will also be considered
a term of &.

An atomic formula of & is either the string TRUE, the string FALSE, or a
formula of the form ¢, = t, or of the form ¢, < ¢,, where ¢, and t, are terms; the
formulas and sentences of % are built up from the atomic formulas in the usual
way using the symbols V, 3, V, ~, (,).

Let R be the set of real numbers. We interpret the formulas of £ as follows:
if (a/b) is a rational constant symbol and x is interpreted as having the value r € R,
then we give (a/b)x the value (a/b)- r. We interpret = as equality, + as the usual
operation of addition on R, and < as the usual ordering on R. The atom TRUE is
always taken to be true, and FALSE is always taken to be false.

Let S be the set of sentences of £ true under this interpretation. We will exhibit
a decision procedure for S (that is, an algorithmic procedure for deciding whether
an arbitrary sentence of .Z is in S or not) such that if B is a sentence of length n, the
algorithm determines whether or not B € S within space 2", where d is a constant.

A remark should be made here as to why we have defined the terms of & as
we have; if we had only allowed integer coefficients in our terms, then the resulting
language would have been no less powerful, yet it would have been more difficult
to arrive at a decision procedure. The reason is that our definition of a term reflects
the fact that R is not only an ordered group (under addition), but it is also divisible
and torsion-free. That R is divisible means that for every r € R and every positive
integer k, there is an s € R such that k- s = r, i.e,

S+s+ - +s=r.
—_
k times

That R is torsion-free means that for every r€ R and every positive integer k,
there exists at most one s € R such that k-s = r. It is because R is divisible and
torsion-free that it makes sense to talk about division by positive integers, and
hence multiplication by rational constants.

In fact, a close examination of our decision procedure will reveal that the only
fact we use about R is that it is an ordered, divisible, torsion-free Abelian group.
Hence our procedure will work as well on Q, the set of rationals (under the usual
addition and order).
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3. Elimination of quantifiers,

DEFINITION. Let Fi(x,, -+, x,) and F,(x,, -+, x,) be formulas of .% Then F,
and F, are equjvalent if for every r, --- ,r,€ R, F,(r,, -+, r,) is true<> F,(r , -+ ,1,)
is true.

The goal of this section is to prove the following theorem.

THEOREM 1. For every formula F(x,,---,Xx,), there exists an equivalent
quantifier-free formula F'(x,, ---, x,). In fact, there is an effective procedure for
going from F to F'.

It is clear how Theorem 1 leads to a decision procedure for S. To decide if a
sentence F is true, one need merely find an equivalent quantifier-free sentence F';
F’ will be a Boolean combination of the atoms TRUE and FALSE, which we
know how to decide.

The proof of Theorem 1 is by induction on the complexity of F(x,, «--, x,).
If F is an atomic formula, then we can take F' to be F. If F is F, V F,, then we
can take F'tobe F| V F,,where F' and F, are quantifier-free formulas equivalent,
respectively, to F, and F,.If Fis ~ F,, then we can take F’ to be ~ F. The remain-
ingtwo cases, VxF, and 3xF, , are handled by the following lemma, since the quanti-
fier Vx is equivalent to ~3x~,

Lemma 1. Let B(x,x,, -, Xx,) be a quantifier-free formula. Then there exists
an effective procedure for obtaining another quantifier-free formula, B'(x,, - - -, x,),
such that B'(x,, +- -, x,) is equivalent to AxB(x, X, + -+ , X,).

Proof. Let B(x,x,, -+, X,) be a quantifier-free formula,

Step 1. “Solve for x” in each atomic formula of B to obtain a quantifier-free
formula, D(x,x,, ---, X,), such that every atomic formula of D either does not
involve x or is of the form (i) x < ¢, (ii) t < x, or (iii) x = t, where ¢t is a term not
involving x.

Step 2. We now make the following definitions:

Given D(x, xy, - -+, x,),toget D_ (x;, -+, x,) (Dy(xy, - -+, x,)), replace

x < tin D by TRUE (FALSE),
t < xin D by FALSE (TRUE),
x = tin D by FALSE (FALSE).

Clearly, for any real numbers r,, - -+, r,, if r is a sufficiently small real number,
then D(r,r,,---,r,)and D__(r,, -+, r,) are equivalent. A similar statement can
be made for D, for r sufficiently large.

Step 3. We will now eliminate the quantifier from IxD(x, x,, ---, x,) using
a method very similar to that used by Cooper in his decision procedure for
Presburger arithmetic [1]. Let U be the set of all terms ¢ (not involving x) such that
t <X, x <t orx =tisan atomic formula of D.

LemMma 1.1. 3xD(x, x,, -+, X,) is equivalent to the quantifier-free formula
B(x,, -, x,) defined to be

D__VD,V V D(t+0)2,x,, -, X,).

t,velU
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Proof. Suppose we are given real numbers r,, -+, 7,,.
(B’ - 3xD): Suppose

D_,VD,V V D(t+v)2,r, - ,r,)
t,vel

is true. If one of the disjuncts D((t + v)/2,r,, - -, r,)istrue,soisIxD(x, ¥y, - -+, 1,).
So suppose one of the first two disjuncts is true, say D_ . (The proof for D is
similar.) Then since we can pick r sufficiently small so that D(r,r,,---, r,) is
equivalent to D__, 3xD(x,r,, ---, r,) is true.

(3xD — B'): Suppose IxD(x,r,, ---, r,) is true. Let ¢, - - -, t,, be the distinct
real numbers, in increasing order, obtained by substitutingr,, - - -, r,forx,, --- , x,
in the terms in U. Since 3xD(x,r,, ---, r,) is true, there is some real number r
such that D(r,r,, - -, r,) is true. Now r must satisfy a specific order relation with
respect to the numbers ¢, - - -, t,,. That is, exactly one of the following must hold:

(a) r< t19

®) t, <,

(c) r=t;forsomei, 1 i< m,

dt, <r<ty,,forsomei,l <i<m-— 1

If any other real number ' satisfies the same order relations with respect to
ty,+ -+, t, asr, then D(r,r,, ---, r,) is true. So if (a) holds, D_ , must be true;
if (b) holds, D, must be true; if (¢) holds, D((¢; + t;)/2,r, - - -, r,) must be true; if
(d) holds, D((¢t; + t;4+,)/2,ry, -, r,) must be true.

So Lemma 1.1, Lemma | and Theorem 1 are proven. The key point of the
proof was in Step 3, where (following Cooper) instead of putting the formula D in

disjunctive normal form as is usually done, we replaced IxD(x, x,, - -, x,) by
(essentially) a disjunct of formulas of the form D(¢, x,, - - -, x,) for t a term in our
language.

4. Bounds on the procedure. The purpose of this section is to show that the
desired space bound can be attained. In order to do this, we want to compute a
space bound on the elimination of quantifiers procedure given in § 3.

1t should be noted that we are using as our model of computation the deter-
ministic, one-tape Turing machine; space bounds, or the number of tape squares
used by the Turing machine, are given as a function of n, the length of the sentence
the machine is deciding. As is widely known, this model is not restrictive for bounds
as large as exponential, since it can simulate a multitape or nondeterministic
machine in space at most the square of the space required by the more powerful
model [4]. Of course, we describe our procedure informally, leaving it to the reader
to convince himself or herself that straightforward implementation of our procedure
on a Turing machine would achieve the claimed bounds on time and space.

Notation. If F is a formula, let I(F) be the length of F and let s(F) be the largest
absolute value of any integral constant appearing in any rational constant in F.
(We assume, for ease of computing the complexity of our procedure, that [(F) = 2
and s(F) = 2.) By the “length’’ of an integer, we merely mean its length when written
out in binary.

DEFINITION. Let r be a real number and let k be a positive integer. Then r is
limited by k, written r < k, if r is rational and if there exist integers a, b such that
r = a/b and |a| £ k and |b| £ k.
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Remark. Let r,, r,, -+, r, be real numbers limited by the positive integers
Wy, Wy, -, w, respectively. Then r{ +r, + -+ + 1, <k-w;-w,. - .w, and
Frotg. ool < Wy wy.---.w,. Now let B(x,x, -, x,) be a quantifier-free
formula and let B'(x,, - - -, x,) be the formula obtained by applying the elimination
of quantifiers procedure of § 3 to 3xB. Let s, = s(3xB) and let [, = I(IxB). We
compute an upper bound on s(B) in terms of s, and an upper bound on (B’) in
terms of [,.

Step 1 of the procedure, “Solve for x,” first involves putting each atomic for-
mula of B which contains x in the form ax = t, or t < ax or ax < t, where ¢ is a
term not containing x. Call the resulting formula C(x, x;, ---, x,). Obtaining C
involves, for each variable in each atomic formula, subtracting one rational coeffi-
cient from another. Hence by the remark above, s(C) £ 2(so)?. Step 1 then entails
dividing through in each atomic formula of C by the coefficient of x (if it is nonzero)
to obtain the formula D(x, X, - - -, x;). Clearly, s(D) < (s(C))* £ 4(so)*.

No new integer constant is created by writing down D and D_ .

Step 3 of the procedure involves writing D((t + v)/2, x4, ---, X;) for every
pair of terms ¢, vin D which don’t contain x. Now s(t + v) < 2-(s(D))?, so we have
(1) s((t + v)/2) £ 4-(s(D))* < (s0)'*.

So s(B') < (so)'*.

To calculate I(B'), note that (D) and I(D_ ) are both </,. D looks exactly
like B except that the atomic formulas have been changed, so D has no more than
l, terms. Therefore we have to write down no more than I3 formulas of the form
D((t + v)/2,xy, -+, x;). To determine the length of each D((t + v)/2,x, -+, X),
note that in each of the at most /, atomic formulas, we may have to write two terms,
each term containing k rational coefficients, each numerator and denominator of
each coefficient bounded in size by (s,)'* and in length by 14 - length (s,). So the
length of each formula D((t + v)/2,x., -, X)) S lo-2-k-2-(14-length (o))
< 56(lo)°. So I(B) < 2y + 15(56(10)°) = (Io)**.

We now compute the amount of space it would take to eliminate quantifiers
in a formula E where I(E) = [,, s(E) = s,, and the number of quantifiers in E is n.
Our analysis is similar to that given by Oppen [3] for Cooper’s procedure for
integral addition. We first put E in prenex normal form, using the standard
algorithm but always choosing variables with the shortest subscripts possible,
obtaining E'. Note that E’ is of length </, log (l,); this is because there are at most
I, occurrences of variables, and thus any subscript of a variable in E will be increased
in length by a factor of at most log (/). Note that the prenex normal form procedure
does not change the number of quantifiers or the size of constants, so E’ has n,
quantifiers and s(E') = s(E).

Clearly, the largest formula obtained in the course of eliminating quantifiers
from E’ is of length at most

(I log Ip)**"0 < (Iy log o) *'o < 2%

for some constant c¢,. Also, the largest integer constant (in absolute value) en-
countered is at most

(59)"#".
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Notice that if E is a sentence, then the total space used in eliminating quantifiers
from E need be no more than

22c0'l(E)

Since the number of steps involved in each quantifier elimination (and also in the
final step of evaluating a Boolean combination of TRUE and FALSE) is only a
fixed polynomial in the total space used, we see that our procedure operates within
time

224, A(E)

for some constant ¢, .

Our next goal is to derive a new decision procedure for S which will be approxi-
mately as efficient as the previous one with respect to time but more efficient with
respect to space.

DEFINITION. A quantifier Qx, where Q is V or 3, is limited by the positive
integer k (written Qx < k) if, instead of ranging over all real numbers, it ranges
over the numbers limited by k.

LEMMA 2. There exists a constant ¢ such that the following is true. Let F(x,
X, +, X,) be a formula containing n quantifiers; let so = s(F) and let r(, -, r,
be any real numbers limited by the positive integers wy, - -, w,, respectively; let Q
be either a universal or existential quantifier. Then QxF(x,ry, -+, r,) is true if
and only if

[QX ﬁ (50)26('”,‘)(“)1 CE) wk)]F(x’rla R} rk)

is true. (If k = O, then we take w, . --- . w, to equal 1).

Proof. Since Vx is equivalent to ~ 3x ~, we may assume without loss of genera-
lity that Q is existential. Let F'(x,x,, -, x,) be the quantifier-free formula
equivalent to F obtained by our quantifier elimination procedure. If we solve for
x in F’ and take the average of any two terms that appear, (1) tells us that every
rational coefficient will be limited by (s(F"))'*

Assume now that some value of x satisfies F'(x,r, - -, r,), where r; < w;, for
1 £ i £ k. Then some value of x satisfying F'(x,r,, ---, r,) is either equal to the
average of two terms obtained by solving for x in F'(x,r,,---, r,) or is 1 bigger
than or 1 smaller than all such averages. It is sufficient, therefore, to show that any
average is limited by

(50)2" " wy .o wy).
But by the above paragraph, any such average is equal to Y, a;r; for some
Ay dy limited by (s(F"))'*. Since a;r; < (s(F')'*-w;, for 1 <i < k, we have

_ar < k-T2, Us(F)**w,]. Since s(F') £ (so)'*", one can eas11y calculate that

c(n+k)
Z ar; < (so)? Wy W),
i=1
for some constant c.
LEMMA 3. Let ¢ be the constant of Lemma 2, let Q x,0,%, -+ Q. x,F(x,, -+,
x,) be a sentence, where F is quantifier-free and where Q; is V or 3 for each i, 1 < i
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< n, and let sy = s(F). Let w, = (so)*>” and let w,., = (59)>" (W, . - .w) for
1 <k <n Then Q\x,--- Qx,F(x,,---,x,) is true if and only if (Q,x; < w,)
Q% K W)) (@, S WIF(xy, -+, x,) s true.

Proof. The proof is immediate from Lemma 2.

THEOREM 2. There is a constant d, and a decision procedure for S, such that to
decide a sentence B of length n takes at most space 2%". (Note that the procedure
must therefore take time < 22", for some constant d’, because of a well-known
theorem of automata theory relating time and space.)

Proof. Let B be a sentence of length n, and let s, = s(B). Put B in prenex
normal form to obtain a sentence B'. Now I(B') < nlog(n), s(B') = s4, and B has no
more than n quantifiers, so we can assume B’ looks like Qx, --- Q. x,F(x, -, X,),
where F is quantifier-free and Q;is V or 3for1 £ i < n.

Define w, = (s¢)*" and w, ., = (50)*"(w,.---.w,) for 1 £k < n. Then by
Lemma 3, B’ is equivalent to (Q;x; < wy)--- (Q,x, < w)F(x;, -+, x,). It is
easy to calculate that w, = ((s0)>*™)* ' for 1 £ k < n, so w, < (50)>“""”". Since
so < 2" we have w, < 22" for some constant ¢’. Note that every rational constant
limited by 22" can be written in space proportional to 2¢" (since integer constants
are written in binary). So B’ can be decided by cycling through the set of rationals
associated with each quantifier appropriately, all the time testing the truth of F
on different n-tuples of rational constants. We let the reader convince himself
or herself that a Turing machine implementing this outlined procedure need use
only 2" tape squares for some constant d.

5. Applications. The idea of deciding truth in a particular theory as outlined
above can be applied to many other theories, thereby obtaining procedures of
considerable computational efficiency. That is, given a particular theory, one gives
an elimination of quantifiers procedure, analyzes it to see how “‘large” constants
can grow, and then uses this analysis and the original procedure (in a manner
similar to that given above) to limit quantifiers to range over finite sets instead of
an infinite domain.

In particular, we consider the efficient quantifier elimination procedure given
by Cooper [1] for deciding truth in the first order theory of integer addition.
Define the first order language ¢ as follows:

%' has variables x4, x,, X0, -+ - (i.e., the subscripts are written in binary);

for each integer i, £’ has a constant symbol i (written in binary);

%' has terms of the forma,y, + --- + a,),, where g, is an integer constant for
1 £i £k and where y,,y,, ---, y, are distinct formal variables

&' has atomic formulas of the form t, < ¢, (read ¢, is less than or equal to t,”)
or alt, (read “‘a divides t,”’), where t, and t, are terms and a is a positive integer
constant, or TRUE, or FALSE.

Sentences and formulas are built up in the usual way.

Let S’ be the set of sentences of ¥ which are true of Z, the set of integers,
when the symbols of .#’ are interpreted in the obvious way. Cooper decides S’
by elimination quantifiers, and Oppen [3] has determined bounds for this pro-
cedure.

DEFINITION. An integer n is limited by the positive integer k, written n < k, if
In| < k.
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DEerINITION. If F is a formula of £, then s(F) is the smallest integer =2 such
that every integer constant of F is limited by s(F).

THEOREM 3 (Oppen). There exists a constant e such that the following is
true. If F is a formula of ¥’ with n quantifiers, then when Cooper’s procedure is
applied to F, every integer constant encountered is limited by

(s(F)**".

We can now state a lemma.

LEMMA 4. There exists a constant f such that the following is true. Let F(x,
Xy, o+, X;) be a formula of &' containing n quantifiers; let s, = s(F) and letn,, --- , n,
be integers limited by the positive integer w. Then IxF(x,n,, ---, n,) is true of Z
if and anly if

[3x < (507" - WIF(x, - my)
is true of Z.
Proof. Use Theorem 3, Cooper’s procedure, and an analysis similar to that
given for real addition.
LEMMA S. There exists a constant g such that the following is true. Let B be
the formula Q,x, --- Q,x,F(x,, -, x,), where F is quantifier-free and Q; is V
or 3 for each i,1 £ i < n;let sy = s(F). Then B is true of Z if and only if

(Q1%1 < (502" N(Qax5 < (502 7) -+ (QuXy < (502 (X, -+, X,)

is true of Z.

Proof. Apply the previous lemma.

We can now state the following theorem.

THEOREM 4. There exists a constant h and a decision procedure for S’ such that
to decide a sentence of length n takes at most 2*"" space.

Remark. Theorem 4 should be compared to the following result of Fischer
and Rabin [2].

THEOREM (Fischer and Rabin). There exists a constant j > 0 such that any
nondeterministic Turing machine which decides S’ requires for almost every n time
2% to decide some sentences of length n.
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FINDING ALL THE ELEMENTARY
CIRCUITS OF A DIRECTED GRAPH*

DONALD B. JOHNSONf*

Abstract. An algorithm is presented which finds all the elementary circuits of a directed graph in
time bounded by O((n + e)(c + 1)) and space bounded by O(n + e), where there are n vertices, e edges
and ¢ elementary circuits in the graph. The algorithm resembles algorithms by Tiernan and Tarjan,
but is faster because it considers each edge at most twice between any one circuit and the next in the
output sequence.

Key words. algorithm, circuit, cycle, enumeration, digraph, graph

1. Introduction. Broadly speaking, there are two enumeration problems on
sets of objects. The one, which we call counting, is determining how many objects
there are in the set. The other, which we call finding, is the construction of every
object in the set exactly once. Indeed, objects may always be counted by finding
them if a method to do so is at hand. But knowing the count is usually of little aid
in finding the objects.

We give an algorithm for finding the elementary circuits of a directed graph
which is faster in the worst case than algorithms previously known. As far as we
know, it is also the fastest method known for the general enumeration problem as
well (see [1, p. 226]). Specific counting problems are, of course, solved. For example,
there are exactly

n—1 n
z ( . )(n ~i)!
i1 \n—i+1
elementary circuits in a complete directed graph with n vertices. Thus the number
of elementary circuits in a directed graph can grow faster with n than the exponen-
tial 2". So it is clear that our algorithm, which has a time bound of O((n + e)(c + 1))
on any graph with n vertices, e edges and ¢ elementary circuits, is feasible for a
substantially larger class of problems than the best algorithms previously known
[2], [3], which realize a time bound of O(n - e(c + 1)).

A directed graph G = (V, E) consists of a nonempty and finite set of vertices
IV and a set E of ordered pairs of distinct vertices called edges. There are n vertices
and e edges in G. A path in G is a sequence of vertices p,, = (v = v;,0,, - -+, v, = U)
such that (v;,v;,,)€ E for 1 < i < k. A circuit is a path in which the first and last
vertices are identical. A path is elementary if no vertex appears twice. A circuit is
elementary if no vertex but the first and last appears twice. Two elementary
circuits are distinct if one is not a cyclic permutation of the other. There are ¢
distinct elementary circuits in G. Our definitions exclude graphs with loops (edges
of the form (v, v)) and multiple edges between the same vertices. It is obvious that
for any circuit q,,, there exists a vertex u such that g,, is composed of a path p,,
followed by edge (u,v). If g,, is elementary, then p,, is also elementary.

* Received by the editors December 10, 1973, and in final revised form June 10, 1974.
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F is a subgraph of G induced by Wif W < V and F = (W, {(u, v)lu,ve W and
(u,v) € E}). An induced subgraph F is a (maximal) strong component of G if for all
u, v e W there exist paths p,, and p,, and this property holds for no subgraph of G
induced by a vertex set Wsuch that W =« W< V.

The literature contains several algorithms which find the elementary circuits
of any direct graph. In the algorithms of Tiernan [4] and of Weinblatt [5], time
exponential in the size of the graph may elapse between the output of one circuit
and the next [2]. Tarjan [2] presents a variation of Tiernan’s algorithm in which at
most O(n - e) time elapses between the output of any two circuits in sequence,
giving a bound of O(n - e(c + 1)) for the running time of the algorithm on an entire
graph in the worst case. Ehrenfeucht, Fosdick, and Osterweil [3] give a similar
algorithm which realizes the same bound.

In the case of Tarjan’s algorithm, the worst-case time bound is realized, for
instance, on the graph shown in Fig. 1. We assume that the algorithm begins with
vertex 1 and, in any search from vertices 1 through k + 1, it visits vertices k + 2
through 2k + 1 before a first visit to vertex 2k + 2. In the course of finding each of
the k elementary circuits which contain vertex 1, the subgraph on vertices 2k + 2
through 3k + 3 will be explored k times, once for each of the vertices k + 2 through
2k + 1. Thus exploration from vertex 1 alone consumes O(k?) time. Since there are
exactly 3k elementary circuits in the entire graph, the running time is at least
O(n-e(c + 1)).

The worst-case time bound for Tarjan’s algorithm is also realized on the
graph in Fig. 2. Assuming a start at vertex 1, the algorithm takes O(k) time to find
the one elementary circuit of the graph. Then the fruitless searches from vertices 2
through k take O(k?) time, which is O(n - e(¢ + 1)). So we see that there are two
ways in which the time bound is realized in Tarjan’s algorithm. One is through
repeated fruitless searching of a subgraph while seeking circuits with a certain
least vertex ; the other is through fruitless searches from many vertices which are
least vertices in no elementary circuit.

The graphs of Figs. 1 and 2 are strongly connected, and their undirected
versions are biconnected. On such graphs, obvious preprocessing techniques, such
as reducing the graph to its strong components (as Weinblatt does [5]) or to com-
ponents which in addition to strong connectivity have biconnected undirected
versions, do not improve the performance of Tarjan’s algorithm. Stronger tech-
niques are needed to get a better asymptotic running time in the worst case.
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FI1G. 1. A worst-case example for Tarjan’s algorithm
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FI1G. 2. A second worst-case example for Tarjan’s algorithm

2. The algorithm. In our algorithm, the time consumed between the output of
two consecutive circuits as well as before the first and after the last circuits never
exceeds the size of the graph, O(n + e). We employ the basic notion of Tiernan’s
algorithm. Elementary circuits are constructed from a root vertex s in the sub-
graph induced by s and vertices “larger than s”’ in some ordering of the vertices.
Thus the output is grouped according to least vertices of the circuits.

To avoid duplicating circuits, a vertex v is blocked when it is added to some
elementary path beginning in s. It stays blocked as long as every path from v to s
intersects the current elementary path at a vertex other than s. Furthermore, a
vertex does not become a root vertex for constructing elementary paths unless it
is the least vertex in at least one elementary circuit. These two features avoid much
of the fruitless searching of Tiernan’s, Weinblatt’s and Tarjan’s algorithms and of
the algorithm of Ehrenfeucht, Fosdick, and Osterweil.

The algorithm accepts a graph G represented by an adjacency structure A
composed of an adjacency list 44(v) for each v € V. The list A4(v) contains u if and
only if edge (v, u) € E. The algorithm assumes that vertices are represented by inte-
gers from 1 to n.

The algorithm proceeds by building elementary paths from s. The vertices
of the current elementary path are kept on a stack. A vertex is appended to an ele-
mentary path by a call to the procedure CIRCUIT and is deleted upon return from
this call. When a vertex v is appended to a path it is blocked by setting blocked
(v) = true, so that v cannot be used twice on the same path. Upon return from the
call which blocks v, however, v is not necessarily unblocked. Unblocking is always
delayed sufficiently so that any two unblockings of v are separated by either an
output of a new circuit or a return to the main procedure.

CIRCUIT-FINDING ALGORITHM
begin

integer list array A.(n), B(n); logical array blocked (#); integer s;

logical procedure CIRCUIT (integer value v);

begin logical f;
procedure UNBLOCK (integer value u);
begin
blocked (u) : = false;
for weB(u) do
begin
delete w from B(u);
if blocked(w) then UNBLOCK (w);
end
end UNBLOCK;
f = false;
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stack v;
blocked(v) : = true;
Li: for we Ay (v) do

if w=s then
begin
output circuit composed of stack followed by s;
f = true;
end

else if —blocked(w) then
if CIRCUIT(w) then f : = true;
L2: if /'then UNBLOCK(v)
else for we A (v) do
if v¢ B(w) then put v on B(w);

unstack v;
CIRCUIT :=f;

end CIRCUIT;

empty stack;

si=1;
while s < n do
begin
Ay 1= adjacency structure of strong component K with least
vertex in subgraph of G induced by {s, s+ 1, - - -, n};
if Ay # (& then
begin
s 1= least vertex in V;
for icV'y do
begin
blocked(i) : = false;
B(i) := J;
end;
L3: dummy := CIRCUIT(s);
s:i=s5+1;
end
else s := n;
end
end;

The correctness of the algorithm depends on no vertex remaining blocked
when there is a path from the vertex to s which intersects the stack only at s.
On the other hand, the bound on running time depends on all vertices remaining
blocked as long as possible, consistent with the requirements of correctness. The
following lemma establishes these properties. It will be seen that the B-lists are
used to remember information obtained from searches of portions of the graph
which do not yield an elementary circuit. The procedure UNBLOCK has the
property thatif there is a call UNBLOCK(x) and vertex y is on list B(x), then there

will be a call UNBLOCK(y) following which blocked(y) will be false.

LEMMA 1. At L2, for any vertex x # s, there is a call UNBLOCK(v) which sets

blocked(x) = false if and only if
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(i) there is a path, containing v, from x to s on which only v and s are on the

stack, and

(ii) there is no path from x to s on which only s is on the stack.

Proof. Assume, to the contrary, that there is an execution of L2 at which
the lemma first fails and that the lemma fails for no vertex before it fails for
vertex y. Two cases are possible under this assumption.

Case 1. Suppose that the path conditions, (i) and (ii), hold for y at L2, but
blocked(y) is not set false. Because there is an edge (v, z) on the path from y to s,
JS is true at L2. This fact is immediate if z = s. If z # s, it follows from our assump-
tion that the lemma holds for z before the return from the call CIRCUIT(z). Thus
there is a call UNBLOCK(v) and, without loss of generality, a path (y = v,,
vy, +, U, = v) on which only v is on the stack and only y is not unblocked as a
result of the call UNBLOCK(v) at L2. But when y was last blocked, y was on the
stack. Since y remained blocked when y was removed from the stack, y was put
on list B(v,). So there was a call UNBLOCK(y), a contradiction.

Case 2. Suppose that there is a call UNBLOCK(v) at L2 and that blocked(y)
is set false, but that either (i) or (ii) is not satisfied. It cannot be that v = s because
it is clear that the lemma holds when only v = s is on the stack, and s cannot be
stacked more than once. Since f is true there is an edge (v, z) such that either
z = s or f was set true when the call CIRCUIT(z) returned. It follows from our
assumption that, when f was set true, there was a path from z to s on which only s
was on the stack. It may be that several calls to CIRCUIT occur after f is set
true and before the current call UNBLOCK(v). In any event, the current stack
(when the call UNBLOCK((v) occurs) is identical to the stack when f was set true,
so there is a path (v,z, --- , s) on which only v and s are on the stack. Since v is
on the stack, (i) and (ii) would be satisfied if y = v.

So y # v, and there is some vertex ¢ which is unblocked before y is unblocked
such that y is on B(t). By assumption, there is a path from ¢ to s on which only v
and s are on the stack. Furthermore, when y was last put on B(t), blocked(t) was
true and y was on the stack. But blocked(t) has to remain true until the current
call UNBLOCK(v). Otherwise y would have been removed from B(t). Since y
must have been unstacked after y was put on B(t), there was some execution of L2
where the stack was a prefix of the current stack, (i) and (ii) held for t, and blocked(t)
was not set false. But by assumption, the lemma did not fail then for t. From this
contradiction, we find that Case 2 is also impossible. [

COROLLARY 1. The algorithm outputs only elementary circuits.

Proof. Certainly only circuits are output. By Lemma 1, a vertex is only un-
blocked if it will be off the stack before any call to CIRCUIT can occur. Thus no
vertex can be repeated on the stack. [

LemMMA 2. The algorithm outputs every elementary circuit exactly once.

Proof. No circuit is output more than once since, for any stack (s = v,, v,,
--+, ) with v, on top, once v, is removed the same stack cannot reoccur.

Let (v, v,, -+, v, v;) be an elementary circuit such that v, < v;,, 1 i < L.
A first call CIRCUIT(v,) will eventually occur at L3 since there is a strong com-
ponent with least vertex v, . Since no vertex is blocked when this first call occurs, it
follows by induction using Lemma 1 that whenever the stack is (s = vy, v,, - - , v;)
for i <, the stack will later be (s = v,,v,, -+, v;,,). Thus every elementary
circuit is output. [
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The foregoing results show that the algorithm does indeed find all the elemen-
tary circuits of a directed graph. The bound on running time follows from the
next lemma.

LEMMA 3. At most O(n + e) time can elapse in a call at L3 to CIRCUIT before
either the call returns or a circuit is output.

Proof. First we show that no vertex can be unblocked twice in succession
unless a circuit is output. Then we show that no more than O(n + e) time can elapse
before some vertex is unblocked a second time.

Suppose a circuit is output and then some vertex y is unblocked. By Lemma 1,
as soon as v is unstacked there is a path (y = v,,v,, -+, v, = s) on which only s
is on the stack. Let some vertex v;, | < i < k, be the first vertex on this path to be
put on the stack again. We see by induction on the execution of the algorithm that
eventually the stack will be (s, ---, v;, 0,44, -+, U,_) and a new circuit output.
Until the new circuit is output, no vertex on the path will be unstacked. Thus no
vertex can be unblocked more than once before a circuit is output.

Charge a unit of cost to a vertex if it is an argument to a procedure call and
a unit of cost to an edge if consideration of this edge by the for loop at L1 in CIR-
CUIT does not result in a procedure call. The cost of all work in the procedure
CIRCUIT will be bounded by a constant times the number of units charged. For
any vertex X, calls to CIRCUIT and UNBLOCK must alternate. Consequently,
no more than three units can be charged to each vertex before some vertex is
unblocked twice. As to edge charges, let some edge originate in vertex x. A unit
may be charged to this edge only when blocked(x) is true and, once a unit is charged,
x must be unblocked and blocked again before a second unit can be charged to
the same edge. It follows that at most two units can be charged to any edge before
some vertex is unblocked twice. [

COROLLARY 2. The algorithm runs in O((n + e)(c + 1)) time and uses O(n + e)
storage space plus the space used for output.

Proof. The time bound follows directly from Lemma 3 and a known algorithm
[6] for finding strong components in O(n + e) time. The space bound is immediate
from the observation that no vertex appears more than once on any B-list. []

3. Discussion of running time. We have shown that in the worst case, our
algorithm is asymptotically faster than algorithms previously known. With respect
to Tarjan’s algorithm, a stronger statement can be made. There is a constant
factor which bounds how much slower our algorithm can be compared to his on
any graph, provided the same adjacency structure is used as input to both algo-
rithms. Such a constant, of course, is implementation dependent. Its existence
follows from two facts. First, the time spent by our algorithm in finding the strong
component with least vertex s = kis of no greater order than the search in Tarjan’s
algorithm for circuits with least vertex k, for 1 < k < n. Second, if the calls to
UNBLOCK are ignored, on identical adjacency structures the sequence of edge
explorations generated by our algorithm is embedded in the sequence generated
by Tarjan’s. But for every edge in the sequence, for our algorithm there can occur
at most one call to UNBLOCK. Therefore, since the search time in each algorithm
is related by constant factors to the number of edge explorations, the effort spent
by our algorithm in finding circuits from a given base vertex, s, is bounded by a
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constant factor times the effort expended by Tarjan’s algorithm for the correspond-
ing search on the same adjacency structure for any graph.

Experimental results are shown in Tables 1 and 2. The algorithms were
implemented in ALGoL W [7] and were run on an IBM 370/168 with virtual
address hardware inoperative. The benefit predicted for our algorithm on worst
cases is apparent in the results in Table 1. Table 2 shows superior performance by
our algorithm on complete graphs as well. Although only a constant factor is
involved, this second result is somewhat surprising since on complete graphs, both
algorithms make the same number of edge explorations. The result, however,
appears to be explained by two features of Tarjan’s algorithm. He maintains two
vertex stacks and tests in the innermost loop for elimination of vertices less than s.
If his algorithm were redesigned to correct these problems, “he analysis of the

FINDING ELEMENTARY CIRCUITS

TABLE 1
Running times on the family of graphs of Fig. 1
Number of Number of Running time on IBM 370/168, /T,
vertices circuits seconds’
T T
(Johnson’s (Tarjan’s
algorithm) algorithm)
S 15 .03 .06 2
10 30 11 .27 2.5
20 60 .32 1.67 5.2
40 120 1.17 11.51 9.8
60 180 2.61 36.89 14.1
80 240 4.46 86.66 19.4

! Timer resolution 1/60 second. Because running times fluctuate with system load,
all data shown were taken from one computer run. Results are averages of two times
rounded to the second decimal place.

TABLE 2

Running times on complete directed graphs

Number of Number of Running time on IBM 370/168, T/ T,
vertices circuits seconds®
T Tr

(Johnson’s (Tarjan’s

algorithm) algorithm)
2 1 0 0 —
3 5 0 0 —
4 20 02 0 —
5 84 02 02 1
6 409 07 08 1.1
7 2365 .35 51 L5
8 16064 243 3.63 1.5
9 125664 20.17 30.13 L5

2 Timer resolution 1/60 second. Because running times fluctuate with system load, all data
shown were taken from one computer run. Results are averages of two times rounded to the
second decimal place.
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preceding paragraph would still hold. In both tests, the space bound of O(n + e)
was confirmed.

4. Conclusions. The algorithm we have shown is faster asymptotically in the
worst case than algorithms previously known. The algorithm appears particularly
suited for general use because of the stronger property, which we have shown in
relation to Tarjan’s algorithm, of being never slower on any graph by more than a
constant factor. In fact, in the tests run, our algorithm was always faster except on
trivially small graphs.

Acknowledgment. Credit is due to the referees for suggesting that, for compara-
tive tests, a family of graphs be found in which the members are strongly con-
nected and whose undirected versions are biconnected, and for a suggestion that
led to an improvement, by a constant factor, in running time.
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STATE-SPLITTING FOR STOCHASTIC MACHINES*
EUGENE S. SANTOSY

Abstract. In this paper, a systematic theory of the ‘‘state-splitting” technique for the decompo-
sition of stochastic machines is presented, which makes use of a stochastic generalization of the con-
ventional concept of covers or set systems.

1. Introduction. The “‘state-splitting” technique, which makes use of the
concept of covers or set systems, is one of the most powerful techniques in the study
of the decomposition of deterministic machines [4]. Although the possibility of
“state—splitting” had been considered in [2] and an example can be found in [5],
the present paper, to the best of our knowledge, is the first attempt to provide a
systematic theory to this aspect of the decomposition theory of stochastic machines.

The main contents of the present paper are contained in §§2-5. In §2, the
basic concepts and notations which are needed in subsequent discussions are
introduced. Following [8], quasi-stochastic systems [7] are used. However, for
simplicity, only quasi-stochastic state-machines (QSSM) are considered. Most of
the concepts and results presented in §2 are the state-machines analogue of that
of [8].

In §3, the properties of regular assignments are further investigated and two
characterizations are derived. In §4, connections of concurrently operating
QSSM’s are examined. However, instead of quasi-series connection, which was
introduced in [1] and adopted in [8], the cascade connection, which was introduced
in [3], is considered. A necessary and sufficient condition for a QSSM to admit
a cascade decomposition of its state-behavior is derived which makes use of the
concept of regular SP-partitions introduced in [8].

In §5, the concept of covers is introduced. Using the results established in
§§3 and 4, it is shown that if a QSSM has a regular SP-cover, then it admits a
cascade decomposition.

2. Basic concepts and notations. In this section, we shall introduce the basic
concepts and notations which are needed in subsequent discussions. Most of these
concepts are similar to those introduced in [8], and the readers are referred there
for motivations and further details.

Notation. E is a column matrix of appropriate order whose entries are all 1.

DEFINITION. Let K be a real matrix. (i) K is a 1-matrix iff KE = E. (ii)) K is a
2-matrix iff KE = E and all entries of K are nonnegative, i.e., K is a stochastic
matrix. (iii) K is a 3-matrix iff KE = E and all entries of K are either O or 1.

DEerINITION. Let £ = 1, 2, or 3. A k-QSSM (short for quasi-stochastic state-
machines) is a system M = (UM, {PM(u):ue UM}) where U™ is a nonempty finite
set, and for each u € UM, PM(u)isann x nk-matrix, where n = |M|, the order of M.

* Received by the editors August 28, 1973, and in revised form April 22, 1974.
+ Department of Mathematics, Youngstown State University, Youngstown, Ohio 44503. This
work was supported in part by the University Research Council of Youngstown State University.
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In the above definition, UM is the input set, [M| is the number of states of M
and PM(u) is the transition matrix when input u is applied.

In what follows, the symbol M, with or without subscripts, will always
represent a 1-QSSM, and k will stand for 1, 2 or 3, unless otherwise stated.

Notation. (i) U is the free monoid generated by U™M. (ii) lg(ii) is the length of
ue UM (ii)) PM(uyuy -+ u,) = PM(u)PM(uy) - - - PM(u,) forall uy, u,, -+, u, € UM.

DEFINITION. Let K be a k-matrix such that PM'(u)K = KPM*(u) for all
ue UM N UM (i) If UM < UM? and the rows of K are linearly independent,
then M, is a k-submachine of M, . (ii) If UM* = UM and the columns of K are
linearly independent, then M | is a k-split of M,. The matrix K will be referred to as
the associated matrix.

Notation. H, (M) is the collection of all 1 x |[M| k-matrices. Moreover,
H(M) = H,(M), and H*(M) is the collection of all nonempty subsets of H(M).

Notation. Let W be a real vector space, and fori = 1,2, ---, n, W, € W and ;
real numbers, then the set

Y c,.W,.={Z cwiw, e W, i = 1,2,--~,n}‘
i1 i

i=1

DEFINITION. Let f§ be a function from H(M,) into H*(M,). B is regular iff
hy, h, e HM,) and c,, ¢, are real numbers such that ¢, + ¢, = 1 implies
Bleihy + c3hy) = ¢ B(hy) + ¢, B(hy).

Notation. H,(M) is the |M|-dimensional Euclidean space and

Hy(M) = {he Hy(M):hE = 0}.

THEOREM 2.1. Let B be a function from H(M,) into H*(M,). The following
statements are equivalent :

(a) B is regular;

(b) there exist a subspace W of H,(M,) and a 1-matrix K, such that B(h,)
= h, K, + W for every h, € HM,); and

(c) there exist 1-matrices K| and K, such that B(h,) = {h, € HM,):h,K,
= h,K,K,} for every h, e HM,).

Proof. Let § be regular and W = {h, — h:h,, i, € f(h,)}. By [8, Thm. 3.4],
W does not depend on the choice of h; € H(M,). Let K, be a matrix whose ith
row is an element of fi(e;), where {e;} is the standard basis of Hy(M,). It is clear
that f(h,) = h,K, + Wforallh, € H(M,). Thus (a)implies (b). Since W < H (M),
there exists a 1-matrix K, such that g € Wiff gK, = 0. Thus (b) implies (c). Now
suppose (c) holds. Let h, € (h,), h, € B(h}) and a, b are real numbers such that
a+ b =1. Then (ah, + bh,)K, = (ah, + bh')K,K,. This implies that af(h,)
+ bp(hy) < P(ah, + bh}). By [8, Thm. 3.2], f is regular. Thus (c) implies (a).
QE.D.

DEFINITION. A (regular) k-assignment of M, into M, is an ordered pair
(o, B), where a is a function from UM! into U2 and B is a (regular) function from
H(M,) into H*(M,), such that for every ue UM, h, e HM,) and h, € B(h,),
(i) h,PM*(a(u)) € plhy PM'(w)], (i) hy € H(M,) implies B(h,) N H(M,) # &, and
(iii) B(H(M ,)) is the affine span of B(H;(M,)) N H(M,), i.e., foreach h, € f(H(M,)),
hy,=Y"_, c;hh where hb e B(Hy(M;)) N H(M,) and ¢; are real, forall i = 1,2,---,n,
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and Z:.'=1 ¢; = 1. If, in addition, (iv) S(h,) N p(h}) =& for all h, # W', then (o, B)
is a (regular) strong k-assignment of M, into M ,.

Remark. Condition (iv) is necessary since we are dealing with state-machines.
Since f is regular, it is clear that f(H(M ,)) is the affine span of f(H 3(M ,)). Condition
(iii) states that it suffices to consider only S(H(M,)) N H(M,).

DEerFINITION. Let («, f) be a regular (strong) k-assignment of M, into M,.
If for every h, € H(M,), f(h,) contains exactly one element, then (o, f) is a reduced
(strong) k-assignment of M, into M ,.

DEFINITION. M, is a (reduced, regular) (strong) k-realization of M, iff there
exists a (reduced, regular) (strong) k-assignment of M, into M.

For simplicity, 1-QSSM, 1-assignment and 1-realization will also be called
QSSM, assignment and realization, respectively. Moreover, if («, f) is a reduced
k-assignment of M into M ,, then we shall identify  with the function from H(M )
into H(M,) which maps every h € H(M ) ino the unique element of fi(h).

DEFINITION. Let («, f§) be a reduced k-assignment of M, into M,. (i) («, ) is
a k-homomorphism of M| onto M, iff both « and f are onto. In this case, we say
that M, is k-homomorphic to M. (ii) («, f§) is a state-behavior k-assignment of M,
into M, iff both o and f§ are one-to-one. In this case, we say that M, is a state-
behavior k-realization of M. (iii) («, f3) is a k-isomorphism of M, onto M, iff both
o and f are one-to-one and onto. In this case, we say that M, is k-isomorphicto M ,.

THEOREM 2.2. M, is a reduced k-realization of M, iff there exists a function o
from UMt into UM and a k-matrix K such that for every ue UM PMiy)K
= KPM(o(u)). Moreover,

(@) M, is k-homomorphic to M, iff « is onto and the columns of K are linearly
independent ;

(b) M, is a state-behavior k-realization of M, iff « is one-to-one and the rows
of K are linearly independent ; and

() M, is k-isomorphic to M, iff both o~ ' and K~ ! exist.

Proof. The proof follows from Theorem 2.1 above or [8, Thm. 3.6].

The matrix K in the above theorem will be referred to as an associated matrix
of B.

It follows from the above theorem that if « is the identity function, then k-
submachine and k-split coincide with state-behavior k-realization and k-homo-
morphic, respectively.

Although the above definition of k-assignment differs from that given in 8],
they coincide in the case of reduced k-assignment, which is the central issue of [8].

3. Properties of regular realizations. Some basic properties of regular realiza-
tion were derived in [8]. In this section, we shall present two additional char-
acterizations of regular realization.

Notation. Let K be a real matrix. Then K* will denote a pseudoinverse
[6] of K, ie, KK*K = K.

THEOREM 3.1. M, is a regular (strong) realization of M, iff there exists a
QSSM M such that M, is a 1-split of My and M5 is a reduced (strong) realization
of M,.

Proof. Let (, B) be a regular (strong) assignment of M, into M,. By Theorem
2.1, there exist 1-matrices K, and K, such that B(h,) = {h, € HM,):h,K,
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= h,K,K,}forall h, e H(M,). Without loss of generality, we may assume that the
columns of K, are linearly independent. Let u € UM, Since h,K, € B(h,) for all
h, e HM,), therefore h,K,P(o(u)) e flh,PM'(u)] for all h, € HM,). This
ilmplies that K, PM*(a(u))K, = PM'(u)K,K,. On the other hand, if gK, = 0, then
gPMx(a(u))K , = 0. Therefore there exists a 1-matrix P(a(u)) such that PM>(a(u))K,
= K,P(x(u)). Moreover, P"'(u)K K, = K,P(a(u))K, = K,K,P(o((u)). Let M,
be the QSSM where UM = o(UM') and PM3(a(u)) = P(x(u)) for all ue UM:.
It follows from the foregoing discussions and Theorem 2.2 that M, is a 1-split
of M5, and M is a reduced realization of M. If M, is a regular strong realization
of M, then the rows of K, K, are linearly independent. Therefore M is a reduced
strong realization of M.

Conversely, suppose there exists a QSSM M, such that M, is a 1-split of M,
with associated matrix K,, and M, is a reduced (strong) realization of M, with
assignment (o, f§,) and associated matrix K;. For each h, € H(M,), define fi(h,)
= {h, e HM,):h,K, = h,K;}. Since the columns of K, are linearly independent,
h,K;H; € B(h,)forallh, e HM ). Thus, B is a function from H(M ,) into H*(M,).
With the aid of [8, Thm. 3.2], it is easy to verify that B is regular. Let u € UM,
h, € HM,) and h, € B(h,). Then h,K, = h,K;. Therefore

h, PM2(a(u))K , = h,K,PM3(au)) = hy K3PM¥o(u)) = h, PM (u)K 5.

This implies that h,PM*(a(u)) € fh, P (u)]. Hence (, B) is a regular assignment
of M, into M,. If M5 is a reduced strong realization of M, then the rows of K,
are linearly independent. Therefore f(h,) N p(h}) =& for all h, # k). Thus, M,
is a regular strong realization of M,. Q.E.D.

THEOREM 3.2. M, is a regular strong k-realization of M, iff there exists a
QSSM M such that My is a k-submachine of M, and M5 is 3-homomorphic to M |.

Proof. Let (o, f) be a regular strong k-assignment of M, into M,. Let
K, be a k-matrix whose rows form a basis of the smallest subspace containing
B(H5(M,)) N H(M,). Then B(H(M,)) is the collection of all h;K;. Let u be an
element of UM'. For every h;, h,K; € f(h,) for some h, € HM,). Therefore,
hyK s PM2(o(u)) € B(h, PM'(u)). This implies that hyK 3 PM2(a(u)) is of the form h3K 5.
Thus there exists a l-matrix P(x(u)) such that K,PM2(x(u)) = P(x(u))K;. Let
k% be an element of H(M ) such that the ith row of K, belongs to f(h}), and let K,
be a matrix whose ith row is h}. By the construction of K 5, it follows that K, is a
3-matrix. Moreover, for every hy, h;K; € f(h;K,). Since for every h, € HM,),
p(hy) # <, therefore h, is of the form hyK,. This implies that the columns of K,
are linearly independent. Furthermore, for each hy, hyP(o(u))K 5 € f(hy P(a(u))K ).
On the other hand, hy P(a(u))K 3 = h3K3PM2(a(u)) € B(h3K ,PM(u)). Since (o, B) is a
strong assignment, therefore P(a(u))K, = K,P™'(u). Let M, be the QSSM where
UMs = o(UMtyand PM*(a(u)) = P(a(u)) for allu e UM, 1t follows from the foregoing
discussions and Theorem 2.2 that M, is a k-submachine of M,, and M; is 3-
homomorphic to M.

Conversely, suppose there exists QSSM M such that M is a k-submachine
of M, with associated matrix K5, and M, is 3-homomorphic to M, with
assignment («, ;) and associated matrix K,. For each h, € H(M,), define
phy) = {hy e HM,):h, = hy3K5, h, = h;K, for some hy e H(M,)}. Since the
columns of K, are linearly independent, h,K; K, € B(h,) for all h, e HM,).
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Thus, g is a function from H(M,) into H*(M,). With the aid of [8, Thm. 3.2], it is
easy to verify that f8 is regular. Assume u € UM, h, e H(M,) and h, € B(h,). Then
h, = hyK; and h; = h K. Therefore

hy PM(a(u)) = hy K3 PM3(u)) = hy PM3(a(u)K
and
hy P (a(u)K,, = hyK,PMi(u) = hy PM(u).

Thus h, PM2(a(u)) € Blh,PM!(u)]. This shows that (a, f) is a regular assignment
of M, into M,. Let h, be an element of H,(M,). Since K, is a 3-matrix, therefore
there exists a k-matrix h, such that h; K, = h,. But K is also a k-matrix; therefore
hyK, is a k-matrix. This shows that (h,) N H(M,) # & provided h, € H (M ).
Since K, is a 3-matrix, each row of K; belongs to f(H,(M,)). Moreover, since
each element of f(H(M,)) is of the form h,K, for hy € H(M;), and since K, is a
k-matrix, therefore f(H(M,)) is the affine span of S(H,(M,)) N H(M,). Lastly, it
is easy to verify that f(h,) N B(h)) = for all h, # h}, since the rows of K are
linearly independent. This shows that («, f§) is a regular strong k-assignment of M,
into M,. QED.

Remark. If M| and M, are 3-QSSM’s, i.e., deterministic state-machines, and
k = 3, then the M, in the above theorem can always be chosen to be a 3-QSSM.
Thus, in this case, the above theorem reduces to [4, Thm. 1.6].

Observe that Theorem 3.1 holds only for k = 1, while Theorem 3.2 holds
fork = 1,2 and 3.

COROLLARY 3.3. M, is a regular strong k-realization of M, with assignment
(o, B), where o is the identity function, iff there exists a QSMM M such that M5 is a
k-submachine of M, and M5 is a 3-split of M.

COROLLARY 3.4. M, is a regular strong realization of M, iff there exists a
QSSM M such that M 4 is a 1-submachine of M| and M 5 is 1-homomorphic to M .

4, Cascade decomposition. Two types of decompositions appeared in the
literature, namely, quasi-series decomposition [1] and strong decomposition [3].
The former type of decomposition was considered in [8]. In the present paper,
we shall consider the latter type of decomposition, which we shall rename cascade
decomposition. Although most of the results given in [8] can be strengthened
by adopting cascade decomposition, only those which have direct bearing to the
present work will be examined below.

Notation. Let P, = (a;;) be an m x n real matrix and P, = (4;)) an m x n
matrix whose entries A;; are real matrices of order r x s. Then P, ® P, is an
mr X ns matrix whose ((i, k), (j,))th entry is a;;A;k,]), where Ak, ) is the
(k, )-th entry of the matrix 4;;.

DEFINITION. The cascade connection of two QSSM’s M, and M, , for which
UM2=§ x § x UM, where S ={1,2,---,|M,|}, is the QSSM M,, where
UM = UM and for every u € UM, PM3(u) = PM'(u) ® P(u), where P(u) is a matrix
whose (i, j)th entry is PM2(i, j, u). If PM(i,j,u) is independent of j, then M5 is a
quasi-series connection of M, and M. If PM2(i, j, u) is independent of both i and j,
then M is a parallel connection of M| and M,.

DEFINITION. A partition of M is a family n of mutually disjoint nonempty
subsets of H(M) whose union is equal to H(M). These subsets will be called blocks
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of 7. Each partition m of M defines an equivalence relation mod n, where h, = h,
(mod ) iff h; and h, belong to the same block of =.

DEFINITION. Let 7 be a partition of M. (i) n is a SP-partition of M iff
h, = h, (mod r) implies h; P*(u) = h,P™(u) (mod =) for all u € UM. (ii) = is regular
iff heB,en,i=0,1,2,and hy = ¢ h, + c,h, implies B, = ¢,B, + ¢,B,.

THEOREM 4.1. Let t be a partition of M. The following statements are equivalent :

(a) mis regular;

(b) there exists a subspace W < Hy(M) such that h, = h, (mod n) iff
hy —h,e W;and

(c) there exists a 1-matrix K such that hy = h, (mod =) iff h,K = h,K.

Proof. The proof is similar to [8, Thm, 4.2].

The subspace W and the matrix K in the above theorem will be referred to as
the associated subspace and associated matrix, respectively.

DEFINITION. A regular k-partition of M is a regular partition of M associated
with a k-matrix.

THEOREM 4.2. There exists a regular k-SP-partition of M iff there exists a
k-matrix K and for every u e UM, there exists a 1-matrix P(u) such that PM(u)K
= KP(u).

Proof. The proof is similar to [8, Thm. 4.5].

In the rest of the section, we shall present a necessary and sufficient condition
for a QSSM to admit a cascade decomposition of its state-behavior. In order to
establish the condition, we have to show that every k-matrix with linearly independ-
ent columns can be extended in a certain way to a k-matrix with linearly inde-
pendent rows.

Notation. E,, is the rs x s 3-matrix whose (i, j)th entry is 1 iff i = r(j — 1) + ¢,
where 1 <t < r. Thus, for example, E,; is the 6 x 3 matrix

1 00
1

o O O
—_ =
oS O O

1
0 0 1

LEMMA 4.3. Let K, be anm x n k-matrix whose columns are linearly independ-
ent. There exists an integer t <m — n + 1 and an m x nt k-matrix K such that
KE,, = K, and the rows of K are linearly independent.

Proof. If m = n, then there is nothing to prove. Therefore, we shall assume
that m > n. Let E™ be the m-dimensional Euclidean space whose vectors are
represented by column matrices, and let I' = {e,, e,, ---, e,} be the standard
basis of E™ For every vector g € E™, we say that g is commensurate with e;e I’
iff the ith row of g is not zero. Since m > n, there exists an n x (m — n) matrix L
such that each column of L is a member of I', and the columns of K, and L together
span E™. Let ® be a “partition” of the columns of L into n disjoint blocks (some
blocks may be empty) such that a column e of L is contained in block j implies
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that the jth column of K is commensurate with e. Since K, is a 1-matrix, each
column of L must be contained in at least one block of ®@. Let ¢; be the number of
elements in the jth block of ®, and let ¢ — 1 be the largest of all such ¢;. Clearly,
t<m-—n+1 Foreach j=1,2---,n let K; be an m x t 3-matrix whose
first t; columns are the elements of the jth block of ® and all remaining columns,
except the last column, are 0. Let K = K, ® K’ where K’ = (4;;) and A4;; is the ith
row of K;. Since K is a 3-matrix, it follows that K is a k-matrix and KE,, = K.
It remains to show that the rows of K are linearly independent. It follows from the
construction of K that each column of L is a scalar multiple of some column of
K. Moreover, since KE,, = K, therefore each column of K, is a linear combina-
tion of columns of K. Thus, the columns of K span E™. This shows that the rows
of K are linearly independent. Q.E.D.

The matrix K will be called an extension of K.

Remark. 1If K, is a 3-matrix, then K, is a matrix associated with a regular
3-partition 7 of some M. But z, being a regular 3-partition, corresponds to a
partition 7' of the states of M. In this case, the t obtained in the above theorem
reduces to the number of elements of the largest block of «'.

THEOREM 4.4. There exist M, and M, such that the cascade connection of
M, and M, is a state-behavior k-realization of M iff M has a regular k-SP-partition.

Proof. Suppose the cascade connection of M, and M, is a state-behavior
k-realization of M with assignment («, ) and associated matrix K. Then for every
ue UM, PMu)K = K(P"'(o(u)) ® P(x(w))), where P(a(u)) = (PM3(i,j, a(u))). Thus
PMw)KE,,, = KE,,,P™(a(u)), where m = |[M,| and n = |M,|. Since K is a k-
matrix, so is KE,,,. By Theorem 4.2, M has a regular k-SP-partition.

Conversely, suppose M has a regular k-SP-partition, and let K, be the
associated matrix. Let u be an element of UM. By Theorem 3.2, there exists a
I-matrix P,(u) such that PM(u)K, = K,P,(u). Let K be an m x nt matrix which is
an extension of K,,. Let

Py(u) = K*PM WK + E, P,(wE;} — K" PMu)KE,;.

tn

Since the rows of K are linearly independent, therefore KK ™ is the identity
matrix, and

KPyu) = P"uK + K, P,(wE,, — P"wKE, = PMu)K.

Moreover, since the columns of E,, are linearly independent, therefore EE,,
is the identity matrix, and

PyWE,, = K*P"WK, + E,P,(u) — K*PYWK, = E,P,(u).

This implies that Ps(u) = P,(u) ® P,(u) for some P,(u). Let P,(u) = (4;[u)),
where A,ju) are t x t l-matrices. Define M, and M, where UM = UM, UM:
=S x8x UM S=1{1,2--,n},and for every ue UM, i je S, PM(u) = P,(u)
and PM>(i,j,u) = A, {(u). It follows from the foregoing discussions that the cascade
connection of M, and M, is a state-behavior k-realization of M.

It follows from the above proof that M, and M, can be chosen to have fewer
states than M iff M has a nontrivial k-SP-partition. The trivial partitions of M
are: the partition which has only one block and the partition where each block
contains exactly one element.
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COROLLARY 4.5. Let M be a k-QSSM. There exist k-QSSM’s M, and M, such
that the cascade connection of M, and M, is a state-behavior 3-realization of M
iff M has a regular 3-SP-partition.

For k = 2, a proof for the sufficiency part of the above corollary can be found
in [3].

Remark. The above corollary does not hold, in general, if 3 is replaced by k.
This is due to the fact that the P;(u) given in the proof of Theorem 4.4 is not neces-
sarily a k-matrix.

We shall conclude this section with an example illustrating the procedures
given in the proofs of Lemma 4.3 and Theorem 4.4.

Let U = {u;,u,},

s 10 4%
0 1 0 O
PR =lo 30 3
0% b
and
0+ o 2
PM(u2)=1000.
004}
0 0 1
Let
-
0 1
KO:Q;’
3 3
1 0

and let  be the regular partition of M with associated matrix K. Since

)

1 0
PM(u,)K, = Ko( )v

1
2

1
3

PM(”1)K0 = K0<0

Wi

and

Nf—=

therefore, it follows from Theorem 3.2 that = is an SP-partition of M. We shall now
construct an extension K of K, following the procedure given in the proof of
Lemma 4.3.
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Let

0
0
1
0

(= e -]

Clearly, the columns of K, and L together span E*. Since the first and second
columns of L are commensurate with the first and second columns of K, respec-
tively, therefore, a possible choice of @ is to take the first and second blocks of @ to

contain the first and second column of L, respectively. In this case, t; = ¢, = 1,
t=2,

1 0 01

0 1 01
K, = and K, =

0 1 0

0 1 0 1

The last column of K, and K, are uniquely determined since both matrices are
I-matrices. Thus

1 0 1

' 0 1 1

K==\ )

01 0 1

Therefore

3(10) 301 700 3
001) 1001 0 0 01
K=K,®@K =|_ . = . -
501) 3(10) 0 530
101) 00 1) 0100

It is easy to verify that K is an extension of K.
Next, we shall construct M, and M, following the procedure given in the
proof of Theorem 4.4. Clearly,

2 -1 0 0
K+ 0 00 1
0 3 =2
0 10 0
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- <1000>
27\0 01 0

is a pseudoinverse of E,,. Moreover, both K* and E;, are 1-matrices. Thus,

is a pseudoinverse of K, and

bhoood

R

00 -5 %

00 o0 1

and

-+ 300

0100

Py(uy) = 011 ol

bood

The matrices P,(u,) and P,(u,) are obtained by using the equation P,(u) =
K*PMwK + E,, P,(wE;, — K" P"(u)K,E3, with

3 o
Pl(“1)=(0 1) and P1(“2)=<% %>

Hence the QSSM M, is defined by PM'(u,) = P,(u,) and PM*(u,) = P,(u,).
Moreover, the QSSM M, is defined by:

by 01
PMZ(I’ 1,“1) = (0 1)7 PMZ(I, 2,“1) = (_1- l)a
8 8

PMx(2, 1 (1 0) PM3(2,2,uy) <_% %>
,’ul)_O 1’ (,,ul— O 1,

PM(1, 1, uy) =<

0 1 1 0
PM2() 1, = < ) and PM2(2,2, = < )
( u,) 1 o) ( u,) 0 1

5. Covers. The concept of covers or set systems is one of the most powerful
tools in the study of decomposition of deterministic machines [4]. In this section,
we shall generalize this concept and show how it could be used in the decomposition

of stochastic machines.
DEFINITION. A cover u of M is a collection of subsets of H(M). The subsets
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in u will also be called blocks of . If there exists a finite collection %, of subspaces of
H (M) such that each block of u is of the form h + W, where he HM)and We %,
then p is a regular cover of M. If, in addition, every W in %, is the subspace associ-
ated with some regular k-partition of M, then u is a regular k-cover of M.

DEFINITION. Let u be a cover of M. pi is an SP-cover of M iff for every Be u,
there exists a B’ € u such that ue UM and h e B implies hP™(u) e B'.

Clearly, every regular k-SP-partition of M is a regular k-SP-cover of M.
Moreover, we have the following theorem

THEOREM 5.1. If p is a regular SP-cover of M and 6, = {W,, W,, ---, W,},
then the regular partition n of M with associated subspace W, = W, + W, + - --
+ W, is a regular SP-partition of M.

Proof. Since yu is a regular SP-partition of M, therefore, for every We®,,
there existsa W' e 6, such thatue U M and g e W implies gP™(u) € W'. This implies
that g,PM(u) e W, for all g, € W, and u € UM. Thus = is a regular SP-partition of M.

THEOREM 5.2. If w is a regular k-SP-cover of M, then there exist QSSM’s
M, M, and M, such that M, is a 3-split of M, M, is a k-submachine of the cascade
connection of M, and M,, and |M,| <1 + dim €, < |M|, where dim %, is the
dimension of the subspace in €, with the largest dimension.

Proof. Let 6, = {W,W,,---, Wand fori = 1,2, ---, n, let L, be a matrix
whost rows constitute a basis for W,. Since p is a regular SP-cover of M, therefore,
for each W, € , there exists W, e u such that for every ue UM and g; € W, g,PM(u)
e W,,. This implies that for every i = 1,2,---, n, and ue UM, there exists Q,(u)
such that L,PM(u) = Qw)L;,. For each ue UM, let Q(u) = (Q;{(w)), where Q,(u)
= Qw)ifj = j;,and Q;(u) = Ootherwise. Let K, = (K;;),wherefori = 1,2, ---,n,
and j = 1, Kj; is the identity matrix of order |M|. For each ue UM, let Po(u)
= (P{(w), where for i,j = 1,2, -+, n, P){u) = PM(u) if j = j;, and P{(u) = O other-
wise. Let M, be the QSSM where UM° = UM and for each ue UM, PMo(u) = Po(u).
Clearly, PMo(u)K, = K,PM(u) for allu e UM. Thus M, is a 3-split of M since K is
a 3-matrix with linearly independent columns. Let L = (L;;), where for i,j = 1, 2,
++,m, L= L;if i = j, and L;; = 0 otherwise. It is easy to verify that LP™(u)
= Q(u)L for all u € UM. Let W, be the subspace spanned by the rows of L, and let &
be the regular partition of M, with associated subspace W,. Then 7 is a regular
SP-partition of M,. Moreover, for i = 1,2, ---, n, let K’ be the k-matrix asso-
ciated with =;, the regular k-partition of M with associated subspace W,. Let
K, = (K}), where for i,j = 1,2, ---, n, K}, = K'if i = j, and K}, = 0 otherwise.
Clearly, K, is a k-matrix associated with 7. Thus, = is a regular k-SP-partition of
M,. It follows from the proofs of Lemma 4.3 and Theorem 4.4 that there exists
QSSM’s M, and M, such that [M,| <1 + dim %, < [M| and M, is a k-sub-
machine of the cascade connection of M, and M,.

Remark. In the above theorem, if Hy(M) is not in %, then |M,| < [M|.
Moreover, |[M,| = n and hence |[M,| could be reduced by (i) omitting subspaces
in %, which are subsets of other subspaces in %, if any, and/or (ii) replacing any
subset of €, by its direct sum. However, in case (ii), |[M,| may be increased.

THEOREM 5.3. If u is a regular k-SP-cover of M, then there exist QSSM’s M
and M, such that |M,| < 1 + dim €, < |M| and the cascade connection of M, and
M, is a regular strong k-realization of M.

Proof. The proof follows from Theorems 3.2 and 5.2.
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COMPUTATIONAL COMPLEXITY AND NUMERICAL STABILITY*
WEBB MILLERY

Abstract. Limiting consideration to algorithms satisfying various numerical stability requirements
may change lower bounds for computational complexity and/or make lower bounds easier to prove.
We will show that under a sufficiently strong restriction upon numerical stability, any algorithm for
multiplying two n x n matrices using only +, — and x requires at least n* multiplications. We
conclude with a survey of results concerning the numerical stability of several algorithms which have
been considered by complexity theorists.

Key words. complexity, roundoff error, bilinear form, matrix multiplication

1. Introduction. Proofs of lower bounds for the computational complexity of
a given problem must generally consider only a few measurements of cost and
ignore the others. For example, a discussion of the complexity of the problem of
sorting a list of items may count only the number of comparisons, disregarding
issues like noncomparison operations, storage requirements and programming
simplicity.

When the problem under consideration involves real (i.e., floating-point)
arithmetic, then another factor is relevant, namely, the propagation of rounding
errors. In a recent survey of arithmetic complexity, Borodin [3, p. 174] remarks:

But eventually we will have to develop results which simultaneously talk about arithmetic costs,
and the “‘robustness” or ‘stability” of the algorithm. Perhaps if we were more formal about the
numerical properties of an algorithm, then it might be easier to produce non trival lower bounds.

Of course, many people have given simultaneous consideration to complexity
and stability. In particular, numerical analysts are daily faced with the trade-off
stability and the operation count. Moreover, investigations have been made of
the effects of rounding errors upon several algorithms of interest to complexity
theorists (for a survey, see § 6).

Rather, the first sentence quoted from Borodin seems to suggest the possible
existence of problems for which the fastest algorithms must be less than optimal
with regard to stability. One motivation for this paper is to present several such
examples. Thus we are interested in the effects upon complexity lower bounds of
various stability requirements (essentially the opposite problem of maximizing
stability subject to complexity constraints is investigated by Babuska [1] and
Viten’ko [20]).

However, our primary motivation is to be found in Borodin’s second sentence.
When we limit consideration to all programs (in a given language) which evaluate
a fixed function and which satisfy a certain stability requirement, it is entirely
possible that the fastest programs are excluded. More intriguing to us is the
possibility that the remaining programs have a simple structure which makes
finding a program that is optimal with respect to some measurement of cost
substantially easier than if arbitrary (and less stable) programs are allowed to
compete.

* Received by the editors August 21, 1973, and in final revised form July 5, 1974.
t Computer Science Department, Pennsylvania State University, University Park, Pennsylvania
16802. This work was supported in part by the National Science Foundation under Grant GJ-42968.
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Lower bounds for arithmetic complexity are often difficult to verify. In
particular, the problem of determining the minimum number of multiplications
needed to evaluate a bilinear form is equivalent to an ancient and seemingly
intractable problem of ranking tensors (for a discussion and further references,
see Dobkin [8], especially § 5). It seems reasonable to consider subcases, e.g.,
stability requirements, which are natural in the complexity framework (and
perhaps not so natural in, e.g., the tensor framework) in the hope that they provide
a handle on lower bound proofs. (However, it should be noted that lower bound
proofs sometimes apply to arbitrary fields, whereas stability restrictions are only
natural over the fields of real or complex numbers.)

Here we have focused on the evaluation of systems of bilinear forms by
programs which apply only the operations +, — and x. For simplicity, we have
not allowed constants, though almost everything carries over with minor modifica-
tions. One of our results is that if only such programs meeting a very restrictive
stability requirement are considered, then n*® multiplications are needed to find
the product oftwon x nmatrices. Under a somewhat relaxed stability assumption,
we will show that computing the product of a 2 x 2 matrix and a 2 x n matrix
requires at least [7n/2] multiplications. In each case, if the stability requirement
is dropped, then faster algorithms can be found and tight lower bounds seem to
become harder to verify (they are not yet known).

The concepts of numerical stability which we employ are closely related to
those currently used by experts in roundoff analysis (e.g., Wilkinson [21], [22]).
They are idealized in at least two respects. First, they use very few of the actual
properties of floating-point arithmetic. This creates a tendency for pessimistic
results in that algorithms may be more stable than we can prove (see the remarks
by Kahan [12, pp. 1232-1234] on Viten’ko [20]). Second, we consider only the
first-order effects of rounding errors, so algorithms may be less stable than results
like ours suggest. (In § 5 we will detail several more reasons why the practical
significance of the results given here is not especially great.)

We hope that this paper offers supporting evidence for Borodin’s cited belief
and for our conviction that numerical analysts and complexity theorists can
benefit from an exchange of ideas.

2. Numerical stability of polynomial programs. A polynomial program is a
sequence of instructions of the form

(2.1) Ve W#X

where # is one of +, — or x. For simplicity, we require that each operand,
W or X, is a variable (initial or defined).

We can think of the program as specifying a sequence of floating-point
operations to be performed on the datad = (d,, -+, d,). In many contexts it is
helpful to take the alternative point of view that the program specifies symbolic
operations to be performed on multivariate polynomials in the initial variables d.
Any resulting polynomial V(d) has integer coefficients and no constant term.

Let V be a defined variable of such a program, i.e., V appears on the left of
a unique instruction (2.1). If we omit the instruction defining V and consider V
an initial variable, then any variable Z can be considered a polynomial Z(d, V).
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Define

0Z
AZ,d) = 51—/(d, Vd)- V).

The polynomial AZ,(d) measures the sensitivity of the numerical evaluation of
Z(d) to a floating-point rounding error committed in the operation producing
V(d). For suppose that the evaluation is performed exactly except that V(d)(1 + J)
is used in place of V(d). The induced error is

Z(d, Vd)(1 + 8) — Z[d) = Z@d, V@)1 + 8) — Zd, V(@) ~ 5 - AZ,(d)

for small 6.
For example, letd = (a,, a,, b,, b,) and consider

T« a, x a,,
U« b, xb,,
Veag +b,,
(2.2) We—a, + by,
X<VxW,
YX-T,
Z<~Y-U.
One easily computes
Z(d) = a,b, + ayb,,
Zd, W) =(a, + b,)W — a,a, — bb,,

0z
E_W(d’ W) =a, + b29

AZy(d) = (a; + by)(a, + by).

Stability conditions can sometimes be interpreted as restricting the form of
certain polynomials AZ(d). If

0z
2. A1, ) 9
(23) aV(d V() # 0
then the form of V(d) is also restricted since
oz
Vd)- aT/(d’ V(d) = AZy(d).

Our goal in the remainder of this section is to exhibit a useful condition which
guarantees (2.3).

Let Z be a defined variable of a polynomial program. Consider the following
process for marking certain instructions of the program. If Z is defined by an
addition or subtraction, then mark that instruction. If an instruction

VX #Y, where #is + or —,
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is marked and if X and/or Y is defined by + or —, then mark those instructions
defining X and/or Y.

Now delete any unmarked instructions. The set I(Z) of initial (i.e., undefined)
variables of the resulting polynomial program contains only variables which were
originally either initial or defined by multiplication (take I(Z) = {Z} if Z is
defined by multiplication).

Clearly Z is a linear combination of the U in I(Z). Specifically, there exists
a unique integer i,(U) for each U in I(Z) such that in the resulting program

Z=Yi,U)-U,
I

the dependence of Z on I(Z) is essentially the same in the original program.
In particular,

(2.4) Z@) = Y i(U) U@),

I

and for any V in I(Z), we have

(2.5) Z@d,V) =Y i U)- U@, V).
I

For an example of these notions, recall (2.2). We find that I(Z) = {T, U, X}
and

1= iz(X) = _iz(T) = _iz(U)-
THEOREM 2.1. If V in I(Z) is defined by a multiplication and if i (V) # 0, then

0Z
ﬁ/(d’ Vd) # 0.

Proof. If U in I(Z) is originally defined by a multiplication, then U may
depend on V in the sense that

ou
W(d’ V() # 0.

The only other U in I(Z) are originally initial variables and do not depend on V.
From (2.5) we compute

0z . ou
574 V@) = TiAU) S5 V)
(2.6)

ou

= iV) + £*idU)

(d, V(d)),

where the sum Z* isover all U # Vin I(Z) which are defined by a multiplication
U« X x Y. Forsuch U we find

ou 0X oY
Sy V) = —(d, V(d) - Y(d) + ——(d, V(d)- X(d).

Neither of these last two summands has a constant term. It follows that the constant
term in (2.6) is i,(V). This proves Theorem 2.1. [
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3. Stable evaluation of bilinear forms. Consider a polynomial program
defining a variable B which evaluates a bilinear form

(3.1 B(a,b) = i i 0;ja;b;

i=1j=1

Here the input has been partitioned as d = (a,b) = (a,, -, a,,,b,, -+, b,) and
the o;; are integer constants. In this section we will define and investigate four
types of numerical stability which are applicable to such variables.

If f and g are real-valued functions of (a, b), then

f(a,b) = O(g(a, b))
means that there exists a constant K such that
|f(a,b) = K -|g(a,b)| foralla,b.
We also need the notation
la] = max {|a|:1 < i< m},
[bl = max {|b|:1 £ j < n},
l(a, b)|p = max {|a;b}|:6,; # 0}.

DEerFINITION 1. The following four kinds of numerical stability are defined by
the requirement that each defined variable V satisfies the corresponding equality.
(i) Brent stability:

ABy(a,b) = O(a] - |b]).
(ii) Restricted Brent stability:
ABy(a,b) = O((a,b)lp).
(iii) Weak stability:

» | 0B t | OB
ABy(a,b) = O(IaI'i;1 a—ai(a,b) + Ibl‘j; a_bj(a’b) )
(iv) Strong stability:
m 0B : 0B
A = il p.. 22
By(a,b) O(i;1 a; 6ai(a’b) +j; i 6bj(a’b) )

Definition 1(i) is an idealization of a notion studied by Brent [4], [5]. It is
idealized in that “second order” effects of rounding errors are obliterated by the
differentiation in the definition of AB,,.

Definitions 1(iii) and 1(iv) are formalizations of ideas from ‘‘backward error
analysis” (see Miller [16]). Their intuitive thrust is that the result computed with
roundoff error is the exact result for slightly altered data. Here “slightly altered”
means (in the case of strong stability) that each coordinate is accurate to within
a few rounding errors or (in the case of weak stability) that the error in each g;
(respectively, b)) is small compared to |a| (respectively, |b]).

Of course B can have, e.g., Brent stability only in the context of a particular
program. We will often omit specific mention of the underlying program.
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Notice that (restricted) Brent stability is meaningful only for the evaluation
of bilinear forms. However, strong stability and weak stability are meaningful
when discussing any rational program, and we include them here so we can locate
the Brent notions in a more general hierarchy of stability requirements.

ProprosITION 3.1. The following implications hold among the notions of
Definition 1: (iv) = (i1) = (1); (iv) = (ii1) = (1).

Verifying Proposition 3.1 is easy. For instance, to show that restricted Brent
stability implies Brent stability, one need only note that

(@, b)l5 = O(al - |b]).

It is also easy to give conditions under which two of the stability requirements
coalesce. We will use the following,

ProrosITION 3.2. Suppose (3.1) is a permutation bilinear form, i.e., suppose
that whenever 0;; #0and oy # 0, then either

(1))i=1TIandj=J,or

(i) i# Tandj+#J.
Then strong stability is equivalent to restricted Brent stability.

Proof. If a;; # O, then (0B/0a;)(a,b) = o;;b;. Hence

0B
I(a9 b)lB = O(Z ai'ga—i(a,b)l).

This shows that restricted Brent stability implies strong stability. Proposition 3.1
does the rest. [

Restricted Brent stability does not, in general, imply strong stability. Consider
B(a,b) = a,b, + a,b, + a,b, + a,b, and
U«<a, xb,,
Veay xb,,
We—a, x by,
(3.2) X «a, x by,
Y—~U+Y,
Z<Y+ W,
B—~Z+ X.

One easily computes ABy(a,b) = a,b,. Butifa, =b, =1 = —a, = —b,, then

lal - )

It follows that the program does not have weak stability; hence it lacks strong
stability. On the other hand, one easily sees that it possesses restricted Brent
stability. Of course, this B is not a permutation bilinear form.

THEOREM 3.3. Let V in I(B) be defined by a multiplication, and suppose that
ig(V) # 0 and that V(a,b) # 0. If B has Brent stability, then the definition of V

0B
6_a,.(a’ b)

0B
+|b|-z~a—h(a,b)’=0.
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must be of the form
Ly(a) x Ly(b) (or Ly(b) x L,(a)),

where L, and L, are linear (e.g., L,(a) = Y a,a; with integers a;).
Proof. We will show that ABy, is bilinear. Since, by Theorem 2.1, V'is a divisor
of ABy, it will then follow that ¥ must be bilinear. Now the result is immediate.
To show that ABy, is bilinear, let us assume that it is not bilinear, then show
that the stability condition

(3.3) ABy(a,b) = O(al - |b])

is violated. We proceed by cases.
First suppose ABy, has a term involving none of b; (or none of the g;), say,

oaftag? --- abm witha # 0.

Fixing b, = b, = --- = b, = 0 and allowing a to vary, we see that AB(a,0) is a
nonzero polynomial in a. Thus for some (a,0) = (a,b), we have ABy(a,b) # 0
= |a| - |b|, violating (3.3).

The only other possibility is that AB, has a term of degree greater than two.
A simple argument shows that (3.3) is again violated. [

Theorem 3.3 shows that example (2.2), an instance of Winograd’s method
for inner products, does not possess Brent stability (see also Brent [4], [5]).

The next result shows that if we add to the hypotheses of Theorem 3.3 the
assumption of restricted Brent stability, then any term appearing in ¥ must appear
in B. The intuitive reason is that otherwise, a term, #,;a;b;, must cancel algebraically
in a later + operation, and corresponding numerical cancellation creates an error
not O(/(a, b)| 5).

THEOREM 3.4. Let Vin I(B) be defined by a multiplication, and suppose ix(V) # 0.

Write

If B has restricted Brent stability, and if n;; # 0, then the coefficient ¢;; in B (3.1)
is nonzero.

Proof. From ABy(a,b) = O(|(a, b)|5), we may conclude that if a;b; appears in
ABy, then it appears in B, since otherwise there is an (a, b), where |(a, b)| 5 is zero
but ABy, is nonzero. V is a bilinear divisor of the bilinear form ABy,. The result
follows since AB, must be a constant multiple of V. [

THEOREM 3.5. Suppose that B is a permutation bilinear form evaluated by a
polynomial program and that B has strong stability (or equivalently, that B has
restricted Brent stability—see Proposition 3.2). If a;b; appears in B with nonzero
coefficient, then there is a multiplication in the program of the form (aa;) x (Bb;).

Proof. The term a;b; must appear in some V in I(B) satisfying ip(V') # O (see
(2.4)). If V is defined by (3 a,a;) x (3. B;b;), where, say, o;, o; and ; are nonzero,
i # I, then a term a;b; must appear in B by Theorem 3.4. This contradicts the
assumption that B is a permutation bilinear form. [

Two remarks are in order. If a permutation bilinear form B is computed by
directly finding its terms and adding and subtracting them to get B, then B has
strong stability. This follows, e.g., from [16, Thm. 4.1] since NULL(U), as defined
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there, is trivial. Second, if B is not a permutation bilinear form, then such programs
may lack strong stability (see (3.2)) and ““fast” programs may possess it (for
example, the evaluation B = (a, + a,)(b; + b,)).

4. Speed sacrifices stability. We will say that a polynomial program to evaluate
a system of s bilinear forms

(4.1) Ba,b)= Y Y o;ab;, k=1,---,s

i=1j=1

possesses, €.g., simultaneous Brent stability if each B, has Brent stability. In this
section we will draw two conclusions from our previous results.

Conclusion 1. Any polynomial program for (4.1) which has simultaneous
Brent stability can make use of multiplications only of the form L,(a) x L,(b).

Example 4.1. Any polynomial program of the “L;(a) x L,(b)” form to
multiplya2 x 2matrixtimesa2 x nmatrix requiresat least [7n/2 Tmultiplications,
and this bound can be achieved (Hopcroft and Kerr [11]). However, Winograd’s
method requires only 3n + 2 multiplications. Thus if n > 5, then requiring
simultaneous Brent stability increases the minimum number of multiplications.
Moreover, the requirement seems to simplify the verification of lower bounds,
since it is not known if Winograd’s method is optimal.

Example 4.2. Often one does not count multiplications which are
“preconditioning”, i.e., which produce only polynomials in a alone or in b alone.
To reduce the number of multiplications in a polynomial program by precondition-
ing, one must sacrifice simultaneous Brent stability.

Example 4.3. It can be shown that any polynomial program using only
multiplication of the “L,(a) x L,(b)” form must exhibit simultaneous Brent
stability (this is not hard to prove, but a proof does not belong in this paper).
Thus Strassen’s algorithm for matrix multiplication has simultaneous Brent
stability (see also Brent [4]).

Conclusion 2. If each B, is a permutation bilinear form, then any polynomial
program with simultaneous strong stability must perform ¢ multiplications,
where t is the number of pairs (i, j) such that some g,j, in (4.1) is nonzero.

Example 4.4. The n® multiplications in the usual algorithm for multiplying
n X n matrices make it optimal among polynomial programs with simultaneous
strong stability. For general polynomial programs, the arithmetic complexity of
matrix multiplication seems far from resolved.

Example 4.5. Conclusion 2 also applies to the multiplication of complex
numbers or polynomials (i.e., computing the coefficients of the product of poly-
nomials). Consider (a; + a,i) x (b; + b,i), i.e., computing

B.(a,b) = a,b, — a,b, = real part,
By(a,b) = a,b, + a,b, = imaginary part.
If we compute B, = X — Yand B, = X — Z, where
X =(a; + ayb;, Y=ayb, +b,), Z=ayb, —b,),
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then our previous results indicate that the influence of roundoff error upon B,
should be ““‘unduly large” for a, b such that

l(a,b)lp, < |a] - [b].
The correct result for
(0.0015 + 1.01i) x (1.01 + 0.001i)

is B; = 0.000505, whereas computing in “three-digit floating-point arithmetic”,
i.e., rounding symmetrically to three digits after each operation, gives 0.00051
with the usual method, and 0.0 with the ‘‘fast’” method.

5. Caveat. The practical value of the above results is limited by several
factors:

1. They consider only polynomial operations. If a system of bilinear forms
can be evaluated in n multiplications, then it can be evaluated with n multiplications
of the form L,(a,b) x L,(a,b) for linear L; (Winograd [23]). Such polynomial
programs (with constants) are “‘nearly Brent stable’ in the sense that

ABy(a,b) = O((max {|aj, |b]}1?)

for all B and defined V. They can be given simultaneous Brent stability by scaling
a and b to have roughly the same size (see Brent [4], [5] for a special case).

2. Sometimes it costs as much to run a “more stable’ algorithm in single
precision as it costs to run a fast algorithm in double precision.

3. For a particular method, range of data, machine and software ad hoc
roundoff analyses will often override general results like ours.

6. Some known stability results. This section contains a brief review of
stability results concerning algorithms of (possible) interest to complexity theorists.

(a) Evaluation of a polynomial p(x) = Y"_, a;x* given x, aq, - - - , a,. A popular
stability condition is that the computed value be exactly Y afx', where each
relative difference |a} — ajl/|a,| is small ([21, pp. 36-37]). Following our approach,
this might be formalized as

AP,(x,a) = O |a;x)

for all defined variables V. There is nothing uniquely plausible about this require-
ment, and others have been considered, e.g., [13]. See also [2].

However, the condition does seem to be widely applicable. Both Horner’s
role and the naive method are easily seen to be stable in this sense. Also,
Wozniakowski [24] has verified this property for a family of algorithms of Shaw
and Traub [19] for evaluating a polynomial and its normalized derivatives.

(b) Polynomial evaluation with preconditioning. Workersinvolved in producing
subroutines for evaluating common functions have considered the possible use
of the Pan and Motzkin—Belaga forms. However, these procedures are too often
contaminated by numerical errors (see Rice [18] or Hart, et al. [10, pp. 67-73]).
On the other hand, preliminary work by M. Rabin and S. Winograd indicates the
existence of stable preconditioning methods of practical value (see [14, p. 179]).

(c) Interpolation. A semiformal roundoff analysis of Lagrange’s formula can
be found in Dorn and McCracken [9, pp. 287-291]. It seems natural to compare
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Lagrange’s or Newton’s form with fast methods [3], both in their use for evaluating
the interpolating polynomial at a point and for finding its coefficients.

However, plausible stability conditions need to be agreed upon before one
can formally discuss the propagation of rounding error in these methods. The
problem here is more acute than for general polynomial evaluation or (especially)
matrix multiplication. Much of the difficulty stems from the fact that one may well
not care how a method performs with completely arbitrary data, e.g., when the
polynomial assumes alternating values of 1 and — 1. Moreover, in practice, only
very low degree interpolating polynomials are used (with rare exceptions).

(d) The fast Fourier transform. Many studies have concluded that the FFT
is reasonably stable (see Ramos [17] for results and references). With this example
in mind, the reader might find it instructive to attempt an extension of our notions
and results to programs with complex constants.

(e) Parallel evaluation of arithmetic expressions. Brent [6] proves the stability
(in approximately the sense of our strong stability) of certain near-optimal schemes
for the parallel evaluation of arithmetic expressions lacking division. For expression
containing division his schemes may lose strong stability [7].
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DERIVATION OF CONFIDENCE INTERVALS FOR WORK RATE
ESTIMATORS IN A CLOSED QUEUING NETWORK*
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Abstract. Closed queuing networks arise naturally as models of multiprogrammed computer
systems and subsystems. Techniques for the efficient simulation of such models can be obtained from
analytical results on the stochastic structure of the queuing networks. In this paper, confidence inter-
vals are derived for a class of new work rate estimators in a closed queuing network. Numerical
results are given which demonstrate that a substantial reduction in the length of confidence intervals
is obtainable by use of the proposed estimators.

Key words. computer system modeling and analysis, confidence intervals, queuing networks,
simulation

1. Introduction. In recent years, closed queuing networks have received
considerable attention (e.g., [1]-[5]) as models of multiprogrammed computer
system and subsystem structures. With few exceptions, the literature is concerned
with the exact mathematical analysis of the congestion phenomena in such models.
In most cases, the analysis given is under the usual queuing theoretic “‘independent
identically (often exponentially) distributed” (i.i.d.) assumptions. In spite of the
mathematical simplifications which such assumptions introduce, many queuing
network models of interest to the computer systems community (e.g., models of
multilevel storage hierarchies) are of sufficient structural complexity that they
remain intractable analytically and/or limited computationally. Moreover, indica-
tions (cf. [6]) of significant departures from the i.i.d. assumptions of queuing theory
have appeared in the literature.

For these reasons, one is led to consider alternatives to exact (analytical)
solution of queuing networks. An obvious alternative is (Monte Carlo) simula-
tion, although nontrivial questions concerning the efficiency and accuracy of
simulation techniques arise. The literature on methods for the simulation of queu-
ing networks has been primarily concerned with variance reduction techniques
(e.g., [7]) or hybrid control variable simulation techniques [8], the evidence of the
value of the proposed technique being empirical.

This paper is concerned with techniques for the efficient simulation of closed
queuing networks based on the use of estimators suggested by the structure of
the network. The main results of the paper, given in §§ 4 and 5, are the derivation
and computation of asymptotic confidence intervals for a class of new work rate
estimators in a closed queuing network. The derivation of the confidence inter-
vals rests on the observation that particular stochastic processes associated with
the queuing network are cumulative processes (cf. [9]). In addition, the computa-
tion draws heavily on the characterization of the stochastic structure of the queu-
ing network as an imbedded semi-Markov process.

* Received by the editors October 23, 1973, and in final revised form June 24, 1974.
+ IBM Research Laboratory, San Jose, California 95193.
1 IBM Research Laboratory, San Jose, California 95193. This work was completed while this
author was visiting at the Department of Operations Research, Stanford University, Stanford, California.
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It is our experience that structural results frequently can be obtained for
complex queuing networks under rather general distributional assumptions, even
though exact numerical solution of the networks cannot be obtained in practice
due to severe computational difficulties. By “structural results” we mean relation-
ships between response variables in a network and characterizations of the
stochastic structure of the network. We anticipate that relationships between
response variables can be used in simulation to suggest estimators of response
variables, and that efficient simulation methods based on characterizations of the
stochastic structure of queuing networks can be developed.

A description of the closed queuing network considered in this paper is
given in § 2. Section 3 provides the definition of the class of proposed work rate
estimators for the network. Section 4 contains a derivation of asymptotic confi-
dence intervals for these work rate estimators. A computation of confidence
interval lengths appears in § 5. Some numerical results for confidence intervals
based on this computation are given in § 6. In § 7 some empirical results on confi-
dence intervals are reported for the network under more general distributional
assumptions. The final section contains some concluding remarks.

2. Description of the network. Consider the 2-stage closed cyclic queuing
network shown in Fig. 1. There are a fixed number N of customers in the network.
Stage 1 service times X have nonzero finite mean and otherwise arbitrary distribu-
tion function Fy(t), and stage 2 service times T have nonzero finite mean and
otherwise arbitrary distribution function Fr(t). All service times are mutually
independent. Customers are served in the order of arrival at both stages.

s s )——

Stage 1 — General Stage 2 — General
Service Times X Service Times T

F1G. 1. Closed 2-stage cyclic queuing network

Suppose that at time ¢t = 0 an initial location of customers in the network is
specified with service(s) about to begin. For i = 1,2, let W(t) be the total server
busy time at stage i in the time interval (0, ¢], given this initial location of customers.
(The dependence on the initial location of customers is suppressed in the notation.)
It has been shown [11] that

(1 U; = lim W(¢)/t exists with probability 1.
t—=

In this paper, U; is called the work rate for stage i. U, is a degenerate random
variable, i.e., a constant, whose value is independent of the initial location of
customers in the network. The estimation of work rates via simulation is discussed
in the next section.
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3. Estimation via simulation of work rates. A straightforward estimator of
U, is U{(t) = W{t)/r, where 7 is the fixed time at which a realization of the simula-
tion is terminated. It follows from (1) that Uyr) is an asymptotically strongly
consistent estimator of U;, i.e, lim,_, , U/t) = U, with probability 1.

From conservation of flow arguments [11] it can be shown that

(2) U,/Uy = pi/us,

where yu; is the mean service time at stage i, i.e., u; = E[X] and pu, = E[T].
Therefore,

Uiz, B) = BU (1) + (1 = B)(uy/12)U 5(7)

is also an asymptotically strongly consistent estimator of U,, where f is fixed.
The choice of  will be discussed later in §§ 6 and 7. Also,

U,(t, B) = (u2/u)U(z, B)

is an asymptotically strongly consistent estimator of U, .

In simulation, it is desirable to have a confidence interval for the quantity
being estimated. Usually, confidence intervals are determined empirically from
multiple realizations of the simulation. (A noteworthy exception is the recent
work of Crane and Iglehart [12].) A derivation of approximate confidence inter-
vals centered about the estimators U(t), and Uz, B) is presented next under the
assumption that stage 1 service times X are exponentially distributed. The lengths
of these intervals provide a means by which the accuracy of these estimators can
be assessed.

4. Derivation of confidence intervals. Assume that stage 1 service times X are
exponentially distributed with rate parameter A, ie., Fy(t) = 1 — exp(—A4t),
t = 0. Also, assume that stage 2 service times T have finite variance var [T].
Under the exponential stage 1 service time assumption, the work rates for the
stages can be computed numerically (e.g., see (3) and § 5 of this paper). Thus in
this case there is no need to estimate work rates via simulation. Nevertheless, the
analytic results on confidence intervals which can be obtained with this assumption
allow a preliminary comparison to be made of the estimators U(t) and Uz, f3).

Let n(t), t > 0, be the number of customers in stage 1 at time t. We adopt the
convention n(t) = n(t+). Assume for convenience that n(0) = N, i.e., stage 2 is
empty at t = 0, and that at t = 0 service is about to begin. Let {r;:i = 1,2, .-}
denote those epochs of departure from stage 2 at which stage 2 becomes empty.
The r; are regeneration points [10] in the process n(t). The times between them,
denoted by {Y,:k=1,2,--- } where Y, =r,, Y, =r,— r,_;, k > 2, are inde-
pendent random variables identically distributed as a random variable Y, i.e.,
the Y, form a renewal process. Let W, = W{(r,) and W,, = Wi(r,) — Wir._.),
k = 2. Observe that the W, k > 1, are independent random variables identically
distributed as a random variable which is denoted by W;. Thus, W{(t)is a cumulative
process [10]. Note that E[W;] < E[Y] and E[W?] < E[Y?].

It follows from cumulative process results [10] that if E[Y] < oo, then

3) U, = E[W]/E[Y].
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If, in addition, E[Y?] < oo, then

) var [W(t)/t] ~ a}/t,

where ~ denotes asymptotic equality for large ¢ and

(5) o = (E[W{] + E[Y?)(E[W,)/E[Y])* — 2E[W,Y]E[W,)/E[Y])/E[Y].
Further, it is known [10] that (W(t) — Ut)/o;t'/? is asymptotically normally
distributed with mean zero and variance one, i.e.,

(6) lim Pr {(W(t) — Up)/ot"? < 9} = (),

t— o

where

() = f " (2m) 12 exp (= x2/2) dx.

From (6) it follows that if y > 0,1lim,_, , Pr {|{U; — W(t)/t| < yo,/t'*} = 2¢(y) — 1.
Therefore, for large t and y > 0,

(7 [Ux) = va/t'2, U0) + yoi/z'?]

is approximately a 100(2¢(y) — 1) % confidence interval for U;. The length of this
interval is 2yg,/t'/2.

Since W,(t) and W,(t) are cumulative processes defined with respect to the
same sequence of regeneration points, W,(t) + W,(¢) is also a cumulative process.
Thus, since var [W,(t) + W,(t)] = var [W,(t)] + var [W,(t)] + 2 cov [W,(t), W,(1)],
cumulative process results yield, after some algebraic manipulation,

(®) cov [W,(t)/t, Wy(t)/t] ~ a,,/t,
where

E[Y?IE[W,JE[W,] _E[W,Y]E[W,] + E[W,Y]E[W,]
(E[Y))? E[Y]

oy, = | E[W,W,] +
©)

Also, tU(t,B) = pWi(t) + (1 — B)(u/u)W,(t) is a cumulative process and
tU,(¢, B) = (puo/p)tU (¢, B)is a cumulative process. Using (4) and (8), it follows that

var [U(t, B)] ~ oZ(B)/t,

JE[Y].

where

(10) a1(B) = B*oi + (1 = B)*(1:/p2)?03 + 2B(1 — B)(u1/12)0 12
and

(11 a3(B) = (u2/1:)*01(P).

Therefore, it follows that for large 7 and y > 0,

(12) [Uiz, B) — vaiB)/<'", Uz, B) + va(B)/<'"?)]

is approximately a 100(2¢(y) — 1) % confidence interval for U;. In order to com-
pare the lengths of the confidence intervals in (7) and (12), the expectations in (5)
and (9) must be computed.
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5. Computation of confidence interval lengths. The expectations in (5) and (9)
can be computed directly using semi-Markov process analysis techniques [2], [13].
The computations, however, can be done more efficiently. The method employed
in this section involves an application of Wald’s equation [14], by means of which
the expectations are expressed in terms of expectations which are simpler to
compute using semi-Markov process analysis techniques.

In what follows, X and X, k > 1, denote exponential random variables, each
with rate parameter 4,and Tand T,,k > 1, denote (nonnegative) random variables,
each with the stage 2 service time distribution function Fi(t); these random
variables are mutually independent. The main result of this section is the demons-
tration that the expectations in (5) and (9) of § 4 are computable in terms of the
quantities N, A, E[T],var[T] and o, =Pr{X, + X, + - + X, < T},1 <k
<N-1

Let R(t) denote the number of departures from stage 2 in the time interval
(0,£]. Let Ry, = R(r;) and R, = R(r,) — R(r._,), k = 2. The R, are independent
random variables identically distributed as a random variable R. The random
variable R is the generic number of stage 2 departures between successive regenera-
tion points. Recall that W, W, and Y are, respectively, the generic stage 1 busy
time, the generic stage 2 busy time and the generic time between regeneration
points. A generic interval between regeneration points is shown in Fig. 2. Let

Y
r A N X
/W1 ,___AR_ﬁ
X X1/ I \ X’
Stage 1 } $ o ¢ ) o |
: '
[} ]
1 !
T T T :
1
Stage 2 } t } 2 ot -t {
— v )
WZ
— = Busy Interval
= lIdle Interval

F1G. 2. Generic interval between regeneration points

W, = YR | X,. It is straightforward to show with reference to Fig. 2 that

W+ X LW4+Xx, Wi T,

1

it ™M=

k

and

YLZX + W,,

where X' is exponential with parameter A, X' is independent of X, W, and W,,
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X is independent of W, and W,, and £ denotes equality in distribution. It follows
that

EW,] = E[W],

EWi] = E[W1],

E[W,W,] = E[W,W,],

E[W,Y] = 1/A* + E[W,)/A + E[W,W,],

E[W,Y] = E[W,}/A + E[W3],

E[Y]  =1/A+ E[W,],
E[Y?] = 2/A* + 2E[W,]/A + E[W?3].
Furthermore, R is independent of Xg.;, Tr+1> Xrs2> Tr42, -+ . This

condition is sufficient for Wald’s equation [14] to hold for the first two moments
of Wl and W,, i.e,

E[W,] = E[R}/A,

E[W,] = E[R]E[T],

E[W?2] = E[R]/A®> — E[R*)/A*> + 2E[RW,)/A,

E[W?2] = E[R] var [T] — E[R*](E[T])? + 2E[RW,]E[T],

provided that all expectations on the right-hand side of these equations are finite.
Appendix A contains a derivation of Wald’s equation for the second moment,
under more elementary assumptions than those in [14]. Wald’s equation also
holds for the second moment of W, + W,. Since

E[W\W,] = (E[W, + W,)’] — E[W}] — E(W3))2,
after some algebraic manipulation, it follows that

E[W,W,] = —E[R2E[T)/A + E[RW,)/A + E[RW,]E[T].

Thus, the expectations in (5) and (9) can be expressed explicitly in terms of A,
E[T], var[T], E[R], E[R?], E[RW,] and E[RW,]. The quantities E[R] and
E[R?] can be computed in a straightforward manner by considering an imbedded
Markov chain at stage 2 departure epochs. EfRW,] and E[RW,] can be computed
using semi-Markov process analysis techniques. The imbedded Markov chain is
discussed next.

Let {e;:i =0,1,2,---} be the epochs of departure from stage 2, where we
assume e, = 0. Let n; = n(e;+), i.e., n; is the number of customers in stage 1 just
after the ith departure from stage 2. Then {n;:i =0,1,2,---} is a finite state
Markov chain over the integers {1,2, ---, N}.

The transition probabilities of the Markov chain can be expressed simply
in terms of the quantities a,, where

o =Pr{X, +X,+ -+ X, <T}, kz1.
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Since X, + X, + --- + X, has Erlang-k (gamma) distribution,

© At~V exp (= At)

(13) (1 = Fpt) oy = L(l — F(1) d, kx>1.

(k — 1)! =

Let p;, denote the probability of transition from state j to state k in the imbedded
chain. Straightforward computation reveals that for 1 < j £ N — 1, the nonzero
transition probabilities are

1 — oy, k=j+1,
Piu=9q%— 0%, k=j+1-11=51=<j-1
o, k=1,

J

and that py, = py—14, 1 £k = N. The imbedded chain can be shown simply to
be irreducible and aperiodic provided that T is not degenerate at zero, a case
which is excluded by our assumptions. Let ® = (n,,n,, -+, my) denote the
steady state vector for the imbedded chain, i.e., ® is the unique probability vector
satisfying nP = =, where P = (p;,). Direct substitution verifies that = is given by
the following recursive procedure.

Let

aO = 1a

al = al/(l - al)a
k-1

a=1{) (a,oc,,+1_,)+ock)/(1 — o), k=2,
I=1
k

Ak = Z aja k g 0

j=0
Then

nnzaN—n/AN—u lénéN

The quantities E[R] and E[R?] can be computed from P and = [13, p. 130].
The computation of E[RW,] and E[RW,] is described next.

Consider the sequence {W,(e; ) — W,(e):i =0,1,2,---} of stage m busy
times between the epochs {e;}. It is easy to verify that the stage m busy time between
successive epochs e; and e, , ; is, given the states at these epochs, a random variable
which is independent of the stage m busy times between previous epochs and of
the states at previous epochs. This allows computation of E[RW,,] in a manner
similar to that used to compute the moments of the first passage times for a
semi-Markov process [2], [13]. This computation follows.

Let Z,(j, k) denote the stage m busy time between successive epochs, given
that the state is j at the first epoch and k at the next epoch. Let Z,(j) denote the
stage m busy time between successive epochs, given only that the state is j at
the first of the epochs. Let Z,,(j, k) denote the stage m busy time between an epoch
at which the state is j and the first subsequent epoch at which the state is k.
Similarly, let R(j, k) denote the number of stage 2 departures, i.c., the number of
epochs between an epoch at which the state is j and the first subsequent epoch
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at which the state is k. The departure at the first of the epochs is not included in
R(j, k). Suppose the state at an epoch is j and at the next epoch the state is I.
Denote this event by j — I. Then if | # k,

E[R(j, K)Z,(j, k) j = 1] = E[(1 + RU,)Zu(j, D + Z,(1, k)] j = 1]
= (1 + E[R(, K)DE[Z,(j, D] + E[Z,(, k)] + E[R(, KZ,(1, k)],

and if | = k,
E[R(j, K)Z,(j, k)| j = k] = E[Z,(j, k).
Therefore,
E[R(j, KZ,(j, k)] = E[Z,(})]
(14) + Y PiELR(, KIEIZ,(j, )] + E[Z,(, k)]

1#k
+ E[R(I,K)Z,(1, k).
Multiplying both sides of (14) by n; and summing over j yields
E[R(k,k)Z,(k, k)] = E[Z,(k, k)]

+ | ¥ ER(LK)] Y npuE(Z,(j, D] + ¥ n,E[Zm(l,k)])/nk,

1#k j=1 l#k
where we have used the equation [13, p. 133]

N
E[Z,(k, k)] = 21 TE[Z, (D).
i=
The E[R(1, k)] can be computed from P, and the E[Z, (1, k)] can be computed
from P and the E[Z,(])] [13, pp. 130, 132]. Note that E[W,] = E[Z (N, N)] and
E[RW,] = E[R(N, N)Z,(N, N)]. Thus, if expressions are obtained for E[Z,(I, k)],
1 <L k< N,and m = 1,2, then E[RW,] and E[RW,] can be computed.
It can be shown thatfor 1 S I < N — 1,

E[TIT < X], k=1+1,
k=1+1-j,
E[Z)(L,K] =< E[TIX, + -+ X;<T< X, + -+ X;,,], 1<j<i-1,
E[T\X, + - + X, < T], k=1,

and for [ = N,
E[Z,(N,k)] = E[Z,(N — 1,k)], 1sk=N.
Alsofor1 €I <N — 1,
E[Z,(, k)], 25kl +1,

E[Zl(l,k)]={
E[ X, + -+ X)X, + -+ X,<T], k=1,

and for | = N,
E[Z,(N,k)] = E[Z,(N — 1,k)] + 1/, 1=k<N.
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The conditional expectations above are expressible directly in terms of the
o, in (13) as follows:

E[T|IT < X] = (o; — o)/l — o)A,
EITIX; + - +X;<T< X, + - + X;.,]

= + D41 — 054 2)/(0; — 254 1)4,

1
E[TIX,+ -+ X,<T]=|AE[T] - Y o + loc,H)/oc,A,

k=1

EX,+ -+ X)X, + -+ X,<T]=loy, /oA

6. Numerical results. In this section, the length of the confidence interval
centered at U(7) in (7) and the length of the confidence interval centered at U(t, B)
in (12) are compared numerically for a fixed level of confidence and a fixed realiza-
tion length © by comparing numerically ¢; and o), where o{(p) is expressed in
terms of ¢, 0, and 4, in (10) and (11). In this section, B is taken equal to f*,
where f* denotes the optimum value of f, i.e., the value of f which minimizes
o,(p) and hence minimizes the length of the confidence interval centered at U (z, f).
A simple computation using (10) yields

(15) B*= ((1/112)?03 — (1/12)012)/(0F + (1/12)*65 — 2(11/12)0 12).

Note from (11) that f* also minimizes a,(B). It follows from (15) that if ¢,/u,
» o,/p,, then B* = 1; if 6,/u, = o,/u,, then g* =~ .5; and if 6,/u, < 6,/u,,
then f* ~ 0.

When estimating U; via simulation using the estimator Uz, B), f* is not
known. Either a value of § which is expected to be near f* is chosen a priori or
p* is estimated empirically from multiple realizations of the simulation. Thus
the accuracy obtained in practice when using the estimator Uz, B) will not be as
great as is indicated in this section.

Numerical values for ¢, 6,, fi* 6% = 0,(6%), 0% = 7,(6*), 6¥/5, and ¢%/0,
are given in Tables 1-5 for various service time distributions at stage 2. (From (11),
0% = (uy/pny)o%.) Also given are numerical values for U, and U, which are
computed from (3) and numerical values for p = ¢,,/0,0,, the asymptotic
correlation of U,(t) and U,(r). The coefficient of variation of the stage 2 service
time distribution increases from 0 in Table 1 to 5 in Table 5. Observe from the
tables that the estimators U, () and (¢, /u,)U ,(t) have, in general, unequal variances
and are negatively correlated, i.e., 6, # (u;/1,)o, and p < 0. (It follows from (15)
that if p < 0, then 0 < f* < 1.) The optimum parameter value f* represents a
compromise between putting all the weight (f* = 0 or * = 1) on whichever of
these two estimators has the smaller variance and putting equal weights (* = .5)
on the two estimators in order to take advantage of the negative correlation
between them. From the tables, when u, # u,, the stage with the larger mean
service time—and hence the larger work rate—has a smaller value of o,/y; and
B* is usually closer to either 0 or 1 than to .5. When u, = pu,, the stage with the
larger service time variance has the smaller value of a,/y;, although the values for
the two stages do not differ greatly, and B* is closer to .5 than to either 0 or 1.
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TABLE 1
Comparison of asymptotic confidence interval lengths.
Stage 2 service times: const., u, = E[T] = 1, var[T] =0
I3 N U, U, gy (5} P p* o} 41 at/o, a3/o,
0.5 2 468 937 | .398 | .228 —.697 | .190 | .067 | .134 | .169 | .589
4 .499 998 | 490 | .055 —.311 020 | 026 | .051 052 | 933
6 500 | 1.000 | 499 | .01l —.109 | .001 006 | .011 011 993
1.0 2 731 731 423 | 484 —.774 | 538 | .152 | .152 | .359 | 314
4 .870 .870 | .501 .537 —.615 | 522 | 227 | 227 | 454 | 423
6 914 914 527 551 -.571 S14 .249 249 473 452
20 2 .904 452 | 288 | .558 —.741 .822 | .161 080 | .557 | .144
4 992 496 | .105 | .681 —413 | 965 | 092 | .046 | .880 | .068
6 .999 .500 | .031 .704 —.199 | 995 030 | Ots | 975 | .022
TABLE 2
Comparison of asympotic confidence interval lengths.
Stage 2 service times: Erlang-3, u, = E[T] = 1., var [T] = .333
" N v, v, ) oy » B ot o3 | otfe, | ot
0.5 2 451 903 | 438 | .284 —-714 | 214 | 079 | .159 | .181 .559
4 4951 990 | 547 | .115 —-.429 | 051 050 | .099 | .091 861
6 499 | 999 | 572 | .040 —.232 | 009 | 019 | .038 | .033 | .964
1.0 2 703 | .703 | 497 | 532 —-.770 | 519 | .174 | 174 | .351 328
4 842 | 842 | 574 | .599 —.632 | 513 | 252 | 252 | 438 | 420
6 .893 | 893 | .604 | .621 —.586 | .509 | .278 | .278 | .461 448
20 2 .885 | .443 | 372 | .620 —.741 796 | 202 | .101 .542 | .163
4 985 492 | .176 | .765 —.474 | 940 | .146 | 073 | .831 .095
6 998 | .499 | .069 | .805 —.283 | 986 | .066 | .033 | .947 | .041
TABLE 3
Comparison of asymptotic confidence interval lengths.
Stage 2 service times: exponential, u, = E[T] = 1., var [T] = 1
H N U, U, 0y o, 14 p* 41 41 at/oy a3/o,
0.5 2 429 | 857 | .507 358 | =771 238 | .088 | .176 |.174 | .492
4 484 | 968 | .628 222 | —.555 | .105 | .083 |.167 | .133 |.751
6 496 | 992 | .678 120 | —.401 040 |.053 |.106 |.078 | .882
1.0 2 667 | .667 | .609 609 | —.800 | .5 192 192 | 316 | .316
4 .800 | .800 | .693 693 | —.667 |.5 283 | .283 | .408 | .408
6 857 | 857 |.728 728 | —.615 | .5 319 | 319 | 439 | 439
20 2 857 | 429 | .507 716 | =11 762 1249 | 125 | 492 | .174
4 968 | .484 | 314 888 | —.555 [ 895 |.236 |.118 |.751 133
6 992 | 496 |.170 959 | —.401 960 |.150 |.075 |.882 |.078
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Comparison of asymptotic confidence interval lengths.
Stage 2 service times: hyperexponential,

TABLE 4

Frlt) = y(1 — exp(=1/3,)) + (1 — y)(1 — exp(—1/3,)),t 2 0,

0, =4,6,=.57y=.143,
Uy, = E[T)=1,var[T] =4
m N U, U, g, a, P [hd at [ at/o, o%/o,
0.5 2 409 | 818 786 | 493 | —.887 | 228 | .088 | .177 | .112 | .359
4 463 | 925 934 | 376 | —.708 | .138 | .115 | .231 123 | 613
6 483 | 965 |1.01 289 | —.590 | .088 | .107 | .214 | .106 | .741
1.0 2 625 | .625 991 | 818 | —908 | 450 | .193 | .193 | .194 | .235
4 725 | 725 (L1 .896 | —.794 | 440 | 319 | .319 | 286 | .356
6 776 | 776 | 1.16 962 | —.730 | .447 | 386 | .386 | .334 | 401
20 2 811 405 940 | 988 | —.895 | .686 | .291 146 | 310 | .148
4 907 | .454 827 |1.17 —.759 | .763 | 417 | 209 | .505 | .179
6 949 | 474 677 |1.29 —.663 | .829 | 426 | .213 | .629 | .165
TABLE 5
Comparison of asymptotic confidence interval lengths.
Stage 2 service times: hyperexponential
Fylt) = y(1 — exp(=1/0,)) + (1 — »)(1 — exp(—1/3,)), t 2 0,
6, =25,0,=.57y=.02
U, = E[T] = 1,var[T] =25
1y N U, U, a, g, 4 B* 41 43 at/a, a3/0,
0.5 2 402 | 803 |1.82 959 | —.972 | 206 | .089 | .178 | .049 | .186
4 448 | 896 [2.13 640 | —.881 | .121 A33 | 267 | 063 | 417
6 467 | 934 |2.26 516 | —.786 | 086 | .146 | 292 | .065 | .566
1.9 2 .605 | .605 (2.34 1.64 —.982 | 411 182 | 182 | .078 | .111
4 668 | 668 |[2.64 |1.57 —-.949 | 370 | 315 | 315 | .119 | .200
6 692 | 692 [2.71 1.60 —.927 | 367 | .385 | .385 | .142 | .240
20 2 778 | 389|237 201 —.984 | .630 | .264 | .132 | .111 066
4 827 | 414 243 |210 —962 | .636 | .425 | .212 | .175 | .101
6 848 | 424 236 |2.19 —.941 | .654 | .523 | 262 | 222 | .120

The tables indicate that for a fixed level of confidence and a fixed realization
length, a substantial reduction in the confidence interval length can be obtained
by using the estimator Uz, f*) instead of the estimator U,(r). Equivalently,
for a fixed level of confidence and a fixed confidence interval length, a substantially
smaller realization length can be used. (For a fixed confidence interval length,

oZ(B) and 7 are inversely proportional.)

7. Empirical results. In order to compare analytically the estimators Uy(t) and
U, B), it was assumed in the preceding sections that stage 1 service times are
exponentially distributed. In this section, this exponential assumption is removed
and the estimators U(t) and Uz, ) are compared empirically.
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When using the estimator U(t, ) in practice, it is necessary either to choose
a priori the parameter f§ or to estimate f§ via simulation. In addition, it is desirable
to estimate via simulation a valid confidence interval based on this estimator.
The use of the estimator Uz, f) when f is chosen a priori is considered first.

If B is chosen a priori, then the following theorem provides a distributional
theory for estimating confidence intervals based on Uz, ) (or based on U(7)).

THEOREM. Assume Fy(t)(resp. Fy(t))is a finite mixture of Erlangian distributions,
i.e., Fy(t)(resp. Fi(t)) = Z::l 0;F(kj,t),t 20, where 6; 20,1 < j< J, ;=1 6;=1,
k; is a positive integer and F(k,t) is an Erlang-k distribution. Assume T (resp. X)
has nonzero finite mean and finite variance. Then there exists an increasing sequence
of random times which are regeneration points in the stochastic process describing
the evolution of the network in time. Furthermore, the first two moments of the time
between successive regeneration points are finite.

The proof of this theorem is straightforward and proceeds by considering
a finite state imbedded semi-Markov process at the epochs of departure from the
non-Erlangian stage. It can be simply shown that the imbedded Markov chain at
these epochsisirreducible and that the unconditional waiting times of the imbedded
semi-Markov process have finite first and second moments. Thus all states of the
imbedded semi-Markov process are recurrent and the first two moments of the
recurrence times are finite.

Using this theorem, it follows from cumulative process results [10] that
(Ut, By — Uy/(var [U{t, B)])*/? is asymptotically normally distributed with mean
zero and variance one. Therefore a confidence interval for U; can be estimated
using the t-statistic from multiple independent realizations of a simulation as
described below. (The theorem also provides sufficient conditions for estimating
confidence intervals using the method for regenerative processes proposed by
Crane and Iglehart [12]. This method is not pursued in this paper, however.)
Note that under the assumptions of the theorem, one could in principle use
semi-Markov process analysis techniques to compute the work rates. However,
due to the complexity of the computations, particularly as Z;=1 k; increases,
simulation is a viable alternative.

Let M > 1 be the number of independent realizations. Each realization
starts at simulated time zero with all N customers in stage 1 and service about
to begin. The realization is stopped when simulated time 7 is reached. The super-
script k will denote the value of an estimator observed on the kth realization. Let

M

Ox,p) = ¥ Uk, p/M,
k=1
M

Vie,p) = ¥ Uk, p) — Oz, p>/(M — D).
k=1

Then MU (z, ) — U,)/V(z, B) is asymptotically (i.e., for t large) distributed as
the standardized ¢-statistic with M — 1 degrees of freedom. Therefore, for 7 large
andy > 0,

[0z, B) — yWi(x, BYM'2, Uz, B) + yVi(x, ByM %]
is approximately a 100(26,,_,(y) — 1)% confidence interval for U; based on the
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estimator Uz, ), where 6,,_(y) is the distribution of the standardized ¢-statistic
with M — 1 degrees of freedom. Similarly, let

Z KM,

Vi) = f — U0)*/(M — 1).

Then for 7 large and y > 0,
[041) — yWieyM'2, Oy(x) + y D)/ MY

is approximately a 100(26,,_,(y) — 1) % confidence interval for U; based on the
estimator U (t).

The question of choosing f a priori has not yet been addressed. One method of
choosing f a priori for a network with service time distributions Fy(t) and Fr(t)
is to choose B equal to B.,,, where f.,, is the optimum value of f (see (15)) computed
under the assumption that X and T are exponentially distributed. In order to
investigate whether this choice of f is good, results from simulating the queuing
network are presented in Tables 6 and 7. Stage 1 service times are constant and
stage 2 service times have hyperexponential distribution (i.., a mixture of two
exponential distributions) with coefficient of variation equal to 2 in Table 6 and
equalto Sin Table 7. Each row of the tables is based on 25 independent experiments
where each experiment consists of 5 independent realizations of a simulation with
realization length 1,000. In the tables, U;, G; and ,(B) are averages over the 25
experiments; U, is the average of U (1), &, is the average of t'/2¥(7) and G/p) is
the average of t'/2¥(t, f).

The results in the last 2 columns of Table 6 and 7 indicate that substantial
reductions in confidence interval lengths are obtained in practice using the
estimator Uz, B) with B = B, instead of the estimator Uytr). For example, if

= 1 and N = 4 in Table 6, then G,(8)/6, = .279 and 7,(B)/7, = .408, which
corresponds to a reduction in confidence interval length by a factor of 1/.279 = 3.58
for the stage 1 work rate and by a factor of 1/.408 = 2.45 for the stage 2 work rate.
Reductions in confidence interval lengths by factors of 2 or more are usual.
Two other a priori choices for § are f = By ., OF fr ey, Where By ., (reSP., Br exp)
is the optimum value of f computed under the assumption that X (resp., T) is
exponentially distributed and T (resp., X) has distribution Fi(t) (resp., Fx(t)).
These choices are briefly investigated in Table 8, which is self-explanatory. The
results of Table 8 should be compared with the results in the middle three rows
of Table 7 to see that further reductions in confidence interval lengths are obtained.

The use of the estimator Uz, ) when f is estimated via simulation is now
briefly discussed. An estimate /8 of the optimum value for the parameter § could
be obtained from the M independent realizations by substituting V2(t) for ¢?
and V,,(1) for a,, in (15), where

M

Vi@ = ¥ (US(0) = 0,()(US(e) — Oa(0)/(M — 1),

k=1

The resulting estimator U (z, B) introduces additional bias due to the correlation
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TABLE 6
Empirical comparison of asymptotic confidence interval lengths; © = 1,000, M = 5, 25 experiments.
Stage 1 service times: const.
Stage 2 service times : hyperexponential
(same as Table 4)

Hy N Ul Uz Gy G, B= ﬁexp 6|(ﬁ) G(B) 5|(ﬁ’/51 62(”’/@

0.5 2 434 | 858 720 | 312 238 086 | .172 | .120 | .553

4 489 | .959 892 | .196 .105 080 | .159 | .089 | .814
6 503 | .986 836 | .133 .040 060 | .123 | .071 925
1.0 2 671 661 | 1.09 713 .5 234 | 234 | 215 | .328
4 764 | 753 | 1.07 731 .5 298 | 298 | 279 | .408
6 812 | .800 | 1.05 811 5 333 | 333 | 317 | 411

20 2 .852 | .420 .894 | 847 762 352 | 174 | 393 | 205
934 | 461 788 | 1.11 .895 524 | 262 | 665 | .235
6 969 | 478 552 116 960 463 | 231 .838 | .198

I

TaBLE 7
Empirical comparison of asymptotic confidence interval lengths; © = 1,000, M = 5, 25 experiments.
Stage 1 service times: const.
Stage 2 service times : hyperexponential
(same as Table 5)

Hy N U, U, gy G, B =B a,(B) 7,(B) G\(BYe, | 6,(B)G,

0.5 2 429 | 844 | 200 .760 238 202 | 405 1 .101 533
4 475 | 934 | 205 405 .105 d13 | 226 | 055 | .557
6 490 | 962 | 225 302 .040 101 202 ) .045 | 670

1.0 2 .651 636 | 223 | 1.27 ) 494 | 494 | 222 | 391
4 688 | .680 | 256 | 1.40 5 .640 | .640 | 250 | .457
6 707 | 695 | 245 | 1.42 5 594 | 594 | 242 | 418
20 2 .808 | .401 227 | 1.80 762 899 | 449 | 396 | .250

I

.831 415 | 210 | 1.76 .895 1.52 763 | 725 | 434
6 853 | 423 197 | 1.84 960 | 1.75 877 | .891 477

TABLE 8
Empirical comparison of asymptotic confidence interval
lengths; © = 1,000, M = 5, 25 experiments.
Stage 1 service times: const., u; = 1.
Stage 2 service times: hyperexponential

(same as Table 5)

N ﬁ = ﬁX.:lp 51(5) 52(ﬁ) 5|(ﬂ)/51 Ez(ﬁ)/a'z

2 411 .206 206 092 162

4 .370 .265 .265 104 .190

6 367 275 275 112 .194
ﬁ=ﬁ1‘.clp

2 462 .366 .366 165 290

4 478 .562 .562 219 402

6 486 547 .547 223 .386
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between f and U¥(t). (Note that Uy(z) already contains bias due to T being finite,
ie., E[U(1)] # U,.) This additional bias can be removed by the standard technique
of splitting, e.g., [8]. However, since j is a random variable, it no longer follows
that UXx, B) is asymptotically normal. Therefore, it is an open question whether
a valid confidence interval for U, based on U (z, B) can be estimated from a small
number of independent realizations, as is the case for Ui(r). If not, then any
reduction in confidence interval length obtained by using U (z, B) could be more
than offset by the extra realizations required. This question is not pursued in
this paper.

Remarks. (i) Another way of comparing the accuracy of the estimators U(t)
and Uz, B) is to compare the mean-square errors for fixed t. The mean-square
error of the estimator U(t) is given by

(16)  MSE[U(1)] = E[((U\(1) — Up)*] = var [U(1)] + (E[U(1)] — U)>*.

The second term in (16) is the square of the bias of the estimator. In Appendix B
it is shown that since Wj(t) is a cumulative process and 0 < W(t,) — Wt,)
st,—t forall0 =t, =t,,

E[U{)] ~ U; + by/x.

Therefore, from (4) and (16) it follows that MSE [U(1)] ~ 6?/r. Similarly,
MSE [Uy(z, B)] ~ ¢#(f)/z. Thus, by comparing ¢; and o(8), MSE [U,r)] and
MSE [U/(z, )] are compared for fixed 1.

(i) It wasassumed in§4thatn(0) = N,i.e,stage2isemptyatt = 0. However,
if n(0) =n, 0 £ n < N, then the sequence {Y;:k = 1,2, ---} forms a general
renewal process [10], and all the results in §§ 4-6 still hold. These results also hold
for queuing disciplines other than first-come first-served, such as last-come
first-served and random, which are also independent of service time.

(i1i) The estimator for work rates proposed in this paper is an asymptotically
strongly consistent estimator which is a linear combination of the straightforward
estimators of the work rates at different stages. This new estimator was suggested
by the known relation between the work rates for different stages given in (2).
Similar relations, due to conservation of flow, exist between the work rates for
different stages in more complex closed queuing networks than the one considered
in this paper [11]. Asymptotically strongly consistent estimators of work rates
in these networks are similarly obtained by taking appropriate linear combinations
of the straightforward estimators of work rates for different stages. The results of
this paper suggest that these estimators for more complex networks are worth
investigating, analytically where possible and otherwise empirically.

Appendix A.

THEOREM. Let V,, k > 1, be independent and identically distributed nonnegative
random variables. Let K be a positive integer-valued random variable such that K
and Vg1, V42, -+ - are mutually independent. Let Sy = sz=1 V. Then

(A.1) E[S%] = E[K] var [V] — E[K*](E[V])* + 2E[V]E[KS],

provided the expectations and variance on the right side of (A.1) are finite.
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Proof. Let

Ui(K) {1’ k=K
* B 0, k> K.

Then ¥(K) and V, are independent and y,(K)W (K) = ¥(K), k = j.

EIS3] = E[f 5 kak(K)ij,(K)]

k=1j=1
o k—1

(A2) Z EVR(KI + Y Y EV(KIV] + Z Z E[V,Vy (K)]

k=2 j=1 k=1 j=k+1

= E[V?] Z Pr{K > k} + 2E[V] Z Z E[V{K)]

k=1 j=k+1

(A.3) = E[V2E[K] + 2E[V]E[Z Ve Sy k)]

1 j=k+1

where the interchanges of summation and integration are justified by the monotone
convergence theorem and the double summations in (A.2) are equal by Fubini’s
theorem.

Observe that )' 2, | ¥(K) = max (K — k, 0). Therefore,

(A.4) E[Z Ve Z ./,(K] [Z Vk(K—k)}E[KSKJ—E[Z ka],
k=1 k=1

j=k+1

where

E[‘E ka] - E[f kawk(K)] ~ EV] Y kPr{K 2 k)
K=1 K=1 k=1

(A.5) = E[V](E[K?] + E[K])/2.
Equation (A.1) follows from (A.3)~(A.5), completing the proof.

Appendix B. Let J(r) be the number of regeneration epochs in the time
interval (0, t], i.e., J(t) = sup {j:r; < t}, where r, = 0. Then writing
J@®+1

Z Wilr sy +1) — WD)
and noting that 0 < Wj(t,) — W(t,) =t, — t, forallt,,t,suchthat 0 =¢t;, < ¢,

yields

Joy+1 J@y+1
(B.1) z W= (rjm+1 — t) £ W) = Z
j=1

It follows directly from results in [15] that

(B.2) E[MZH Wu:I ~ tE[W)/E[Y] + E[W]E[Y?)/2(E[Y]?
ji=1



124 S. S. LAVENBERG AND G. S. SHEDLER

and
(B.3) E["J(:)+1] ~1t+ E[YZ]/2E[Y]

if E[Y] < o0, E[Y?] < o0 and the random variable Y is not lattice, conditions
which hold for the queuing network considered in this paper. Combining
(B.1)«B.3) yields

E[W(1)/t] ~ E[W,J/E[Y] + bj/t,

where

(E[W] — E[Y)E[Y?)/2(E[Y])* < b; < E[WE[Y>]/2(E[Y])*.
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TRANSLATING PROGRAM SCHEMAS TO WHILE-SCHEMAS*
EDWARD ASHCROFTt aNp ZOHAR MANNA}

Abstract. While-schemas are defined as program schemas without goto statements, in which
iteration is achieved using while statements. We present two translations of program schemas into
equivalent while-schemas, the first one by adding extra program variables, and the second one by
adding extra logical variables. In both cases we aim to preserve as much of the structure of the original
program schemas as possible.

We also show that, in general, any translation must add variables.

Key words. program schemas, removing goto statements, while-schemas, flowchart transfor-
mations.

Introduction. The program schema approach makes it meaningful to consider
the relative “power” of programming language constructs. Most work in this
area [13], [4], [5], [14], [15] has considered adding features to program schemas
such as recursion and arrays. Here we consider removing, or at least restricting,
a feature of program schemas: the goto statement.

There has been much interest lately, following observations by Dijkstra [8],
in the possibility and desirability of removing goto statements from programming
languages, using instead such statements as the while statement. Programs in
such languages should be better structured, easier to understand and, hopefully,
easier to prove correct. For example, the elegant formal system of Hoare [10] for
proving programs correct requires programs with the sort of “nested’ structure
that while statements provide. Goto-less programs are clearly an interesting class
of programs to study.

We therefore define a class of while-schemas in which iteration is achieved
with while statements: while iy do S. The tests iy may be arbitrarily complicated;
this feature of our while-schemas is crucial. We show that while-schemas are as
powerful as program schemas by giving a translation, Algorithm 1, of program
schemas to equivalent while-schemas. This translation is interesting in that it
preserves most of the “loop structure’ of the program schemas, and gives while-
schemas of the same order of efficiency. The translation allows the addition of
extra program variables.

Bohm and Jacopini [3] have shown that program schemas can be translated
into while-schemas, with the addition of extra logical variables. A modification of
a technique in Brown et al. [2] would show (by a further translation) that the
additional logical variables add no extra power to while-schemas. We present an
improvement on Bohm and Jacopini’s reduction to while-schemas with logical
variables, which we call Algorithm 2. This doesn’t give us “‘pure’” while-schemas,
since logical variables are used, but the schemas produced are often more “readable”

* Received by the editors November 2, 1973, and in revised form March 1, 1974. This research
was supported in part by the Advanced Research Projects Agency of the Office of the U.S. Secretary
of Defense under Contract SD-183, and in part by the National Research Council of Canada.

1 Department of Computer Science, University of Waterloo, Waterloo, Ontario, Canada.

1 Department of Applied Mathematics, Weizmann Institute, Rehovot, Israel.
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than those produced by Algorithm 1. The method preserves whatever “while-
structure” already exists in a program schema, and when applied to a program
schema corresponding directly to a while-schema, Algorithm 2 gives us back that
while-schema.

Both Algorithm 1 and Algorithm 2 give while-schemas that use more variables
in general than the original program schemas. It is natural to ask whether this is
a necessary feature of any translation. We show that this is the case by giving a
program schema, with one variable, for which there is no equivalent one-variable
while-schema. This also means, of course, that program schemas are more powerful
than while-schemas in the restricted sense that they need fewer variables in general.

The construction and proofs presented here first appeared in abbreviated
form in a paper by the authors presented at IFIP Congress 1971 (Ljubliana,
Yugoslavia).

1. Program schemas. A program schema consists of a finite sequence of
statements, separated by semicolons. This sequence must start with a start state-
ment, e.g., START(x,, x,), designating input variables, and end with a halt state-
ment, e.g., HALT(x,, x;), designating output variables. The other statements
may be of the following types:

(i) null statements, i.e., null;
(ii) assignment statements, 1.e.,

where 7 is a term;
(iii) conditional statements, i.e.,
if y then S| else S,,

where S, and S, are statements and ¥ is a formula;
(iv) compound statements, i.e.,

[SlﬂsZ’ RN Sn],

where S|, S,, - - -, S, are statements;
(v) goto statements, i.e.,

goto L,

where L, is a label.

Any statement can be labeled by preceding it with a label followed by a colon. A
formula is any quantifier-free formula of predicate calculus. A term is any composi-
tion of variables, constants and function symbols.

The statement if - - - then - - - else null can be written if - - - then - - - provided
no confusion results.

Example. The following is a program schema P, with one variable, that will
be used often throughout the paper:
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ScHEMA P,. START(x);

x < a(x);

L: if p(x) then [x « e(x); goto L];

A if g(x) then x « b(x) else [x « g(x); goto N];

M if r(x) then [x « d(x); goto M];

B: if s(x) then [x « c¢(x); goto L] else x « f(x);

N:null;

HALT(x).
A, B, L, M and N are labels (4 and B will be used in later discussions). The symbols
a, b, c,d, e, fand g denote functions and the symbols p, ¢, r and s denote predicates
or tests. The expressions p(x), g(x), etc. are (simple) formulas.

2. While-schemas. A while-schema is a program schema using only statements
of types (i), (ii), (iii) and (iv) and type (vi) below:
(vi) while statement, i.e.,
while  do S,

where S is a statement and  is a formula.
Such statements are to be considered as abbreviations for the equivalent state-

ments
L: if  then [S; goto L] else null.

Example. The following is a while-schema P, with two variables.
ScHEMA P,. START(x);
x « a(x);
while p(x) do x « e(x);
Y X
if g(x) then [x « b(x); while r(x) do x « d(x)];
while g()) A s(x) do
[x « c(x);
while p(x) do x « e(x);
Y X
if g(x) then [x « b(x); while r(x) do x « d(x)]];
if ¢(y) then x « f(x) else x « g(x);
HALT(x).
The schema P, uses the same symbols as P;, denoting functions and predi-
cates, and here we have the (more complicated) formula g(y) A s(x).

3. While-schemas with logical variables. A while-schema with logical variables
is a program schema using only unlabeled statements of types (i), (ii), (iii), (iv)
and (vi), and type (vii) below:

(vii) logical assignment statements, i.e.,

t; « true
or

t; « false.
The variables appearing in logical assignment statements are called logical

variables, and they may not appear in ordinary assignments. They may appear,
however, in formulas, as if they were propositions, i.e., 0-ary predicates.
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Example. The following schema P, is a while-schema with one logical variable
(and one program variable).
ScHEMA P,. START(x);
x < a(x);
t « true;
while ¢ do
[while p(x) do x « e(x);
if g(x) then [x « b(x);
while r(x) do x « d(x);
if s(x) then x « ¢(x)
else [x « f(x); t « false]]
else [x « g(x); ¢t « false]];
HALT(x).
P, uses the same symbols as P, and P, denoting functions and predicates,
and here t is a logical variable used also as a formula.

4. Equivalence of schemas. Two schemas having the same input variables
and the same output variables are said to be equivalent if they compute the same
function (from input variable values to output variable values), no matter what
functions or predicates are denoted by the symbols in the schema. (Of course, the same
symbol appearing in the two schemas must denote the same function or predicate.)

More formally, we can first give meaning to the symbols in a schema by using
an interpretation. An interpretation I consists of a domain D, from which the vari-
ables in the schema may take values and a specification of the functions and pre-
dicates over D, denoted by the function and predicate symbols in the schema. The
interpretation also supplies initial values (from D)) for the input variables. Given
an interpretation I, a schema S becomes a program (S, I). The program has a
finite or infinite computation in the usual way, and if this is finite we let val(S, I)
denote the final values of the output variables. If the computation is infinite,
val(S, I) is undefined.

Two schemas S, and S, are then equivalent if, for all interpretations I,
val(S,, I) = val(S,, I), i.e,, both are undefined, or both are defined and have the
same values.

In most of the paper we do not need the formal definition of equivalence. In
these sections we will use simple equivalence-preserving transformations which are
clearly correct. However, we do use the formal definition using interpretations
in the last section.

Examples. The schemas P,, P, and P, are all equivalent. (In fact, P, is the
result of applying Algorithm 1 to P, and P, is the result of applying Algorithm 2
to P, as we will see later.

To see informally that P, is equivalent to P,, note that each iteration of the
main while statement in P, corresponds in P, to going from label B back to label B.
The variable y in P,, at the beginning of each iteration, holds the value that x
previously held in P,, the last time computation reached label A.

To see informally that P, is equivalent to P;, note that each iteration of the
main while statement in P, corresponds in P, to going from label L back to
label L (the long way, via statement labeled B) or to label N. In the latter case, ¢ is
made false in P, and we subsequently exit from the main while statement.
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5. Flowcharts. We will find it useful to consider the flowchart representations
of schemas. Program schemas clearly correspond to arbitrary flowcharts, with one
start node and one halt node, using assignment and test statements as shown in
Fig. 1;y is a formula and 7 is a term.

!
T

l

(i) ASSIGNMENT (i) TEST

F1G. 1. Flowchart statements
We shall be more concerned with normal forms for such flowcharts.

5.1. While-chart form. Firstly, it is clear that while-schemas have more
restricted ‘“‘structure” than program schemas, and we define below (inductively)
a correspondingly restricted class of flowcharts.

A while-chart is a one-entrance, one-exit piece of flowchart of one of the five
types shown in Fig. 2. The boxes 4, 4,, - - - represent while-charts, i is a formula
and 7 is a term. The various cases correspond to the types of statement allowed in
while-schemas. Any flowchart of the form of Fig. 3, where 4 is a while-chart,
is said to be in while-chart form. For every while-chart form flowchart, there is an
equivalent while-schema, and vice versa.

+ .

(a) EMPTY (b) ASSIGNMENT
EDGE

1

A

<

A Az

(c) COMPOUND (d) CONDITIONAL (e) LOOP
FIG. 2. While chart constructs

START (---)

F1G. 3. While-chart form flowchart

n
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5.2. Block form. Even general flowcharts can be put into normal forms, by
such methods as duplicating nodes, unwinding loops, etc. One such normal form
is the block form of Cooper [7] and Engeler [9].

A block is a one-entrance, many-exit piece of flowchart constructed inductively
as follows (we occasionally number the exits from a block, starting at the left):

(1) A basic block is a block. A basic block is a one-entrance, many-exit tree-

like piece of flowchart. An example is shown in Fig. 4.
(i) The flowcharts in Fig. 5 are blocks, where B, and B, are blocks.

y=-g(x)
p(x)
T F
qly)
T F
q (x)
F T

FIG. 4. Example of a basic block

(i) LOOPING ON THE (ii) CONCATENATING WITH
i-th EXIT THE i-th EXIT

FiG. 5. Nonbasic constructs for blocks

A flowchart is in block form if it is of the form shown in Fig. 6, where B is a
block.

Clearly every flowchart in block form is equivalent to some program schema.
The result of Engeler and Cooper is that for every program schema we can find
an equivalent flowchart in block form (see for example, Manna [14]).
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HALT (---)

FiG. 6. Block form flowchart

Example. Figure 7 shows a flow chart P} in block form which is equivalent
to the program schema P,. The blocks are indicated by broken lines. B,, B, and
B, are basic blocks. B,, B, and B, are constructed by looping, and B and B, by
concatenation.

HALT (x)
Fi1G. 7. Block form flowchart P’

5.3. Properties of basic blocks. Before we consider our next normal form, we
observe two useful properties of basic blocks.

Property 1. Given any basic block B (with n exits) and some ith exit of B,
there exist a formula i-test(B), a basic block i-pruned(B) (with n — 1 exits) and a
sequence of assignment statements i-ops(B) such that the flowcharts in Fig. 8 are
equivalent.
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i—TEST(B)

1 H“ i-OPS (B) i ~PRUNED (B)

F1G. 8. i-extracted form

To see this, note first that the basic block can be put into a form in which the
tests on the path on the ith exit precede the assignments, by repeated application
of the transformation shown in Fig. 9, where /' is like i but with x; replaced by .
It is then a simple matter to find a single test to “extract” the ith path by working
up the path from the bottom, repeatedly applying the transformations shown in
Fig. 10 (or their mirror images). The upper transformation extracts the first path,

lxi<—r|

T T i=s] =)
T

FI1G. 9. Moving tests up

FIG. 10. Extracting paths
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and the lower transformation extracts the second path (the third path is already
extracted).

This eventually gives us the desired form for the basic block. It will be called
the i-extracted form.

Example. Figure 11 shows the two stages in obtaining the 3-extracted form
of the basic block B of Fig. 4.

Property 2. The second property of basic blocks that we need is that every
piece of flowchart of the form shown in Fig. 12(a), where B is a basic block, is a
while-chart. This can be seen very easily by induction on the number of statements
in B. If there are no statements, we have an empty edge, which is a while-chart.
If there are n > 0 statements, we have either Fig. 12(b) or Fig. 12(c), where B,
and B, are basic blocks. In both cases we have while-charts, since the lower parts
are while-charts by the induction hypothesis.

(a) (b) (c)
FiG. 12

5.4. Module form. The final normal form for flowcharts which we will
consider is module form.

A module is either

(1) an assignment statement, or

(i) a one-entrance, one-exit piece of flowchart constructed from modules and

tests ; these tests are called the tests of the module.

A flowchart is in module form if it is of the form shown in Fig. 13, where M

1s a module.

START(---)

(sTaRT(- )
M

F1G. 13. Module form flowchart
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This definition may appear surprising since we immediately have that any
flowchart is in module form, by taking each assignment statement as a module,
at one level, and then taking the whole flowchart as a module at the next level.

However, we can find an interesting subclass of module form flowcharts:
A simple module is either

(i) an assignment statement, or

(i1) a one-entrance, one-exit piece of flowchart constructed from modules

and at most one test.

A flowchart is in simple module form if it is in module form and each module
is simple.

A simple module either has no tests (and is thus either an empty edge, an
assignment statement or the concatenation of modules) or it has one test and
can only be of the forms shown in Fig. 14, where 4, B, C and D are modules.

The analogy with while-schemas is obvious:

Fig. 14(a) is equivalent to [C; if  then A else B; D];

Fig. 14(b) is equivalent to [C; B; while y do [4; B]; D].

B
(a] Le]

ED
2

(a) (b)
F1G. 14. Simple modules

In general, for every flowchart in simple module form there is an equivalent
while-schema, and vice versa.

The motivation for module form now becomes clear. At one extreme we can
take any flowchart as a module whose submodules are simply assignment state-
ments. If, however, by ingenuity and equivalence-preserving transformations we
can get many levels of modules, with fewer tests per module, then we get closer to
simple module form and hence closer to while-schemas.

Example. In Fig. 15 we give a module form flowchart P for the program
schema P,. Modules M, and M, are simple, but module M, is nonsimple since it
contains two tests g(x) and s(x).

6. Algorithm 1. To translate program schemas to while-schemas it suffices to
consider flowcharts in block form. We show how to transform each block B
into an equivalent piece of flowchart consisting of a while-chart W, followed by a
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( START (x) )

I L

HALT (x)

F1G. 15. Module form flowchart P{

basic block B. We do this by induction on the block structure as follows:
(i) B is a basic block: we use the transformation of Fig. 16.
(i) B is constructed by looping on the ith exit of B,: we first transform B, ;
and then extract the ith path of B,, as shown in Fig. 17.
(iii) B is the concatenation of B, and B,, using the ith exit of B,: we first
transform B, and B,, and extract the ith path of B,. It is then possible
to move up Wy, past i-pruned(B,), as shown in Fig. 18.

l

B

|

1

e}s

1

FIG. 16. Transforming a basic block
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FIG. 17. Transforming a looping block

Wg,
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i—TEST (B))
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| i-PRUNED (8))]

weli-1

F1G. 18. Transforming a concatenation block (general case)
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In Fig. 18, X is a vector of the variables occurring in i-test(B,); y is a vector of
the same length of new variables; and i-test*(B,) is the same as i-test(B,) but with
variables x replaced by y, so that any computation must take the same branch
out of the two tests.

Note. If B, is a basic block, we can simply make the transformation shown
in Fig. 19. No new variables are needed in this case.

! !

B, We, Wy
.. |0
bl _ ll
1 B,
B2 i
Y )
l l 5,

F1G. 19. Transforming a concatenation block, B, basic

Thus for every block form flowchart, as in Fig. 6, we get a flowchart as in
Fig. 20. This flowchart is in while-chart form, by the second property of basic
blocks proved earlier, and thus can be simply written as a while-schema.

( START (---) )

\
( HALT(---) )

F1G. 20. Transformed flowchart

Example. We take flowchart P of Fig. 7. Blocks B, and B, are already of
the required form; for example, B, is shown in Fig. 21. (This is the decomposition
that Algorithm 1 yields for looping on the third exit of B,). The transformed
version of Bs is shown in Fig. 22; note that g(x) comes from 2-test(B,), x « b(x)
comes from 2-ops (B,) and x « g(x) comes from 2-pruned(B,). The transformed
version of By is shown in Fig. 23; note that g(y) A s(x) comes from 3-test(Bs),
x « ¢(x) comes from 3-ops(Bs) and By is simply 3-pruned(B;). The final while-
chart form flowchart is shown in Fig. 24, and it corresponds exactly to while-
schema P,.
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B2

E<— g(xﬂ Fx«b(xﬂ
' '

FiG. 21. B,

>WBg

4
oYy
FIG. 22. Bj (transformed)

Comments. (i) Putting a flowchart into block form in general requires some
increase in the size of the flowchart. This can be avoided by allowing the exits of
any block to be joined together in arbitrary ways and still be a block. In the same
spirit we would allow basic blocks that were not tree-like but merely loop-free.
Algorithm 1 will work just as well for such block form. The only change needed is in
defining the i-extracted form for basic blocks; for example, i-ops(B) becomes a
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! \

qaly)a s(x))
T F > Weg
WBS )
L 1 Y N
q (y)
F T _
, 5,
[x-g(xﬂ [x«f(x)]
' y

F1G. 23. B (transformed)

one-exit basic block rather than a sequence of assignment statements. This
modified block form corresponds to interval analysis (see [1]).

(i) To minimize the number of new variables added by Algorithm 1, we
must find block form flowcharts which avoid concatenating blocks except when
the second block is basic. Even for while-schemas it is not clear how to do this,
and so Algorithm 1 is not an identity mapping on while-schemas. We could avoid
this by allowing while-charts to be special cases of blocks. The algorithm is easily
modified to deal with this.

(ii)) The duplication of Wy produced by transforming looping blocks
(Fig. 17) could be avoided by using a new control construct repeat [.S, ; exit on ;
S,] instead of while statements.

7. Algorithm 2. The idea of Bohm and Jacopini’s translation of program
schemas to while-schemas with logical variables [3] (see also [6]) can be expressed
as follows. Suppose the given program schema has n statements including the
halt statement, numbered, for our convenience, 1 to n. We construct a while-
schema using k additional logical variables, where 2~ ! < n < 2% Each statement
of the original program schema then corresponds to a particular pattern of
values for the k logical variables, e.g., the number of the statement written in binary
notation. The while-schema consists of a single while statement, the formula of
which will be true provided the “pattern” of logical variable values does not
correspond to the halt statement. If the formula is true, we enter the body of the
while statement, where a series of tests decides to which statement in the program
schema the logical variable values correspond. The operation of that statement is
then performed, and the values of the logical variables are changed so that their
“pattern” corresponds to the next statement to be executed in the program schema.
The body of the while statement is repeatedly executed, until we reach the pattern
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qly)as(x) F

T
x<-c(x)

qly)
F T

[x=b(x)] [x=g(x)] [x=f(x)]

F

[T

F1G. 24. Transformed version of P|

for the halt statement in the program schema. When this happens, we exit from the
while statement, and reach the halt statement of the while-schema.

The while statement simply acts as a one-loop interpreter, performing one
operation of the original program schema on each iteration. The logical variables
simply represent a “program counter”.

An improvement upon this method, due to Cooper [private communication],
reduces the number of logical variables required. We take the flowchart representa-
tion of the program schema and choose a “cut set” of the edges between the assign-
ment and test statements from which it is composed, i.e., we choose at least one edge
per loop. We add the edge leading to the halt statement to this set. These edges are
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then numbered, and coded up as logical variable value patterns as before. The
while statement “interpreter”, on each iteration, now performs the operations of
the original program schema from one cut set edge to the next cut set edge, and
updates the logical variables accordingly. This technique is used in Algorithm 2
below.

We consider flowcharts in module form, and, for good results, we try to get

as many simple modules as possible. We then translate each module M into a
statement of while-schema W,, by induction on the module structure.
(i) If M is an assignment statement, W, is that assignment statement.

(i) If M is a simple module, W,, is the corresponding statement of while-
schema (see Fig. 14).

(iii) If M is a nonsimple module, then we apply Cooper’s version of the
Bohm and Jacopini reduction. We choose a cut set of the edges between
modules and tests comprising the module M, and add the single exit
edge of M. We then take sufficient “new” logical variables to represent
these positions in M, and construct a statement of while-schema. This
statement will be a compound statement [S;;S,]. Statement S; will
perform the operations from the entrance of M up to the first cut set
edge, and set the logical variables to correspond to that edge. Statement
S, is then the while statement which “interprets” the module M. Its
formula checks that the current pattern of logical variable values does
not correspond to the exit edge. The body determines the current cut set
edge, performs the operations to the next cut set edge (using the while-
schema statements corresponding to the modules of which M is com-
posed) and updates the logical variable values accordingly. This is
possible as a statement of while-schema since the use of a cut set of
edges ensures that there is a bound on the number of tests and modules
that can be performed between one cut set edge and the next.

Example. The modules of flow chart P (Fig. 15) correspond to statements of

while-schema as follows: M, and M, are simple modules and correspond to

while p(x) do x « e(x)
and
while r(x) do x «— d(x),

respectively. M5 is nonsimple, so we choose cut set edges, for example « and 8
in Fig. 15 (there is only one loop in M5 and we must add the exit edge of M;). We
then need one logical variable ¢, say, to keep track of the cut set edge—true
corresponds to «, false corresponds to f. W, is then the following statement of
while-schema

[[x « a(x); t « true];
while z do [W,, ;
if g(x) then [x «— b(x);
Wit,s
if s(x) then x «— c(x)
else [x — f(x);
t — false]]
else [x « g(x); ¢t — false]]].
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Enclosing W)y, between start and halt statements then gives us the while-
schema P;.

Comment. No reasonable algorithm is known for finding the optimal equiva-
lent module form for a program schema, optimal in the sense that Algorithm 2
adds the smallest number of logical variables. However, it is clear that the flow
charts of while-schemas (i.e., while-charts) are in simple module form, so that
Algorithm 2 is the identity mapping on while-schemas.

8. The necessity of adding variables. We show that any translation from
program schemas to while-schemas must in general add variables. We prove that
for a particular one-variable program schema there is no equivalent while-schema
that also uses only one variable.

Similar results have been demonstrated by several authors: Knuth and Floyd
[11], Scott [private communication] and Kosaraju [12], for example. However,
these results are weaker than ours, either because the notion of equivalence used
is more restrictive than ours, requiring the equivalence of computation sequences
(i.e., the sequences of assignments and tests in order of execution) and not just the
equivalence of final results, or because complex formulas are not allowed in while
statements. For example, the following program schema has no “‘equivalent”
while-schema if we consider execution sequences, or disallow compound tests:

START(x);

x « a(x);

L: if p(x) then [x « b(x); if g(x) then [x « c(x); go to L]

else x « d(x)]
else x « ¢e(x);

HALT(x).

However, if we apply Algorithm 1, we get an equivalent while-schema, which
happens to use only one variable:

START(x);

x —a(x);

while p(x) A g(b(x)) do x « c¢(b(x));

if p(x) then x « d(b(x)) else x « e(x);

HALT(x).

Since our result is stronger than the previous results, it needs a more compli-
cated program schema to demonstrate it. The one we use is the following program
schema P;.

ScHEMA Ps. START(x);

L: if p(x) then [x « e(x); go to L];

if g(x) then x < e(x) else [x « e(x); go to N];
M : if g(x) then [x « d(x); go to M];

if p(x) then [x « d(x); go to L] else x « d(x);
N:null;
HALT(x).

This schema is similar to P,, but is simpler since it only uses two functions
and two predicates. It is especially interesting because for most other simpler
versions of P, there are equivalent one-variable while schemas. For example, the
program schema
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START(x);

x —a(x);

L: if p(x) then [x « e(x); go to L];

if g(x) then x « b(x) else [x « g(x); go to N];

M: if g(x) then [x < b(x); go to M]; .

if s(x) then [x « c(x); go to L] else x « f(x);

N: null;

HALT(x)
is equivalent to the following one-variable while-schema:

START(x);

x «— a(x);

while p(x) do x « e(x);

while g(x) A g(b(x)) do x « b(x)"

while g(x) A s(b(x)) do

[x « c(b(x));
while p(x) do x « e(x);
while g(x) A g(b(x)) do x «— b(x)];

if g(x) then x «— f(b(x)) else x « g(x);

HALT(x).

Our proof that there is no one-variable while-schema P equivalent to P
must therefore depend crucially on special features of P,. The essential property
of P, is the following:

In any unfinished computation of Ps, if p is true and q is false, then the next-

but-one function that will be applied is e, whereas if q is true and p is false, then

the next-but-one function that will be applied is d. If both p and ¢ are false, the
computation will terminate after applying one more function.

Let d, e and h be symbols and D = {d, e}*. We shall consider the interpreta-
tions I,, where ze D - h - D, defined as follows:

(i) D,,=D

(ii) for ye D, , d(y) = yd,

e(y)

q(y) = [yl < |zl A 2(lyl + 1) = dl,

(iii) the initial value of the input variable x is A, the empty string.?

Note that the predicates p and g are mutually exclusive, and from the essential
property of P, the computation of (P, I,), where z = uhv (4, v € D), must termi-
nate with val(Ps, I,) = eu (the symbol h makes both p and ¢ false and makes the
computation halt). Also for any interpretation I,,,, («€{d,e},w, u,veD),
when the value of x becomes ew, the future course of the computation is deter-
mined by uhv, since this substring will determine the possible future values of the
predicates p and ¢q. This property also holds for any one-variable schema P
equivalent to P (it will be called the main property of P%), and will be used to
show that such a schema cannot exist.

Let us assume therefore that there exists a one-variable while-schema P

! Here |y| denotes the length of string y; z(/) denotes the ith symbol in string z.
2 This is a “‘Herbrand” or **free” interpretation (see [13]).



TRANSLATING PROGRAM SCHEMAS TO WHILE-SCHEMAS 145

equivalent to P5. Without loss of generality we can assume there is some while
statement S in P5, say while " do S,, which is not contained in or followed by
any other while statement, and for which S, is executed in the computation for
some I,. We can also assume that there is no bound on the number of iterations of
S for computations for such interpretations 7, . (All such bounded while statements
could be “unwound” the corresponding number of times, leaving only “‘un-
bounded” while statements and while statements never entered for any 7, .)

Let the maximum “depth” of functional composition in any formula in
P’ be M. Then in computation of (P, I,), if we evaluate a formula ¢ for value w
of variable x, then the outcome of ¥ is determined by z(lw| + 1), z(w| + 2), - -,
z(lw] + M + 2). We define visible(z, w) as this substring of z starting at z(jw| + 1)
and ending at z(jlw| + M + 2).

LEMMA. For all n = 0 there exist strings u, w, y € D, |w| = n, such that for all
ve D, the computation of (P, 1,,,,) exits from S with a proper prefix of euv as the
value of variable x.

This technical lemma has the following informal corollary.

COROLLARY. For every n = 0 there exists a computation of P which exits from
S with more than n functions still to be applied.

This corollary contradicts the fact that S is not followed by or contained in
another while-statement; the number of functions that can be applied after
exiting from S is bounded. Hence while-schema P’ cannot exist.

Proof of lemma. The proof is by induction on n.

Base step (n = 0). Since S is unbounded, there exists an interpretation I,
whose computation enters S, before the end of the computation is “visible”, i.e.,
more than M function applications from the end. In other words, z' = wayv'hy
where ', y,v,y e D, o € {d, e} and |y| = M + 1, and the computation of (P%, 1)
reaches S with eu’ as the value of x. Moreover, since S, is entered, the formula
¥’ must be true for this value of x. Note that the truth of ' is determined by
visible(Z', ev) = y.

Consider now the interpretation I, = I,,,, where u = w'ay and v is any
string from D. The computation must reach S as for I, i.e., with value eu’ for
variable x, since the changes in the interpretation are not ‘‘visible” by this point.
However, when it subsequently exits from S, it can not do so with value euv (the
final value) for x, since visible(z, euv) = y, and for this value the formula ' must
be true. Thus it must exit from S with a proper prefix of euv as the value of x.

Induction step. Assume we have strings u, w, y € D, with |w| = n, such that for
all v e D, the computation of (P5, I,,,,,) exits from S with a proper prefix of euv
as the value of x.

We shall find a string w' € D, [w'| = n + 1, such that for all v" € D, the compu-
tation of (P, I,,,,,,) €xits from S with a proper prefix of euv’ as the value of x.

There are three cases to consider (in order):

(i) Forallv = v'e(for all v’ € D) in the induction hypothesis, the correspond-
ing proper prefix of euv is also a proper prefix of euv’. In this case we take
w = ew.

(ii) Forallv = v'd (for all v' € D) in the induction hypothesis, the correspond-

ing proper prefix of euv is also a proper prefix of euv'. In this case we take
w = dw.
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(iii) For some v = v”e in the induction hypothesis, the corresponding proper
prefix of euv is euv”, i.e., the computation C of (P5, I,,.,,,,) €xits from §
with value euv” for variable x. Note that the rest of the computation
adds ew to the value of x.

Consider now the interpretations I, 4,4, for all v"e D. By the
induction hypothesis, the value of x on exiting from S must in each case
be a proper prefix of euv’d. But the main property of P ensures that in
no case can this value of x be euv’, otherwise the future course of this
computation, being determined by why, would be the same as for C,
giving x a final value of euv'ew instead of euv'dw. Thus with w' = dw, the
computations of (Pj, I, (for all v’e D) exit from S with a proper
prefix of euv’ as the value of x. Q.E.D.

Acknowledgments. We are indebted to David Cooper for stimulating dis-
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have used in Algorithm 2. We are also grateful to Donald Knuth for his critical
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TIME BOUNDS ON THE PARALLEL EVALUATION OF
ARITHMETIC EXPRESSIONS*
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Abstract. This paper presents a number of bounds on the parallel processor evaluation of arithmetic
expressions. Several previous papers show that if the evaluation of an expression using a serial computer
requires ¢t operations, by using a number of processors in parallel, the expression may be evaluated
in time proportional to log, t. Since log, ¢ is an obvious lower bound, it is of interest to attempt to
approach this bound.

The present paper shows that if more information than the number of operations (or operands)
is known, sharper bounds may be given in certain cases. Thus if the number of parenthesis pairs is
small or if the depth of parenthesis nesting is small, we may approach the lower bound. A new bound
is also given for expressions which have few division operations.

Similarly, if the expression’s form is restricted, sharper bounds may be found. Thus generalizations
of polynomials and generalizations of continued fractions are shown to have improved bounds.
We also give a new bound for expressions without division operations which have a limited number of

parenthesis pairs. Finally, we give an upper bound on the time to evaluate expressions in which
multiplication is not commutative.

Key words. arithmetic expressions, computational complexity, continued fraction, parallel
evaluation, polynomial, processing time, tree height reduction, upper bound

1. Introduction. Many computers now exist which are capable of executing
more than one operation simultaneously. As parallel and pipeline processors
continue to be developed, the question of how fast an arithmetic expression can
be evaluated becomes more interesting. The problem of tree height reduction for
the fast evaluation of an arithmetic expression has been studied by a number of
people.

The goal of a number of papers has been to present tree height reduction
algorithms which provide substantial speedup of expression evaluation. Recently
several papers have included upper bounds on the number of steps required to
evaluate the transformed expression. The three main transformation techniques
used are the laws of associativity, commutativity and distributivity. Early papers
concentrated on the first two of these. Later papers have used all three to obtain
upper bounds which are fairly close to the lower bound. By a simple fan-in argu-
ment, it is clear that a lower bound on the evaluation time for any arithmetic
expression of 2* constants and variables is k steps.

The present paper presents several new upper bounds which are sharper
than previous time bounds in certain cases. These include expressions which have
few parenthesis pairs and expressions which have few division operations. We
also give an upper bound which holds when multiplication is not commutative.
This provides a time bound on the evaluation of expressions of matrices and

* Received by the editors December 27, 1973, and in revised form June 24, 1974. This work was
supported in part by the National Science Foundation under Grant GJ-36936 and by the IBM
Thomas J. Watson Research Center.

+ Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana,
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vectors. Finally, we prove sharper upper bounds on two special classes of expres-
sions; one is a generalization of polynomials in Horner’s rule form and the other
is a generalization of continued fractions. The paper begins with a brief survey
of a number of previous results. This is followed by a presentation of new results.

2. Definitions and background. The following definitions and assumptions
will hold throughout the paper. An atom is a variable or constant and is denoted by
a lower case italic letter. A binary operator 0 is either an addition, subtraction, multi-
plication or division, denoted by +, —, * and /, respectively.! An arithmetic
expression is a well-formed string consisting of atoms and operators and is denoted
by an upper case italic letter. A subexpression of an expression E is defined as
follows: let E, be a substring which appears in E, and let E’ be an expression which
is derived from E by replacing E; by an expression (E,). Then E, is a subexpression
of E if the value of E equals the value of E'.

We write E(n) to denote an arithmetic expression of at most n distinct atoms.?
The exact number of atoms in E is denoted by |E|. The exact number of pairs of
parentheses which appear in an expression E is denoted by | E||. We write E(n|p)
to denote an arithmetic expression of at most n distinct atoms with at most p
pairs of parentheses. We write E(n|d) to denote an arithmetic expression of at most
n distinct atoms in which the maximum depth of parenthesis nesting is d. The
exact number of division operations which appear in an expression E is denoted
by /E/. We write E(n|q) to denote an arithmetic expression of at most n distinct
atoms with at most g division operations.

The following machine idealizations are assumed (unless otherwise stated):

1. Each processor may perform any of the four binary arithmetic operations
at any time, but all processors need not perform the same operation at any time.

2. Each operation takes one unit of time, which we refer to as a step.?

3. No time is required to communicate data between processors.

4. Any number of processors may be used at any time.

We use the notation T[E] to denote the number of steps required to evaluate expres-
sion E after some given transformation has been performed. Throughout the paper,
for any real number x, [x] denotes the smallest integer greater than or equal to x,
and |x | denotes the largest integer less than or equal to x.

Now we present a brief survey of previous results concerning the evaluation
time for arithmetic expressions. Details and further refererices may be found in the
papers cited. Assuming that only associativity and commutativity are used to
transform expressions, Baer and Bovet [1] gave a comprehensive tree height reduc-
tion algorithm based on a number of earlier papers. Beatty [2] showed the

! We assume that all unary plus operators are dropped. Sequences of unary minus operators of
even length may be dropped and sequences of odd length may be replaced by a single unary minus
operator. We assume that these are distributed such that no unary minus operator appears except at
the level of atoms.

2 By distinct we mean algebraically independent. Thus each atom appears just once in an expression,
so if we are presented with an expression containing multiple occurrences of some atoms, the expression
may be relabeled such that each atom has a unique label.

3 We assume that the processors are capable of complementing a number in negligible time before
computing with it. This means, for example, that if values a and b are available, either a * b or a * (—b)
may be evaluated in one step. See footnote 1.
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optimality of this method. An upper bound on the reduced tree height assuming
only associativity and commutativity are used, given by Kuck and Muraoka [12],
is the following.

THEOREM 1. Let E(n|d) be any arithmetic expression with depth d of parenthesis
nesting. By the use of associativity and commutativity only, E(n, d) can be transformed
such that

T[E(n|d)] < [log, n1+ 2d + 1.

Note that if the depth of parenthesis nesting d, is small, then this bound is quite
close to the lower bound of [log, n]. Unfortunately, there are classes of expres-
sions, e.g., Horner’s rule polynomials or continued fractions, for which no speed
increase can be achieved by using more than one processor under the assumption
that only associativity and commutativity are used in tree height reduction.

Muraoka [17] studied the use of distributivity as well as associativity and
commutativity for tree height reduction and developed comprehensive tree
height reduction algorithms using all three transformations. These algorithms
were programmed and used in the analysis of a number of real FORTRAN programs.
The algorithms as well as some numerical results of program analysis are con-
tained in [13], and further numerical results are given in [10]. An algorithm which
considers operations which take different amounts of time is presented by Kraska
[8]. While the arithmetic expressions found in most real programs are quite
simple, more complex ones may be derived by the substitution of one expression
into another, as discussed in [13]. Recurrence relations, for example, can lead to
an expression whose length is proportional to the number of times a loop is
executed. Thus it seems that an important fundamental issue in the design of future
computers and their compilers is the potential for program speedup by tree height
reduction techniques.

The following bounds show that distribution is indeed effective in trans-
forming an expression so that its reduced tree height approaches the lower
bound. It was shown by Brent [3] that arithmetic expressions of the form
(- (apx, + a,_ )X,y + --- + ay)x, +a;)x; +a, can be evaluated in
log, n + 0,(,/log, n) steps. The special case of polynomial evaluation (x,
=Xx, = -+ = x,) has been studied by Maruyama [14] and by Munro and
Paterson [16]. They have shown that a polynomial of degree n can be evaluated
in log, n + 0,(/log, n) steps if n processors are available. They also have
deduced some results which apply when a fixed number of processors are avail-
able. In [7], Kogge and Stone discussed a class of linear recurrence relations and
showed that O,(log, n) steps are sufficient for their evaluation. Certain special
recurrences, including continued fractions, were also discussed in [19].

The class of all arithmetic expressions without the division operation was
studied by Brent, Kuck and Maruyama [6], who proved the following.

THEOREM 2. Let E(n|q = 0) be any arithmetic expression with no division opera-
tions. Then by the use of associativity, commutativity and distributivity, E(n|q = 0)
can be transformed such that :*

T[E(n|g = 0) < 0,(2.4651og, n).

4 We find it convenient to use two different order of magnitude notations. If a and b are some
constants, we represent x + a by 0,(x) and ax + b by 0,(x).
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While this is fairly close to the lower bound, it is likely that some improvement is
possible. For later use, we simplify the notation by writing o for the best known
coefficient (2.465 presently) such that T[E(n|qg = 0)] < O,(xlog, n). Recently,
Brent [4], [5] has proved the following bound for any arithmetic expression E(n).

THEOREM 3. Let E(n) be any arithmetic expression. By the use of associativity,
commutativity and distributivity, E(n) can be transformed such that

T[E(n)] = 0,(41og, n).

The above results as well as the main results of this paper are summarized in
Table 1. It may be seen that Brent’s bound of Theorem 3 is the best known for
general arithmetic expressions, assuming associativity, commutativity and
distributivity are used. But for various special classes of expressions, better bounds
are possible. We also show that even if multiplication is not commutative, a
bound which is fairly sharp (Theorem 8) may be given.

TABLE 1
Summary of time bounds;

n = number of atoms,

d = depth of parenthesis nesting,
p = number of parenthesis pairs,
q = number of division operators

Transformations Class of Best known Reference
allowed expressions time bound in paper
associativity and
commutativity general log, n + 2d + const. Theorem 1
associativity,
distributivity and
commutative addition general 6log, n + const. Theorem 8
associativity, polynomial forms log, n + /8log, n + const. Theorem 10
commutativity and
distributivity continued
parenthesis forms | 2log, n + const. Theorem 9
general
without division 2.465log, n + const. Theorem 2
log, n + 2.465log, p + const. Theorem 4
general 4log, n + const. Theorem 3
log, n + 4log, p + const. Theorem 5
2.465log, n + 4log, g + const Theorem 6

3. New time bounds using associativity, commutativity and distributivity. We
begin by presenting four lemmas. Lemmas 1 and 2 are basic to a number of the
following proofs, while Lemmas 3 and 4 lead to the proof of Theorem 4. Through-
out the rest of the paper, we assume that expressions may be transformed using
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associativity, commutativity and distributivity and that redundant parentheses
have been removed from all expressions.

Lemma 1 is a direct generalization of [6, Lemma 2], and we state it without
proof.

LeMMA 1. (a) Let E(n) be any arithmetic expression and let n = m > 1. Then
we can always find a subexpression L 6 R such that

IL| <m, |Rl <m and |L|+ |R| = m,

where e {+, —,*,/}.
(b) Let E(n|p) be any arithmetic expression with p pairs of parentheses. Then
foranym,p > m > 0, we can always find a subexpression L 0 R or (L 0 R) such that

ILI =m, [R| =m and |L| + [R] zm,

where 0 e {+, —,*,/}.
(c) Let E(n|q) be any arithmetic expression with q division operations. Then
for any m, q = m = 0, we can always find a subexpression L 0 R such that

/L/<m, /R/<m and /L + R/ 2m,

where 0e {+, —,*,/}.

Lemma 2 is a direct generalization of [5, Lemma 1], and we state it without
proof.

LEMMA 2. (a) Let E(n) be any arithmetic expression, and let x be any one of its
n atoms. For any m,n > m > 1, we can always find a subexpression X = L 0 R such
that x isin X and |X| > m, and either

1. x is an atom of L and |L| < m; or

2. x is an atom of R and |R| < m, where 0 € {+, —,*,/}.

(b) Let E(n|p) be any arithmetic expression with p pairs of parentheses, and let
X be any one of its n atoms. Then for any m, p > m > 0, we can always find a sub-
expression X = LOR or X = (L 0 R) such that x is in X and | X|| = m, and either

1. xisanatomof L and |L|| £ m; or

2. x is an atom of R and |R|| < m, where 0 € {+, —,*, /}.

(c) Let E(n|q) be any arithmetic expression with q division operations, and let x
be any one of its n atoms. Then for any m,q = m = 0, we can always find a sub-
expression X = L 0 R such that x is in X and /X/ = m, and either

1. xisan atomof L and /L < m; or

2. xisan atom of R and /R/ < m, where e { +, —, *,/}.

Now we turn our attention to the proof of a new bound on the time required
to evaluate expressions without division, assuming that the number of parenthesis
pairs in the expression is known.

LEMMA 3. Let E(n|p) be any arithmetic expression with p pairs of parentheses
but with no division operations. Then the following hold :

(@) T(En0)] < log,n1+ 1  fornx> 2,
(b) T[E(n[1)] < Tog, n1 + 3 forn >3,
() T[E(n2)] < log,nl +4 forn >4,
(d) TLE(n|3)] < logy,nl + 5 forn > 6.
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Proof. Parts (a) and (b) follow immediately from Theorem 1 and the definition
of E(n|p) for P = 0, 1.

To prove (c), we consider the following two cases.

Case 1. The depth of parenthesis nesting for E(n|2) is 1.

Case 2. The depth of parenthesis nesting for E(n|2) is 2.
In Case 1, by taking X and Y as subexpressions nested by pairs of parentheses in
E(n]2), we have X = X(n|0) and Y = Y(n|0). Furthermore, we have either

E(n2) = A(n|0)X(n|0) + B(n|0)Y(n|0) + C(n|O)
or

E(n|2) = A(n|0)X(n|0)Y(n|0) + C(n|0).

Since each of 4, B, C, X and Y can be evaluated in ([log, n1 + 1) steps by (a),
E(n|2) can be evaluated in another 3 steps.

In Case 2, let X be the subexpression nested by the first pair of parentheses
and let Y be the subexpression nested by the second pair of parentheses which
appears in X. Then we have Y = Y(n|0) and X = X(n|1) = A(n|0)Y(n|0) + B(n|0).
Furthermore, E(n|2) = A'(n|0)X(n|1) + B'(n|0). By substitution, we have

E(n|2) = A'(n|0)(A(n|0)Y (n|0) + B(n|0)) + B'(n|0)
= A'(n|0)A(n|0)Y(n|0) + A'(n|0)B(n|0) + B'(n|0).

Since each of 4, B, A’, B’ and Y can be evaluated in ([log, n] + 1) steps, E(n|2)
can be evaluated in another 3 steps. We can prove (d) by an argument similar to
the proof of (c). Q.E.D.

Using Lemma 3, we prove the following.

LemMMA 4. Let po = 1,p; = 2, p, =3 and pyy3 = Py + Px+1 for k > 0. Then
for any arithmetic expression E(n|p,) with p, pairs of parentheses and with no division
operations,

T[E(n|py)] = O4(log, n + k).

Proof. We prove by induction that T[E(n|p,)] < llog, n] + k + 3. By Lemma
3, E(n|1), E(n|2) and E(n|3) can be evaluated in ([log, n + 3) steps, ([log, n] + 4)
steps and ([log, n] + 5) steps, respectively. Thus the lemma holds for k < 2,
since p; = p,.

We assume that the lemma holds for k < r + 2, r > 0, and we prove it for
k =r + 3. For any given E(n|p,, ), using Lemma 1(b), find a subexpression
L 0 R or (L8 R) of E(n|p, , ) such that

ILI = p,,» IRl =p, and |L| + |R] 2 p,,

where 6 e {+, —,*,/}. Let us denote such a subexpression by X, and let E’ be
the expression derived from E(n|p, , ;) by replacing X by an atom x. Then | X| > 1
and |[E|=n+1—|X| Sn Since |E'| £ p,r3 — X S Pps3— Pr=DPrs1, WE
have

E" = A(nlp,+)x + B(nlp,,).
Moreover, since x corresponds to the expression X, we have

E(nlp, . 3) = A(nlp,.)(L(nlp,) 0 R(n|p,)) + B(n|p, ).
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By the induction hypothesis, each of A(n|p, . ;) and B(n|p,. ) can be evaluated in
((r + 1) + Tog, n1 + 3) steps and each of L(n|p,) and R(n|p,) can be evaluated in
(r + lNog, n1 + 3)steps. Therefore, E(n|p, , ;) can beevaluatedin (r + [log, n] + 3)
+ 3 = ((r + 3) + [log, n] + 3) steps. From this, the lemma follows. Q.E.D.
Now the following theorem can easily be proved (cf. [6, Lemma 4]).
THEOREM 4. For any arithmetic expression E(n|p) with p pairs of parentheses
and with no division operations,

T[E(np)] £ 0,(log, n + 2.4651og, p).

Proof. The general solution of the linear recurrence relation in Lemma 4 is
P = c1(A)* + (A + ¢34,

where A,, A, and 15 are roots of z* = 1 + z and ¢, ¢, and c; are arbitrary con-
stants. Let A, be the real root and 1, and 1, be complex roots; then by inspection
cy(4,)* and c5(4;)* vanish as k gets large. Thus, we have p, & ¢,(4,)*, where
A, = 1.3247. From this, the theorem follows. Q.E.D.

Next we turn our attention to several new bounds on the time required for
the evaluation of general arithmetic expressions of n atoms, assuming additional
information is available. Theorem 5 assumes the number of parenthesis pairs is
known, and Theorem 6 assumes the number of division operations is known.
Since commonly occurring expressions may have few parentheses or few divi-
sions, in practice these bounds may be better than that of Theorem 3.

THEOREM 5. For any arithmetic expression E(n|p) with p pairs of parentheses,

T[E(nlp)] = O,(log, n + 4log, p),

and only one division operation need be performed.

Proof. To prove the theorem, we prove the following claim, so that E(n|p)
can be evaluated in [log, n] + 4[log, p1 + 4 steps by the first part of the claim.

CLAIM. E(n|p) can be transformed into the form G/H, and each of G and H
contains no division operators and each can be evaluated in 4[log, p1 + [log, n] + 3
steps. Furthermore, E(n|p) can be transformed into the form (Ax + B)/(Cx + D),
where x is any atom in E(n|p) and each of A, B, C and D contains no division operators
and each can be evaluated in 4[log, p1 + [log, n1 + 5 steps.

We prove the claim by induction on p. Let r = [log, p1. For r =0, ie,
E(n|1), let X, be the expression which is nested by the pair of parentheses. Then it
can be seen easily that E(n|1) can be transformed into the form

E(n|l) = A, 0, X, + By, Ooe {*,/},

where A,, B, and X, are expressions with no parentheses and A, is an expression
with only multiplication and/or division operations. Since [Ay| < n — 1, |B|
<n-—1land|X, £ n — 1,by Theorem 1, each of Ay, By and X, can be evaluated
in [log, n1 + 1 steps. Now E(n|1) = G/H, where G = A,X, + B, and H = 1 for
0, =%, and G = Ay + BoX, and H = X, for 6, = /. Hence each of G and H
can be evaluated in [log,n] + 3 steps. So the first half of the proof is complete
forr =0.

Let x be any atom of E(n|1). There are three cases to be examined for §, = *.
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Case 1. x is in A. Since A, is an expression with only multiplication and/or
division operations, we can rewrite A, as

Ao = (4,/C)0,x, 915{*’/}

for any x in A,, and each of A, and C, can be evaluated in [log, n] + 1 steps, by
Theorem 1. Similarly, we rewrite X, and B, as

Xo = (4,5 + By)/(C,y + D), By = (A3z + B;)/(C3z + Dy),

where y and z are any atoms in X, and B,, respectively. Further, 4,, B,, C,,
D,, A5, B;,Cyand Dy are expressions of at most n — 2 atoms ; hence each of them
can be evaluated in [log, n] + 1 steps, by Theorem 1.

Now for

E(n|1) = (Ax + B)/(Cx + D),

by substituting expressions of A,, X, and B, into E(n|1), we find for 6, = * and
for 6, =/,

A = CI(CZy + D2)(A3Z + B3).

B and C are similar expressions and D = 0. Thus 4, B, C and D can be evaluated
in [log, nl + S steps for 0, = *.

By an argument similar to the above, Case 2 (x isin X ) and Case 3 (x is in B,)
can be examined, as can the case of 8, = /. This completes the proof of the second
half of the claim for r = 0.

Now assuming that the claim holds for 0 < r < k — 1, the claim can be
proved for r = k by using Lemma 1(b), Lemma 2(b) and an argument similar to
that used by Brent [5] in proving Theorem 3. Q.E.D.

THEOREM 6. Assume we have a procedure to evaluate any expression E(nlq = 0),
which has no division operations, in O,(«log, n) steps. Then for any arithmetic
expression E(n|q) with q > 1 division operations,

T[E(n|g)] = O,(alog, n + 4log, q),

and at most one division need be performed.

Proof. As in the case of Theorem 5, this theorem can be proved by proving
the following claim.

CrLaM. E(n|q) can be transformed into the form G/H, and each of G and H
contains no division operators and each can be evaluated in O (o log, n) + 4log, q
+ 4 steps. Furthermore, E(n|q) can be transformed into the form (Ax + B)/(Cx + D),
where x is an atom in E(n|q) and each of A, B, C and D contains no division operators
and each can be evaluated in O (o log, n) + 4[log, q1 + 6 steps.

This claim can be proved by induction on g using an argument similar to the
proof of Theorem 5, together with Lemma 1(c) and Lemma 2(c). Q.E.D.

Note that by using the value a = 2.465 from Theorem 2, we can immediately
obtain the entry shown in Table 1.

The next theorem presents a bound which is worse than that of Theorem 6.
However, since it is expressed in terms of the coefficient o (Where an expression
without division can be evaluated in O, (x log, n) steps), if the best present o = 2.465
(Theorem 2) can be reduced, then Theorem 7 will provide a better bound than
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Theorem 6. In fact, if it can be shown that o < 2, then Theorem 7 is an improve-
ment on Theorem 6, and if it can be shown that o < %, Theorem 7 is an improve-
ment on Theorem 3, since in the worst case, g approaches n.

THEOREM 7. Assume we have a procedure to evaluate any E(n|q = 0), which has
no division operations, in O ,(x log, n) steps. Then for any E(n|q) with q = 1 division
operations,

T[E(nlg)] £ O,(x(log, n + 2log, q)),

and just one division need be performed.

Proof. A detailed proofis given in Kuck [9], but since it involves a rather long
and straightforward argument, we will just sketch it here. The proof proceeds by
breaking any given expression E(n|q) into a set of r < 2¢ expressions of the form
1) D, = DiF, + F, 0, E,

DF;+ F, 'E,
where the F; are free of division operations, 0, € {£,*,/}, and D; has the same
form as D;. As a tree of such expressions is traced from its root to its leaves,
eventually expressions occur in which E; and E, are free of division operations.
We represent the situation by assuming D; has Fy and F, as follows:

DFs + Fs, F,
2) D= ks ¥ leg S0
D,F, + Fg 'Fy,

where all the F; are free of division operators, ;€ { +, *,/}, and D, has the same
form as D;. By substituting the right-hand side of (2) into (1) and factoring it, we.
obtain (assuming 0; = +)

D\[(F\Fs + F,F;)F, + F\F,Fy] + [(F\Fs + F,Fg)F,o + Fi FyFo) Q.E
D\[(F5Fs + F4F;)Fio + F3F;F,] + [(FsFs + FuFg)F1o + F3FgFo] " E,

Note that (3) has the same form as (1) and has at most four occurrences of any F;
on its right-hand side. Furthermore, we have eliminated two division operators
from the set of expressions derived from the given E(n|q). By performing a number
of such transformations in parallel, we can show that in [log, 1 + 1 steps, all
but one division (at the last step) can be eliminated. Thus an upper bound on the
number of atoms in the final expression is

0,(nd"°82") = 0,(n2'°%2"") = 0,(nr?).

(3) Di =

Hence, since r < 2g, if any expression without division can be evaluated in o log, n
steps, the theorem follows. Q.E.D.

4. Evaluating expressions with noncommutative multiplication. In this section
we consider the class of general arithmetic expressions in which multiplication
does not commute, i.e., ab # ba for arbitrary atoms a and b. Our interest in such
expressions arises from the study of well-formed expressions of scalars, vectors
and matrices. In [18], algorithms were presented for the fast serial and parallel
evaluation of products of scalars, vectors and matrices, but no bounds were given.
Here we prove an upper bound on the time required for the parallel evaluation of
general expressions with noncommutative multiplication and follow it with some
discussion of the result in the context of matrix expressions.
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THEOREM 8. For any arithmetic expression E(n) whose multiplication operator
is noncommutative,

T[E(n)] = 0,(61og, n).

Proof. In the proof of the theorem, we denote addition time by ¢, , multiplica-
tion time by ty and division time by t,. We prove the theorem by proving the
following claim.

CLAIM. E(n) can be transformed into the form GH™" and each of G and H can
be evaluated in time [log, n1(3ty + 2t + tp) — 2ty — ta. Furthermore, E(n) can be
transformed into the form (Ax + B)(Cx + D)™ ', where x is an atom in E(n) and
each of A, B, C and D can be evaluated in time [log, n1(3ty + 2t, + tp) + tp.

Thus the theorem follows since E(n) can be evaluated in [log, n1(3ty + 2t,
+ tp) — tm — ta + tp steps, by the first part of the claim.

Proof of the claim. We prove the claim by induction on n.

Let f =3ty + 2t, + tp and r = [log, n]. For r = 1, it can be seen easily
that Gand H can beevaluatedinty + t, + t, = f — 2ty — t, steps. Furthermore,
A, B, C and D of E(2) can be evaluated in § + tp, steps. Thus, the claim holds for
r = 1. We assume that the claim holdsfor 1 < r £ k — 1, and we prove the claim
forr = k.

We prove the first part of the claim first. For any given E(2*), we apply
Lemma 1(a) with m = 2¥~! + 1 and find a subexpression X, = L, 6, R, of E(2¥
such that |X,| > 2*"' + 1, |[L,| £ 2*~! and |R,| £ 2*"!, where 0, € {+, —, *}.
Thus the second part of the inductive hypothesis gives

E(zk) = (A X, + Bl)(Cle + Dl)_1,
where A, By, C, and D, can be evaluated simultaneously in (k — 1) + t,, steps.
Also, the first half of the inductive hypothesis applied to L, and R, gives
L, =G,H{" and R, = G,H;", where G,, H,, G, and H, can be evaluated
simultaneously in f(k — 1) — 2ty — t, steps.

By substituting expressions L, and R, into E(2*), we can derive E(2¥) = GH ™!,
and whatever 6, is, we can show that each of G and H can be evaluated in
Bk — 1) + tp + ty + ty = Bk — 2ty — t, steps. This completes the proof of the
first part of the claim.

Now we prove the second part of the claim. Let x be an atom of E(2%).
Applying Lemma 2(a) with m = 2*~! + 1 on E(2¥), we see that there is a sub-
expression X, = L, 0, R, of E(2") such that |X,| = 2~ + 1, and either x is an
atom of L, and |L,| £ 2*! or x is an atom of R, and |R,| £ 2*~!, where
0,e{+, —,*}.

Without loss of generality, suppose the former holds. Thus the second part
of the inductive hypothesis gives

E(2Y) = (4,X, + B,)(C,X, + Dy)™ ",

where 4,, B,, C, and D, can be evaluated simultaneously in B(k — 1) + tp, steps.
Similarly,

L, = (A3x + B3)(C3x + D3)~ ',

where A3, By, C; and D; can be evaluated simultaneously in f(k — 1) + t5, steps.
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Since |R,| < 2%, the first half of the inductive hypothesis shows that R, = G;H3 !,
where G; and H; can be evaluated simultaneously in fk — 2ty — t, steps.
By substituting expressions L, and R, into E(2¥), we can derive

EQ2*) = (Ax + B)(Cx + D)™ !,

and whatever 0, is, we can show that each of 4, B, C and D can be evaluated in
Bk — 2ty — ty + 2ty + ty + tp) = Bk + tp steps. Hence the second half of the
proof is complete. Q.E.D.

This bound may be of interest in studying the time required to evaluate any
well-formed expression of scalars, vectors, and matrices. Given a sufficient number
of processors, the times required to add or multiply pairs of such operands are
easy to derive (see [18]). However, matrix inversion time is rather difficult to bound,
since a variety of inversion methods are available, and the one used may depend
on the numerical details of the matrix. Thus various bounds could be derived for
different matrix inversion methods. In [15], matrix bounds similar to the above
are proved for various restricted classes of matrix expressions.

5. Evaluating continued parenthesis forms. In this section we consider a class
of special arithmetic expressions which we call continued parenthesis forms.
Our interest in these forms arises from the study of polynomials in the form of
Horner’s rule and from continued fractions ; both of these are continued parenthesis
forms. Theorem 9 shows that any continued parenthesis form of degree n (with
2n + 1 atoms) may be evaluated in at most 2[log, n] + 3 steps.

In order to simplify our proofs, we make some small notational departures
from above. We write E_p(n) to denote the continued parenthesis forms of degree n,
CF(n) and PF(n), which contain at most 2n + 1 atoms, i.e., |Ecp(n) < 2n + 1.
The definitions are:

CF(n) = a0, (b;0,(ay 03 ---(b;0(a; 0341 (- 03,1 (b,05,a,) ) --)),
PF(n) = ((---(((- - (@, 05, b,) 02,1 =) 03541 a) 02;b) -+~ 03a,)0,b,)0, aq,

where if 0,;€ {*,/} and 0,,_,e{+, —} fori=1,2,---, n, then we call CF(n) a
continued fraction form of degree n,and we call PF(n) a polynomial form of degree n.
We write Ecp(n|X) to denote a continued parenthesis form which is derived by
replacing a, of E-p(n) by another arithmetic expression X.

THEOREM 9. If 4n processors are available, then for any continued parenthesis
form Ep(n) of degree n,

T[CP(n)] = 0,(2log, n),

where at most 24n operations, including just one division, need be performed.
Proof. We know that a continued parenthesis form E p(n|x) of degree n (i.e.,
atmost 2n + 1,n > 1, atoms) can be rewritten in the form of (Ax + B)/(Cx + D).
To prove the theorem, we prove the statement that each of 4, B, C and D which
contains no division operators can be evaluated in 2[log, n] steps. Thus the
final result can be evaluated in another 3 steps, for a total of 2[log, n] + 3 steps.
Let r = [log, n]. The statement holds for r = 0, 1. Let us assume that it holds
for r £ k — 1, and prove the statement for r = k by induction. For E.p(2%x),
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which can be rewritten as
4) (A'x + B)/(C'x + D),

we apply Lemma 1(a) by setting m = 2* + 1, and we can always find X = (L 0 R)
such that |X| =m, and X = X p(2*"!|x). Therefore we have Ep(2"x)
= Ecp(2*711X).

Furthermore, Ecp(2¢~ ') X) and X p(2*7!|x) can be rewritten as

(5) (AoX + Bo)/(CoX + Dy)
and
(6) (A;x + By)/(Cix + Dy),

respectively. Thus, by substituting (6) into (5), we can find each of 4, B’, C' and D’
for (4) as follows:

A/=A0A1 +B0C1, B,=BOD1+AoBl,
CI = C0A1 + Docl, DI = DODl + COBI'

By our induction hypothesis, each of 4;, B;, C; and D; fori = 0, 1 can be evaluated
in 2(k — 1) steps. We can evaluate each of A', B, C’ and D’ in another 2 steps,
which complete our inductive proof of the statement. Therefore, the final result
of (4) can be evaluated in another 3 steps, from which we have T[CP(n)] < 2[log, n]
+ 3.

Let k = flog, n], and let P(2%) denote the number of processors required to
evaluate either A', B, C’ or D’ of Ep(2*). To evaluate 4’, B, C’' and D’ simul-
taneously, we evaluate A, By, Cy, Dy, Ay, By, C, and D, simultaneously. Thus,
the total number of processors is

4P(2YY < 4.2P(2*" 1Y < ... < 4.2 1P(D).
Since P(2) < 1, we get

4.P2%) £ 2.2k g 2. Qleeznl < 9 pllogant 1) _ 4y
processors.

Let Q(2%) denote the number of operations required to evaluate either A’, B/,
C' or D' of Ecp(2*). Then we have Q2 <202 ) +3<...<3.2*-3
< 6n — 3. Thus 4Q(2" + 5 < 24n — 7 operations are sufficient. From these, the
theorem follows. Q.E.D.

In Theorem 9, let m = 2n + 1 be the number of atoms in a continued
parenthesis form. Then E.p([m — 1)/27) can be evaluated in 2[log, m] + 1 steps
if 4f(m — 1)/21 processors are available. Thus we can say that continued paren-
thesis forms of m atoms can be evaluated in 2[log, m] + 1 steps using 12m
operations if 2m processors are available. This may be regarded as a generalization
of the continued fraction result in [19] but with a sharper processor bound here.

6. Evaluating polynomial forms. In this section we continue our discussion
of continued parenthesis forms, but here we deal exclusively with polynomial
forms of degree n, denoted by PF(n). We repeat the definition given in § 5:

PF(n) = (- (a, 03, %, 05,-1 @y 1) 03,_5 X,y On—z - 05a,)0,x,0, ap,
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where 0,;€ {*,/} and 0,;,_, € {+, —} fori = 1,2, - -+, n. Results similar to those
in this section were given in [3], [14] and [16], but in those papers the restrictions
were made that 0,;€ {*}, 0,,_, € {+ }. The main result of this section is Theorem
10, which states that any polynomial form of degree n may be evaluated in

0,(log, n) + /8 log, n) steps using at most 2n processors. Theorem 10 follows
from three lemmas which we now prove.

First, we find it convenient to introduce some new notation. For an expression
(M X1 0y x305 0 %0, 0,1 x,,

where 0, {+, —,%,/} fori =1,2,---,n — 1, we introduce the following:
(i) expression (7) is denoted by >-7_, x;if 6, e {+, —} fori=1,2,---, n— 1.
(i) expression (7) is denoted by ]7[;;1 x;if 0,e{*,/} fori=1,2,---,n— 1.
Now we can expand PF(n) to the form:

n

% 171 ta fz—aiX(i)iao,
i= j= i=1

where X(i) denotes]7[ -1 X

We state without proof the following simple lemma which can be proved
easily by induction.

LEMMA 5. Either {3 _ x|l £ k < n} or {(I¥_, xi1 < k < n} can be com-
puted from {x|1 < j < n} in [log, n] steps using Ln/2j processors.

Using Lemma 5, the following lemma can be proved as shown in [14] and [16].

LEMMA 6. Let n(d) denote the degree of a polynomial form, PF(n(d)), which can
be evaluated in d steps. If an unlimited number of processors are available, then
n(d,) = 2% holds, where d, = r(r + 1)/2,r > 2.

In order to prove Lemma 7 and Theorem 10, we will find the following
notation useful. Given any polynomial form PF(2%), assume it is rewritten in
the form

2k—1
®) Fo2% 1) 0o 3 (PFj(2%1)0; X(j-2%"1)),

Jj=1
whereOpe {+, —},0,e {*,/},1 £ j £ 2* — 1,and the PF(2%-"),0 < j < 2* — 1,
are polynomial forms of degree less than or equal to 2%,

We then write {X|PF(2%)} to denote the set of all products and quotients
of x; which appear in this form. For example, if we are given some PF(8) which is
rewritten as

(ap + ayxy + arx x;) + (a3 + agx, + As5X4X5)X1X,X4

+ (ag + a7Xx7 + AgX7Xg)X1X3X3X4X5Xg,
then

{XIPF(8)} = {x;,X1X3, X4, X4Xs5,X1X3X3, X7, X7Xg, X1X2X3X4X5Xg}

Now we turn to Lemma 7, which provides the key to bounding the number of
processors required to evaluate a polynomial form.

LEMMA 7. For any k > 2, both X(2%) = zdk x; and {X|PF(2%™)}, the set of
X, products and quotients correspondmg to PF (2"") can be evaluated in d,, steps using
2"’" t processors.
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Proof. We prove the lemma by induction on k. For k = 2, {X|PF(8)} is
{x1,%, 0y X3, X4, X404 x5,%, 0, x,0,%3,Xx7,Xx,70;xg,
X0, %,0,x303%x,04x505x6}
and
X(8) =x,0,x,0,x303%x,04x505%¢50¢x70;xg,

where 0;e {*,/}, 1 £i < 7. By drawing computation trees, it can be seen that
{x|PF(8)} and X(8) can be computed in d, = 3 steps using 227! = 4 processors.
Now we assume that the lemma holds for k < r — 1, and we prove the lemma
for k = r. Given any PF(2%), we rewrite it in the form of (8) as
2r—1
PFy(2*-1)0, > PF2%-1)0, X(j-2%"").
ji=1
By induction hypotheses, we know that each {X|PF2%-')} of PF(2%-) and
X% for j=0,1,---, 2"— 1, can be computed in d,_, steps using 2% -+~!
processors. Thus we need a total of 2"- 2% -1~! = 24~ 1 processors. Furthermore,
using the X (2%-1), all of the X(j-2%-')for j = 1,2, ---,2", can be computed in
another r steps using 2"~ ! processors, by Lemma 5. Note that for j = 2", X(j-2%-)
= X(2%). Further, the union of the remaining X(j-2%-1) terms and the terms
previously evaluated give us {X|PF(2%)}, that is,
2r—1
{XIPF2*)} = U [{XIPF{2*- 1)} U X(j-2"-1)].
j=0
Therefore, both {X|PF(2*)} and X(2%) can be computed in r + d,_, = d, steps
using 2%~ ! processors. From this the lemma follows. Q.E.D.

THEOREM 10. If 2n processors are available, then any polynomial form of
degree n, PF(n), can be evaluated in O (log, n + /8 log, n) steps.

Proof. If P;(2%) processors are required to evaluate {X|PF(2%)} and X(2%)
in form (8) of the proof of Lemma 6, then by Lemma 7 we have P,(2%) < 2%~
Moreover, if P,(2%) processors are required to evaluate PF(2%) without computing
{X|PF(2%)}, then we get

P,(2%) < 2k. P,(2%-1) < ... £ 2k. 2k ... 23, p,(2%),
Since P,(2%2) = P,(8) < 4, we have
P2(2"") é 2k(k+1)/2—1 — 2d;‘—1‘

Thus P;(2%) + P,(2%) = 2% processors are sufficient to evaluate PF(2%). By
noticing that 2% covers discrete integers and from Lemma 6, the theorem follows.
Q.ED.
Let m be the number of atoms in a polynomial form. By Theorem 10, since

m = 2n + 1, PF([(m — 1)/27) can be evaluated in

0,(log, (m — 1) + /8log, [(m — 1)/21)

steps if 2[(m — 1)/2] processors are available. Thus, we may say that a polynomial
form of m distinct atoms, m > 2, can be evaluated in O,(log, m + \/8 log, m)
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steps if m processors are available. We observe that for the points n = d,, the
coefficient 8 may be reduced to 2, for a bound of O,(log, n + /2 log, n) steps
in Theorem 10.

7. Conclusion. This paper has presented several upper bounds on the time
required to evaluate various classes of arithmetic expressions. Such bounds seem
to be of fundamental importance in bounding the time required to evaluate
various numerical algorithms using computers with multiple arithmetic units.
Since the proofs are all constructive, they may also suggest techniques which
could be used in compiling for such computers in the future.

Although the time bounds discussed in this paper are all within a constant
factor of the obvious lower bound, it is likely that these results can be improved.
It was conjectured in [17] that any arithmetic expression of n distinct atoms whose
operations are addition and multiplication can be evaluated in at most 2[log, n
steps. Here, as the summary of our experience, we propose the following two
conjectures.

Conjecture 1. Any arithmetic expression of n distinct atoms whose operations
are addition, subtraction and multiplication may be evaluated in at most log, n
+ 0,(y/log n) steps using O,(n) processors (cf. Theorem 10).

Conjecture 2. Any arithmetic expression of n distinct atoms whose operations
are addition, subtraction, multiplication and division may be evaluated in at
most 0,(2 log, n) steps using O,(n) processors (cf. Theorem 9).
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SOLVING A PROBLEM IN EIGENVALUE APPROXIMATION
WITH A SYMBOLIC ALGEBRA SYSTEM*

ANDREW D. HALL, JR.}

Abstract. In a recent paper by R. A. Handelsman and J. S. Lew [1], it is shown that for a certain
family of potentials, the eigenvalues of the one-dimensional time-independent Schrédinger equation
are proportional to u(x, y)~? with u determined by u'’# = f(xu, yu*"), where f(x, y) = 2 o Z:":o fo XSy
Both f and the f,; are known constants, with fyo = 1.

In [2], Lew proposed that a system for symbolic algebra be used to compute the Taylor series
expansion for u(x, y), although in [1] what is desired is the expansion of c(x, y) = u(x, y)~ 2. To illustrate
how such a system can be used to solve this and similar problems, three solution methods are described
and corresponding programs given.

During the attempt to put the output resulting from these programs into a form similar to that

given by Lew [1], the general solution was found. We give this solution here but defer the proof to
another paper [3].

Key words. symbolic computation, power series

1. Introduction. In a recent paper by R. A. Handelsman and J. S. Lew [1],
it is shown that for the family of potentials

(1) V(y) = Axy™ + By®™, B>0, m=2,4,6, -,

the eigenvalues E, of the one-dimensional time-independent Schrddinger equation
are proportional to u(x, y)~ 2, with u determined by

2 ul? = flxu, yu?'’).

Here f = m/(m + 1), and the parameters x and y involve negative powers of
(n + 1). The function f is defined by

™8

(€) [y =3 X XY,
r=0s

]

0

where the f,, are known constants. In particular, fy, = 1.
Handelsman and Lew define

o) 0
@) clx,y) =ulx, )72 = Y Y cpxW?,
p=04g=0
and the problem is to express the ¢, in terms of f and the f,;. Handelsman and Lew
were able to compute the ¢,, for p + g £ 4 “by a hand computation lasting
about a week” [2].

In this paper we present three methods for solving this problem and illustrate
each with a program written in ALTRAN [4], [5]. Alternative methods and solutions
are described in [6] and [7].

During the attempt to put the output resulting from these programs in a
readable form, the general solution was discovered. We give this solution here
but defer the proof to another paper [3].

* Received by the editors May 28, 1973, and in revised form June 11, 1974.
1 Bell Telephone Laboratories, Inc., Murray Hill, New Jersey 07974.
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2. Method 1. Method 1 is a brute force solution designed to take advantage
of the ALTRAN library procedures for manipulating one-dimensional truncated
power series. The method illustrates an often useful technique for converting a
multidimensional power series problem into a one-dimensional problem that is
easily solved.

The problem is considerably simplified if we let u = v so that (2) becomes

(5) v = f(xv?, yv?).

We wish now to determine the coefficients v,, in the expansion

(6) v(x,y) = Y Y 0, XYP,
p=04=0

and then use the relation ¢ = u~2 = v~ 2# to determine the coefficients c_, in (4).
14

We can make the problem one-dimensional by grouping terms according to
the sum of the exponents of x and y. Formally, this is accomplished by setting
x = Ax and y = Ay and viewing (3), (4) and (6) as power series in 4. These become,
respectively,

<o) k
™ FOx ) = TNl = B S
(8) c(/lx, )’y) = kZ Ck(xa y)lka X y) Z Cr— ss o
=0
<o) k
(9) lX )’y Z ka y))'ka vk(x y z Up— ss k %
Equation (5) becomes
(10) v(Ax, 1Y) = f(Axv?, Ayv?).

The problem can now be solved in the following way. First represent v(Ax, 1y)
as a power series in A to order n with unknown coefficients vy, v,, - - -, v,. Letting
A = 0in (9) and (10), we find immediately that v, = 1. Now use (7) to compute to
order n the power series for f(1x, Ay). Then substitute xv* and yv? for x and y,
respectively. The result will be a power series for f(Axv?, lyv?) = v(Ax, Av).
Normally, we would have to equate the coefficients of these two series and solve
the resulting system of equations for the unknowns v,,v,, -+, v,. However,
from (10) it is easy to show that the coefficient of A* in f(Axv?, Ayv?) depends only
on x, y, B, f,s and the unknown coefficients v, ---, v,_,. Since we also know
from (10) that these are precisely the previous coefficients in the series, simple
substitution can be used to eliminate them. The result will be the desired power
series for v(dx, 1y).

Using the relation ¢ = v~2#, we can now compute c(Ax, 1y). From (8) we
see that we can easily extract the c,, of (4) from the coefficients of c(4x, 1y).

An ALTRAN program for carrying out this computation to order n is shown
in Fig. 1. The program is straightforward except for the integer array-valued
function maxexp which is used to compute the maximum exponent of each f,,
that can occur. For small n, we could have simply used # in place of the procedure
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call maxexp (n, n), but for large n we need a better bound to conserve space.
For completeness, the procedure maxexp is discussed in detail in Appendix A.

procedure main

integern = 4
integer k, s
integer array altran maxexp

# Declare the indeterminates and their maximum exponents.
algebraic ( x:n, y:n, f(0:n,0:n):maxexp(n,n), b:n, v(0:n):n)

# Declare arrays for the coefficients of the truncated power series.
# In ALTRAN, the power series variable is not explicitly represented.

long algebraic array (0:n) vtps, ctps, ftps = 0
long algebraic array altran tpspwr, tpssbs

# Step 1.  As in (9), let vtps be a series with unknown coefficients,
# v(0), v(1), ..., v(n), but noting that v(0) = 1.

vtps = v; vtps(0) = 1
# Step 2.  Using (7), compute the power series for f. Note that

# f(0) = 1 and that ftps(k) is initially O.
ftps(0) =1
dok =1,n
dos =0,k
ftps(k) = ftps(k) + f(k—s,s) * x**s * y**(k—s)
doend
doend
# Step 3. Compute the right side of (10), using truncated power series
# substitution to replace x and y by x*vtps**b and y*vtps**2.
ftps = tpssbs( ftps, x*tpspwr(vtps,b) , x )
ftps = tpssbs( ftps, y*tpspwr(vtps,2) , vy )
# Step 4. Form vtps(k) by replacing the v(1), v(2) , ..., v(k—=1) in
# ftps(k) with vtps(1), vtps(2), ..., vtps(k—1).
dok =1,n
vtps(k) = ftps(k) (v = vtps)
doend
# Step 5. Compute ¢ and write out the coefficients.

ctps = tpspwr( vtps, —2*b)

dok =0,n
write ctps(k)
doend

end
F1G. 1. Method 1
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3. Method 2. In Method 2, we derive a recurrence relation for the v, defined
by (9). We first replace x and y in (7) by xv” and yv?, respectively, to arrive at

e o]

k
(11) v(dx, y) = z z ﬁg—S,sxsyk—sz”z(k—s) 2

k=0\s=0

Now let the yth power of v be represented by
(12) vl =Y ()45
k=0

where (v”), simply denotes the coefficient of A* in the power series expansion of v”.
Substituting (12) into the right side of (11), we have

) © k ©
(13) z l)klk — z [Z fk—s,sxsyk-s Z (Uﬂs+2(k—s)),—li:|/1k.
k=0 k=0ls=0 i=0
Equating terms of order n in A, we have
n k
(14) vn = Z Z f;c—s.sxsyk-s(vﬂs+Z(k—S))n—k
k=0 s=0

Note that the terms with k = 0 do not contribute to the sum when n > 0, because
fBs + 2(k — s) = 0 and (1), = 0. Thus for n > 0, (14) expresses v, in terms of the
first n — 1 coeflicients of the expansion of v” for various values of y.

Furthermore, for n > 0 and y arbitrary, (v”), can be computed from
©")g, + -+ » (0"),-1 and v, - - -, v, by the powering formula (see Appendix B)

1
(15) )y = — Z [ + Di = n]o,0"),—; -
Vo i=1
An ALTRAN program for computing v,, 0 < n < nmax based on (14) and (15)
is shown in Fig. 2. Since the procedure also computes (v?),, the ¢, are easily
obtained by setting y = —28.

4. Method 3. In Method 3, we use a technique similar to that used in Method 2
to derive a recurrence for the v,, defined by (6). We first replace x and y in (3)
by xv” and yv?, respectively, to arrive at

(16) X y) Z Z x5 rvﬂs+2r
Now let the yth power of v be represented by
(17) o' =) Y (0)xY,

p=04g=0

where (v7),,, is used to denote the coefficient of x?y” in the expansion of v”. Sub-
stituting (17) into (16) and equating this to (6), we have

(18) {2 iv XN = Z Zfrsxy[ i(v““' Xy ]
r=0s

p=04g=0 0j=0

Ms

i
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procedure main

integer nmax = 4
integeri, k, n, s
integer array altran maxexp

# Declare the indeterminates and their maximum exponents.

algebraic(x:nmax,y:nmax,f(0:nmax,0:nmax):maxexp(nmax,nmax),
b:nmax,g:nmax)

long algebraic array (O:nmax) c,v = 0,vg = 0
# Step 1. Initialize.
v(0) = 1;vg(0) =1
don = 1, nmax
# Step 2. Using (14), compute v(n).
dok =1,n
dos =0,k
v(n) = v(n) + f(k—s,s) * x**s * y**(k —s)*
vg(n—k) (g = b*s+2* (k—s) )

doend
doend

# Step 3. Using (15), compute vg(n). Note that v(0) = 1 and that
# vg(n) is initially O.
doi=1,n
vg(n) = vg(n) + ((g+1)*i—n) *v(i) * vg(n—i)
doend
vg(n) = vg(n)/n

# Step 4. Compute c(n), write it out, and recover the space.
c(n) = vg(n) (g = —2*Db)
write c(n); c(n) =.null.
doend

end
F1G. 2. Method 2

Equating the coefficients of x?y?, we have

q
(19) Upg = 2 2, Sl )y
r=0s=0
Note that the term with r = s = 0 does not contribute to the sum when
p > 0 or g > 0, because fis + 2r = 0 and (1),, = 0. Hence (19) expresses v, in
terms of (v");; withi < p, j < gandi+ j<p+gq.
Now for p > 0 or ¢ > 0 and arbitrary y, we can express (v”),, in terms of the
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procedure main

integer pmax = 4, gmax = 4
integeri, j, p,q, 1, s
integer array altran maxexp

# Declare the indeterminates and their maximum exponents.

algebraic (f(0:pmax,0:gmax):maxexp(pmax,gmax), b:pmax + gmax,
g:pmax + gmax)

long algebraic array (0:pmax, O:gmax) ¢c,v = 0,vg = 0
# Step 1. Initialize.
v(0,0) = 1;vg(0,0) =1

do p = 0, pmax
do g = 0, gmax

if (p+q .eq. 0) go to skip
# Step 2. Using (19), compute v(p,q).
dor=0,p

dos =0,q

v(p.a) = v(p.q) + f(rs) * vg(p—r.q—s) (g=b*s+2%r)
doend
doend

# Step 3.  Using (20), compute vg(p,q). Note that v(0,0) = 1 and that
# because vg(p,q) is initially O, the term with i = j = 0 does

# not contribute to the sum
doi=0,p
doj =0,q
vg(p.a) = vg(p.q) + (g+1)*(i+j) — (p+q))*v(ij)*
vg(p—iq—j)
doend
doend

vg(p.q) = vg(p.a)/(p+Qq)
# Step 4. Compute c(p,q), write it out, and recover the space.

skip: c(p.a) =vg(p.q) (g = —2*b)
write c(p,q); c(p,q) = .null.
doend
doend
end

FIG. 3. Method 3
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lower order coefficients of v” and the v;;,i < pand j < g, by the powering formula
(see Appendix C)

Q0 (), = iiUwuw+ﬂ—w+mwwﬁrf

(P + Q)voo =

An ALTRAN program for computing v,,, p < pmax, g < gmax, is shown
in Fig. 3. Since the procedure also computes (v"),,,, ¢,, can be obtained by setting
7= =2

S. Results. Methods 1 and 2 would normally be used to compute c,, for all
p, q such that p + g < n, whereas Method 3 would be used to compute c,, for
p < pmax, g £ qmax. To compare the speeds of these techniques, Method 3 was
modified slightly so that it also computes ¢, for p + g < n.

TABLE 1
Total processor time in seconds required for
the computation of all ¢, forp + q < n

n Method 1 Method 2 Method 3
1 4.6 1.3 19
2 8.6 3.1 5.2
3 16.0 6.8 13.1
4 26.6 13.3 29.8

The processor time in seconds required for computing all ¢, withp + g < n
forn=1,..-,4 is shown in Table 1. The ALTRAN system used was installed on
the Honeywell 6070 computer (36 bit words, 1 us cycle time) at Bell Telephone
Laboratories, Murray Hill, New Jersey.

In each case, no more than 10,000 words of workspace were used. Using
Method 2 with 24,000 words of workspace, we were able to compute all ¢, for
p + q = 6in 53.1 seconds.

Part of the output resulting from Method 3 (modified) is shown in Fig. 4.

To put the ¢,,;, p + g < 6, in a form similar to that given in [1], an attempt
was made to devise a heuristic program to collect terms of the same degree in the
f.s and factor the resulting coefficient which is a polynomial in f. For example,
€, can be written

(21) Cy = =2B[fay + (fiofi1 + f20f0)B — B) + 3 16S6:3 = B2 — B)].

This effort led to the discovery of the general form of the (v"),,, appearing in (6).
Derivation of this solution will be deferred to a subsequent paper [3]. The formula
is as follows:

(22) (07)pg = Ejﬁi—Zmpm@+m+m
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# C(2,0)
2*F(1,0)¥*2%B**2 — 3*F(1,0)**2*B — 2*F(2,0)*B

# C(0,3)
(= F(0,1)**3*B**3 1 3*F(0,1) **3*B**2 — 2*F(0,1)**3*
B — 6*F(0,1)*F(0,2)*B**2 + 6*F(0,1)*F(0,2)*B —
6*F(0,3)*B) / 3

# C(1,2)
— 2*F(0,1)*F(1,1)*B — 2*F(0,2)*F(1,0)*B — 2*F(1,2)*B

# C(2,1)
— F(0,1)*F(1,0)**2*B**3 + 5*F(0,1)*F(1,0)¥*2*B**2 —
6*F(0,1)*F(1,0)**2*B + 2*F(0,1)*F(2,0)*B**2 —
6*F(0,1)*F(2,0)*B + 2*F(1,0)*F(1,1)*B**2 — 6*F(1,0)*
F(1,1)*B — 2*F(2,1)*B

# C(3,0)
(— 4%F(1,0)**3*B**3 + 18*F(1,0)**3*B**2 —
20%F(1,0)**3*B + 12*F(1,0)*F(2,0)*B**2 — 30*F(1,0)*
F(2,0)*B — 6*F(3,0)*B) / 3

F1G. 4. Output from Method 3

where the F(r, s) are defined by

@

(23) Y Y ¥ Flr,s)x’yz = Uz
r=0s

=01=0
and the notation (d), is the falling factorial
(0) =1, 0)y=00—-1)---©—t+1), t>0.
From (23) and the fact that f,, = 1, it is easy to derive the following identities
which permit the computation of F(r, s) for all ¢, » and s.
Fy(0,0) =1,
Fy(r,s) =0, r+s>0,
F(r,s) =0, t>r+s,

r s

>N G+ NfFer—is—J), r+s>0.

1
F, (r,s) = ——
" r+8i=o0j=0
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For example, we find that

F0(2a1)=05 F2(2 1)=f10f11 +f20f01a
Fi(2,1) f21, F3(2 1) —zf 0f01
Thus

21 =7 )yy = =2B(fo1 + (frofir + f20fo1)3 = B) + 2f 10 f0:(3 = P2 — B,

in accordance with (21).

6. Conclusion. Although the need for a program to solve this particular
problem has been obviated by the discovery of the general solution, it is clear
that algebraic manipulation systems—and in particular, procedures for mani-
pulating truncated power series—can greatly simplify the computation of solutions
to seemingly difficult problems. Of the three methods described for solving this
particular problem, Method 1, which uses a package specifically designed for
the manipulation of truncated power series, was by far the easiest to derive and
program. Methods 2 and 3 required considerably more work for only a small
improvement in performance. This illustrates the fallacy of using processor time
as the sole measure of the value or quality of an algebraic manipulation system.
More often, the relevant comparison is the ease with which a given problem is
solved, provided the cost is not exorbitant.

Appendix A. Maximum exponents. In order to write ALTRAN programs that
make reasonably economical use of storage, it is sometimes necessary to obtain
tight bounds for the exponents of the indeterminates. This is particularly true
when a large number of indeterminates are present.

It is easy to show by induction from (19) and (20) that the (v”),, are “homoge-
neous’ in the sense each term satisfies the identities

where ¢, is the exponent of f,,.

It follows immediately that in (v%),,,,

p q
&5 < min ([max(l,r)J, [maX(l,S)J).

Since f,, = 1, it does not appear formally in any of our computations, and
we take g5, = 1 (ALTRAN does not allow maximum exponent declarations to be 0).
The procedure maxexp used in each of our programs is shown in Fig. 5.

It is also easy to show from (19) and (20) that for p + g > 0, the exponent of
B in v, cannot exceed p + g — 1. Taking y = —2f in (20), we can therefore show
that the maximum exponent of f in ¢,, cannot exceed p + q.
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procedure maxexp ( pmax, gmax )
integer pmax, gmax, r, s
integer array ( O:pmax, O:gmax ) exp

dor = 0, pmax
do s = 0, gmax
exp (r,s) = imin ( iquo(pmax,imax(1,r)), iquo(gmax,imax(1,s)))
doend
doend
exp (0,0) =
return (exp)
end

F1G. 5. The procedure maxexp

Appendix B. Powering of one-dimensional series. We derive here the formula
attributed to J. C. P. Miller in [8] for powering a one-dimensional series. Using
the previous notation, let

e8]

(B.1) b= Y vk
K=0
and
(B.2) w=1v =Y ()i
K=0

Taking the derivative of w with respect to 1, we have
(B.3) w o=y’ I,
(B.4) ' = pu'w.

Replacing v, w, v’ and w’ by their power series representations and equating
coefficients of 1", we have

B.5) z n—z(v),.i—vzw(v),, "

and finally,

(B.6) 0= Z (> + i = n]ofv"), ;.
i=0

For n > 0 and v, # 0, we can solve (B.6) for (v"),. Thus

(B.7) ©"), = — Z [y + Di = nlo0),—s,

Voi=1

in accordance with (15). For n = 0, we obviously have (v"), = v}.
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Appendix C. Powering of two-dimensional series. In a manner similar to that
used in Appendix B, we derive a formula for the powering of two-dimensional
series. Let

(C.1) v= 3 Y 0,xYyP
p=04g=0
and
(C.2) w=uv =) Y (),Xx0"°
p=049=0

Taking the derivative of w with respect to x, we have
(C.3) w =" "1y,
(C4) ow' = ywr'.

Replacing v, w,v" and w' by their power series representations and equating
the coefficients of x9y”, we have

P 4 P 4

(C5) Z vifd = DO )p-ig-j =7 Z Z Np-ia-j»
i=0j=0 i=0j=0

or

(C6) 0= Z Z [(V + 1)] - q]vij(vy)p—i.q—j'

i=0 j=0

Unfortunately, (C.6) is trivial for ¢ = 0. However, by repeating the above process
using derivatives with respect to y, we obtain

(C.7) 0=i

|I M-h

[(V + )i — ploifv")p_ig-j-
Adding (C.6) and (C.7), we get

(C.8)

N M'q

q
Z O+ DG+ ) = (p+ o0 g-;-
Now for p + g > 0 and vy, # 0, we can solve (C.8) for (v”),,,. Thus

q
= (p + Voo Zo ZO[V + D@+ j) = (p + @loif(v)p-iq- >

l+]

(C9) (") pq

in accordance with (20). For p + g = 0, we obviously have (v")yq = vdo-
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MATRIX FACTORIZATION OVER GF(2) AND
TRACE-ORTHOGONAL BASES OF GF(2")*

ABRAHAM LEMPELY}

Abstract. The main result of this paper is a theorem showing that every binary, symmetric matrix
A can be factored over GF(2) into A = BB’, where the number of columns of B is bounded from below
by either the rank p(A4) of 4, or by p(A4) + 1, depending on whether at least one, or none, of the main-
diagonal entries of A is nonzero. An algorithm for a minimal factorization of a given matrix 4 and
an application of this result for finding a trace-orthogonal basis of GF(2") are presented.

Key words. matrix factorization, trace, trace-orthogonal basis, finite fields

1. Statement of the main result. Throughout this paper, all matrix oper-
ations and concepts such as rank, linear dependence, etc., are taken over the
finite field of two elements GF(2).

Let A = (A;;) be a symmetric matrix of rank p(A4) and let

1 if A; = Ofor all i,

0 otherwise.

5(A) = {

A matrix B is called a factor of A if A = BB, where B’ is the transpose of B; B is
called a minimal factor of A if no factor of 4 has fewer columns than B. The number
of columns of a minimal factor of 4 will be denoted by u(A4). The main result can
now be stated as follows.

THEOREM 1. Every binary, symmetric matrix A has a factor over GF(2), and

(1) HA) = p(A) + 5(A).

Theorem 1 consists of two parts: an existence statement and a statement
regarding the number of columns of a minimal factor. The existence part is
proved in § 2 by exhibiting a simple construction which always results in a so-
called elementary factorization. In § 3 we derive an algorithm for reducing an
elementary factor of a nonsingular matrix 4 into a minimal one and thereby
validate (1). In § 4 we extend the results of §3 to the case of singular matrices A.
A special case of the main result is discussed in § 5, where it is shown that every
finite extension of GF(2) contains a trace-orthogonal basis.

2. Elementary factorization. Consider a symmetric matrix A of order n, and
let N ={1,2,---, n}. We define a subset N, of N and a set N, of ordered pairs
(i, ), i <j, from N as follows:

n
2 Ay =14,
i=1
N, = {(i,jli,jeN,i<j,and 4;; = 1}.
A k-column, ke N, is a binary column of n rows with a 1 in row k and zeros
* Received by the editors July 20, 1973, and in revised form July 8, 1974.
t Sperry Rand Research Center, Sudbury, Massachusetts. Now at Department of Electrical

Engineering, Technion-Israel Institute of Technology, Haifa, Israel.
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elsewhere. An (i, j)-column, (i, j)e N,, is a binary column of n rows with a 1 in
rows i and j and zeros elsewhere. The existence part of Theorem 1 is established
by the following lemma.

LEMMA 1. Let E be a matrix of n rows and |N,| + |N,| columns such that E
contains one k-column for each ke N, and one (i, j)-column for each (i,j)e N,.
Then E is a factor of A.

The validity of this lemma is a straightforward consequence of the definitions
of the sets N, and N,, and hardly needs a formal proof. Before going through
whatever proof is necessary, we offer the following example.

Example 1. Let

1 110
1 0 0 1
A=
1 01 1
01 10
We have N, = {1,3} and N, = {(1,2), (1, 3), (2,4), (3,4)}. Hence

1 01100
001 010
E = R
01 01 01
00 0011

and the reader can easily verify that 4 = EE'.
To verify the lemma, one readily observes that for i # j,

( 1 if E contains an (i, j)-column,
(EE )ij = Z EikEjk = .
k 0 otherwise.
Hence for i # j, A;; = (EE),;.
The main-diagonal entries of EE’ are given by

(EE )y = Z E,fj = Z Ekj‘
j J

Now, E,; = 1iff one of the following three alternatives holds:
(i) the jth column of E is a k-column;

(ii) the jth column of E is an (i, k)-column, i < k;

(iii) the jth column of E is a (k, j)-column, k < j.

Alternative (i) holds iff Zj Ay; = 1. The contribution (if any) of (i, k)-columns
to the sum of row k is equal to ), _, A,., and that of the (k, j)-columns is equal to
2> i Aij- Since 4y = Ay, we have

(EE)g =Y Ay + Y Au+ Y Ay = Auo
J i<k >k
which completes the proof.

In the following section we derive a procedure for reducing an elementary
factor E of 4 to a minimal one.
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3. Minimal factorization. Let 7(B) and c(B) denote, respectively, the number
of rows and columns of a matrix B. Let u denote an all-1 column whose number
of rows r(u) is implicitly specified by the context in which it is used; e.g., in Bu,
r(u) = ¢(B).

LEMMA 2. If B is a factor of A, then

2 c(B) = p(A) + 6(A).

Proof. Clearly, ¢(B) = p(B). Moreover, since A4, = Zj B,;, and, by the
definition of 8(A4), Bu = 0 iff §(A4) = 1, it follows that ¢(B) — 6(4) = p(B). Since
p(B) = p(A), we obtain ¢(B) — §(4) = p(4). Q.E.D.

In Lemma 2, we have shown that 6(4) + p(A) is a lower bound on pu(A4), the
number of columns in a minimal factor of A. The following lemmas are needed
to establish a procedure for achieving this bound.

LEMMA 3. Let Z be a binary matrix such that Zu = 0 and c(Z) is even. Let
Z = Z + xu', where x is an arbitrary binary vector with r(x) = r(Z). Then

PPN

3) 77 =277'.
Proof. We have
22'=Z7Z + Zux' + xu'Z' + xu'ux’.

Since Zu = 0, also u'Z’ = 0. Since r(u) = ¢(Z) is even, u'u = 0 and, hence, (3)
holds. Q.E.D.

LEMMA 4. If A is nonsingular, if B is a factor of A, and c¢(B) > p(A4) + §(A),
then B contains a proper subset of columns whose sum is zero.

Proof. 1t is clear that if 4 = BB’ and A is nonsingular, then p(4) = p(B).
With ¢(B) > p(A) + 8(A4), we obtain p(B) + 8(A) < c(B). Hence, independently of
the value of §(A4), the columns of B are linearly dependent. Furthermore, if
6(A) = 1, any subset of p(B) + 1 columns of B is proper and linearly dependent.
Since over GF(2) every set of dependent columns contains a subset which sums
to zero, the lemma is valid when 6(4) = 1. Now, if 6(4) = 0, then Bu # 0, but,
since the columns of B are still dependent, there must be a proper subset of
columns of B whose sum is zero. Q.E.D.

It follows, that under the conditions of Lemma 4, B can be partitioned
(possibly, after an appropriate reordering of columns, which does not affect the
product BB')as B = [F G], where

) cF) 21,
®) Gy 21
and
(6) Gu = 0.
Let

{ G if ¢(G) is even,

(™) Z= . .
[G 0] ifc(G)isodd,

where [G 0] is the matrix obtained by adjoining an all-zero column to G. Clearly,
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Z7Z' = GG', and hence

(8) B*=[F Z]
is a factor of A4, with

) Zu =0,

and ¢(Z) is even.
Now, let F, and Z, be the first columns of F and Z, respectively; let

(10) x=F +Z,
and let

(11) Z=27Z+xu.
By Lemma 3, 227 = ZZ', and therefore

(12) B=[F 2]

is a factor of A.

Observing now that for Z,, the first column of Z,
2,=Z,+x=2Z,+F +Z,=F,

it follows that the joint contribution of F, and Z, to the product BB’ is null, and
hence the matrix B obtained by deleting F, and Z, from B is also a factor of A.
Reviewing the transformation of the given factor B into B, as described above,
we observe that B has one or two columns fewer than B, depending on whether
¢(G) is odd or even, respectively. Thus the net effect of the transformation is a
strict reduction in the number of columns, and we have just proved the following
lemma.

LEMMA 5. If A is nonsingular, if B is a factor of A, and c(B) > p(A) + 6(A),
then there exists a factor B of A such that ¢(B) < c(B).

This concludes the proof of Theorem 1 for the case when A4 is nonsingular.
The existence part of the theorem is covered by Lemma 1, and the minimality
part is covered by Lemma 2 and Lemma 5. Before proceeding to prove the singular
case, we summarize the main steps of the minimal factorization procedure for a
nonsingular matrix A.

Step 1. Find the elementary factor E of A according to Lemma 1. If ¢(E)
= u(A) = p(A) + 8(A), stop; otherwise, set B = E and proceed to Step 2.

Step 2. Find a proper subset of columns of B whose sum is zero, call the
submatrix formed by these columns G, and partition B as B =[F G]. Go to
Step 3.

Step 3. Substitute Z for G, according to (7), to obtain B* = [F Z]. Set
x =F, + Z, and replace each column Z; of Z by Z; = Z; + x, to obtain
B =[F Z2].Goto Step 4.

Step 4. Delete F, and Z, from B to obtain the matrix B. If ¢(B) = u(A), stop;
otherwise, set B = B and go to Step 2.

Step 1 of this procedure was illustrated in Example 1. In the following ex-
ample we carry out the rest of the procedure to obtain a minimal factorization.
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Example 2. For the matrix A of Example 1, we have p(4) = 4 and 4(4) = 0.
Since ¢(E) = 6 > u(A) = 4, we apply Step 2. It is easy to see that the last four
columns of E sum to zero. Hence

1 0 1 100
00 1 010
F = and G = ,
0 1 01 0 1
00 0 0 1 1
since ¢(G) is even, Z = G and
1 1 0
0 1 1
X = + -
0 0 0
0 0 0
Thus
1 100
R 01 01
Z = ,
01 01
0 0 11
with Z, = F,. Deleting F, and Z,, we obtain
01 00
- 01 01
B = ,
1 1 0 1
0 0 1 1

with ¢(B) = 4 = u(A). The reader can easily verify that B is indeed a factor of the
given matrix A.

4. Minimal factorization of singular matrices. Consider a singular, symmetric
matrix A of order n and rank p(A4). There exists a permutation matrix P such that
PA is of rank p(A) and the first p(A4) rows of PA are independent. Postmultiplying
PA by P’ yields a symmetric matrix A* which can be partitioned as

L M
13) A* = [ ]: PAP
M K

where L = L', K = K' and

(14) rlL M] = p[L M] = p(4*) = p(A).
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Hence there exists a nonsingular transformation matrix

15 T—[I 0]
(15) s

such that
L M
(16) TA* = [ ]
0 0
Thus
(17) SL+M =0
and
(18) SM + K =0.
From (17), since L is symmetric, we obtain
(19) LS + M =0.
Equations (16) and (19) imply
L 0
(20) TA*T' = [ ]
0 0

and, since T is nonsingular,
21 p(A4) = p(A*) = p(TA*T') = p(L).

Thus L is a nonsingular symmetric matrix and, by Lemmas 1, 2 and 5, L has a
factor H such that

(22) ¢(H) = p(L) + &(L).

Observing that

(23) T '=T

and

(24) P l'=P,

we obtain from (13), (20), (23) and (24)

(25) A= P A*P = P’T[L O] T'P.
0 O

Substituting HH' for L in (25), we have

(26) A= P’T[I;][H’O]T’P.

Hence

27) B = P’T[H]
( B 0
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is a factor of 4, and
(28) ¢(B) = c¢(H) = p(L) + o(L).

Since p(L) = p(A), to complete the proof of Theorem 1 for the singular case, it
remains to show that

(29) S(L) = 8(A).

To this end, we first observe that since d(4) = 6(4*), (29) is valid iff 6(L) = 1
implies 6(K) = 1 (see (13)). Because, if 6(L) = 0, then L has a nonzero entry on
its main diagonal and so does 4, whence §(4) = 0. If 6(L) = 6(K) = 1, then both
L and A4 have an all-zero main diagonal, and also §(4) = 1.

(30) S=ML""!

and

(31 K=SM=ML"'M.

Equation (31) can be rewritten as

(32 K = RLR’,

where R = M'L™!. From (32) we have

(33) K, = ;;RUR,.,‘LJ.,‘.

Since Lj, = L;;, and summation is mod 2, the double sum of (33) reduces to
(34) K; = ;R,?ijj = ;Riijj.

Itis clear from (34) that if L;; = Ofor all j, then K;; = Ofor all i, and hence 6(L) = 1
implies 6(K) = 1. This validates (29) and thus completes the proof of Theorem 1.
In summary, to find a minimal factor of a singular, symmetric matrix A, we
have to find first a permutation matrix P which transforms 4 into A* according
to (13). Then we find a minimal factor H of L, according to the procedure of § 3,
in terms of which a minimal factor of 4 is given by (27), or more explicitly, by

B=P =P =P .
MLt 1]l0 M'L™'H M/(H™ Yy

For instance, if

1 10
A=|1 0 1],
0 1 1]
then
1 1]0
A*=A4=|1 0]1
0 111
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and
1 1
L= , M =[0 1]
|:1 0] [
Here
0 1 1 1
ML R .
1 1 1 0
and
01
B=|1 1
1 0

5. Trace-orthogonal bases of GF(2"). An interesting application of Theorem
1 and theminimal factorization procedure is a method of finding a trace-orthogonal
basis for the elements of the field GF(2"). The trace of « € GF(2") is defined by

n—1
(35) Te) =Y %
i=0

A basis Q = {w,,®,, -+, ,} of GF(2") over GF(2) is called a trace-orthogonal
basis (in short, TOB) if

(36) T(w)=1 Vow,eQ
and
(37) T(ww) =0 Vo,w;eQ, i#j.

Theorem 1, as subsequently shown, guarantees the existence of a TOB in GF(2")
for every positive integer n. Before we show this, it might be helpful to present
first a brief review of some well-known [1], [2], [3] properties of the trace operator
T and its connection with maximal-length sequences (in short, M-sequences)
from a linear shift register. Recalling that [4] « € GF(q) iff a® = « and that over
GF(2) (« + B)* = o> + B2, one can readily verify that for all a, e GF(2") and
a, b e GF(2), the following properties hold :

(38) T(x) € GF(2),
(39) T(o?) = T(w),
(40) T(ao + bB) = aT(a) + bT(P).

Let y be a primitive element of GF(2"), i.e., the multiplicative order of y is
p=2"—1, and let g(x) =" ,gx' be the minimal polynomial of y~' (the
inverse of y, which is also primitive). If

(41) a=TG), 0=k<p,

it is well known [2], [3] that the sequence {a,} is a binary M-sequence of period
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p, satisfying the linear recursion

M:

(42) giax—; = 0.

i=0

Let m be an integer such that n £ m < p, and let
(43) Ak=(ak’ak+1""aak+m_1), O§k<p,

where the index of g; is taken mod p.

It has been established [5] that the p m-tuples A4,, 0 < k < p, and the all-
zero m-tuple Z form a field, isomorphic to GF(2"), under componentwise mod 2
addition and multiplication defined by

AkZ=ZAk=Z, 0§k<p,
Z7Z =27,
AIAJ = Ai+j7 0 é l?.] < D,

where, again, all indices are taken mod p. The one-to-one correspondence be-
tween m-tuples, n < m < p, and the elements of GF(2") expressed as powers of
the primitive element y is

Ay, 0=Zk<p,
Z 0.

(44)
Indeed, applying recursion (42) to the m-tuples 4,, we obtain

(45) gidy—; = 0.

VF

i=0

Letting 4,_; = y* %, we have
0= Y g "=y Y gy =7 Ya0 "),
i=0 i=0 i=0
which is consistent with the assumption that g(x) is the minimal polynomial for
-1
p~ L
Now, let m = p and let M = (M) be the square matrix of order p defined by

(46) Mij=ai+j, 0§l,]<p

It is easy to see that the kth row of M is the p-tuple 4,,0 < k < p, and that M is
symmetric. Since the rows of M represent the nonzero elements of GF(2"), its
rank is

(47) p(M) =n
and, by (45), any n successive rows of M span the rest of its rows. By (39) and (41),
(48) a = dyy, 0k<p,

and since a,, = My, the sequence of entries on the main diagonal of M is identical
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with {a,}. Thus

(49) (M) =0,

and, by Theorem 1, there exists a factor B of M, i.e.,
(50) BB =M

with

(51) ¢(B) = n.

It is clear that the n rows of B’ form a basis for GF(2") since they span every row
of M. We proceed to show now that this basis is actually a TOB.

Let Q = (wg,w,, -+, w,_,) be the vector of n elements of GF(2") corre-
sponding to the rows of B'. Since each w;, is expressible as a power of the primitive
element y, we may write

(52) W=7, 0<i<n—1, 0<e <p.

Substituting y* for the kth row of M, we can rewrite (50) as

oo ° ]
1
" Y
(53) B|. = 52
»yerl—l .
LyP L

Since for every nth order permutation matrix P, BB’ = BPP'B’, there is no loss
of generality in assuming

(54) ep<e < - <e, ;.

Since the kth row of B’ corresponds to ¢, which, in turn, corresponds to 4
we have

(55) B = (A, A,, - A, _).

Thus if B = (B;)), it follows from (43) and (55) that

(56) B;.=a 0<i<p, 0=Zj<n.

ij ite;

From (53) it is clear that for each i such that 0 < i < n,
1 ifi=j,
(57) B, = .
0 otherwise.
Combining (56) and (57), we obtain
(58) _{ 1 ifi=j,
Gete; =1 0 otherwise

foralli,j=0,1,---,n— L.
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Finally, from (41) and (58), we have

1 ifi=],
(59) Ty +e) = =) 0<ij<n.
0 otherwise,

Since
T(**) = T(y%)
and since for i = j,
T(y**) = TO®),
we have just proved that the n elements

eo ey €n—1
PP, e, Y

form a TOB of GF(2"). We summarize this result in the following theorem.

THEOREM 2. For every positive integer n, GF(2") has a trace-orthogonal basis.
The elements forming such a basis correspond to the n columns of a minimal factor
B of M according to (50).

For practical reasons, it is desirable to have a representation of a TOB of
GF(2") in terms of n binary n-tuples, rather than vectors of length m > n. Since
the one-to-one correspondence (44) is valid for each m in the range n £ m < p, it
follows that the n-tuples formed by the first n entries of each row of B’ provide
the desired representation. Thus if D’ is the square matrix of order n formed by
the first n columns of B’, then the rows of D' form a TOB of GF(2").

Let L = (L;;) be the square submatrix of order n occupying the upper left
corner of M. It is clear that

(60) L = DD’
and that
(61) L = T@'"), 0<i,j<n.

Thus, given a primitive polynomial g(x), or the M-sequence {a, = T(y*)}, where
g(y~!) = 0, it is easy to construct the matrix L according to (61). Applying the
minimal factorization procedure of § 3 to L, we obtain D’ according to (60) whose
rows correspond to a TOB of GF(2").
The practical significance of a TOB for GF(2") is due to the following theorem.
THEOREM 3. If Q = {wq, 0, - -+, w,_,} is a TOB of GF(2") and if y' € GF(2")

is represented by the n-tuple B; = (B, o, B; ;, -+ -, B;,_), where
(62) ZB., w, 0si<p,

then

(63) ( k) = Z Bl]Bkj

j=0

Proof. We have

T(y'y") = [Z B;jo; Z B, m:| = T[nil nil BijBkmijm],

ji=0m=0
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which, by (40), can be written as

n—1n-1

(64) ToW) = ¥ ¥ BiBumT(@,).
j=0m=0
Since T(w;w,) = 0ifj # mand T(wf) = T(w;) = 1,(64) reduces to (63). Q.E.D.
Theorems 2 and 3 may find further applications in the analysis and synthesis
of M-sequences, where trace computations are quite prevalent.
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BOUNDS FOR MULTIPROCESSOR SCHEDULING WITH
RESOURCE CONSTRAINTS*

M. R. GAREY anp R. L. GRAHAMY

Abstract. One well-studied model of a multiprocessing system involves a fixed number n of identical
abstract processors, a finite set of tasks to be executed, each requiring a specified amount of computation
time, and a partial ordering on the tasks which requires certain tasks to be completed before certain
others can be initiated. The nonpreemptive operation of the system is guided by an ordered list L of
the tasks, according to the rule that whenever a processor becomes idle, it selects for processing the
first unexecuted task on L which may validly be executed. We introduce an additional element of
realism into this model by postulating the existence of a set of “‘resources” with the property that for
each resource, the total usage of that resource at any instant of time may not exceed its total availability.
For this augmented model, we determine upper bounds on the ratio of finishing times achieved using
two different lists, L and L', and exhibit constructions to show that the bounds are best possible.

Key words. scheduling models, graph theory, worst-case analysis, performance bounds

1. Introduction. A number of authors (cf. [12], [16], [7], [3], [11], [4], [S],
[9)) have recently been concerned with scheduling problems associated with a
certain model of an abstract multiprocessing system (to be described in the next
section) and, in particular, with bounds on the worst-case behavior of this system
as a function of the way in which the inputs are allowed to vary. In this paper, we
introduce an additional element of realism into the model by postulating the
existence of a set of “resources” with the property that at no time may the system
use more than some predetermined amount of each resource. With this extra
constraint taken into consideration, we derive a number of rather close bounds on
the behavior of this augmented system. It will be seen that this investigation also
leads to several interesting results in graph theory and analysis.

2. The standard model. We consider a system composed of (usually »n)
abstract identical processors. The function of the system is to execute some given
set 7 = {T,,---, T,} of tasks. However, 7 is partially ordered by some relation’
< which must be respected in the execution of 7~ as follows: if T; < T;, then the
execution of 7; must be completed before the execution of T; can begin. To each
task T; is associated a positive real number 7; which represents the amount of time
T; requires for its execution. The operation of the system is assumed to be non-
preemptive, which means that once a processor begins to execute a task T;, it must
continue to execute it to completion, ; time units later. Finally, the order in which
the tasks are chosen is determined as follows: a permutation (or list) L = {T;,
-+, T, } of 7 is given initially. At any time a processor is idle, it instantaneously
scans L from the beginning and selects the first task T, (if any) which may validly
be executed (i.e., all T; < T, have been completed) and which is not currently
being executed by another processor. Ties by two or more processors for the same
task may be broken arbitrarily (since the processors are assumed to be identical).

* Received by the editors June 14, 1974, and in revised form August 9, 1974.

+ Bell Laboratories, Murray Hill, New Jersey 07974.
! Thus, < is transitive, antisymmetric and irreflexive.
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The system begins at time ¢ = 0 and starts executing 7. The finishing time w
is defined to be the least time at which all tasks have been completed. Of course, w
is a function of L, <, n and the t;. It is known [7] that if 7' = {T", ---, T,} with
T;<T;=T,<T;and 1; < 7} for all i and j, and .7 is executed by the system
using a list L', then the corresponding finishing time ' satisfies

(1 oo <2 - 1/n.

Furthermore, this bound is best possible. Efficient procedures are known [3], [4],
[9] for generating optimal lists when all the t; are 1 and either < (viewed as a
directed graph in the obvious way) is a tree or n = 2. However, Ullman [12] has
recently shown that even the case of n = 2 and 1, € {1,2} for all i is polynomial
complete? and therefore probably has no efficient solution in general.

3. The augmented model. Before proceeding to a description of the new
model we first introduce some notation which will make the ensuing discussion
mathematically more convenient.

For a given list L, let F: 7 — 21 be defined by F(T)) = [0;, 0; + 1,), where
o; is the time at which the execution of T; was started. Let f:[0, w) — 27 be defined
by f(t) = {T,e .7 :t € F(T;)}. Thus f(t) is just the set of tasks which are being
executed at time ¢. The restriction that we have at most n processors can be ex-
pressed by requiring | f(t)] < n for all t € [0, w).

Assume now that we are also given a set of resources # = {Z,, .-+, &}
and that these resources have the following properties. The total amount of
resource #; available at any time is (normalized without loss of generality to) 1.
For each j, the task T; requires the use of 2(T}) units of resource %, at all times
during its execution, where 0 £ #,(T;) < 1. For each t € [0, w), let r(t) denote the
total amount of resource %#; which is being used at time ¢. Thus

r =Y AT).

Tief(t)

In this augmented model, the fundamental constraint is simply this:
r{t)y =1 for all te€[0, w).

In other words, at no time can we use more of any resource than is currently
available.

The basic problem we shall consider is to what extent the use of different
lists for this model can affect the finishing time w.

4. Summary of results. There are essentially three results which will be proved
in this paper. They all are derived from the following situation. We assume we
are given a set of tasks 7 = {T, ---, T,}, execution times t;, a partial order <
on 7, a set of resources # = {#,,---, A&,}, task resource requirements® (T
and a positive integer n. For an arbitrary list L, let o = w(L) be the finishing time
for the (augmented) system of n processors executing J according to list L. Let
w* = w(L*) denote the minimum of w(L) over all lists L. (Note that the use of
n = r processors is equivalent to having an unlimited number of processors

2 See [10] for a definition of this term.
3 These are as described in the preceding section.
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available, since clearly there can never be more than r processors active at any time.)
THEOREM 1. For # = {Z,},

(2) w/w* < n.

THEOREM 2. For B = (R, R, -+, R}, < empty,and n 2 r,
(3) o/o* <s +1.

THEOREM 3. For # = {R,, R, -+, R}, < empty, and n = 2,
(4) % < min{ﬂ—;l, s+2 - 35{—1}

By way of comparison, the following result (now a special case of Theorem 3) is
proved in [7].
THEOREM 0. For # = (¥,

w/o* £2 — 1/n.

Furthermore, as in the case of Theorem 0, examples will be given to show that
each of these results is essentially best possible.

Thus the addition of limited resources into the standard model causes an
increase in the worst-case behavior bounds, as might be expected. What is some-
what surprising, however, is the significant effect the partial order < can have on
these bounds. This is in contrast to the previous case of Z = (¢ in which the upper
bound w/w* £ 2 — 1/n which holds for arbitrary < could, in fact, be achieved by
examples with < empty. Also significant is the apparent need for somewhat more
sophisticated mathematical techniques than were required previously.

Proof of Theorem 1. The proof of (2) is immediate. We merely need to observe
that

w

lIA
IIA

nw*,

r
Z Ti
i=1

since at no time before time w are all processors idle when using list L, and the
number of processors busy at any time never exceeds n.
More interesting is the following example, which shows that (2) is best

possible.
Example 1.
T={T1s"'s7:nTl,"'aTn}s '%={’%1}

Ti=1, 'fi=8>0,
1
A(T) = -, 2(T)=1,1<i<n.

< is defined by
T.<T, for1<i<n,
L=(Tl""aT;nT1,"'

”Tn)’ Ll:(Tls“',T;,T],'”,E)-
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A simple calculation* shows that

’

w =n + ne, w*=w =1 +ne.
Thus

Proof of Theorem 2. In this case, we assume # = {R,,R,, -+, R}, < is
empty and n = r. The proof will require several preliminary results. The meaning
of undefined terminology in: graph theory may be found in [8].

Let G denote a graph with vertex set V = V(G) and edge set E = E(G). By a
valid labeling L of G we mean a function L:V — [0, co) which satisfies

(5) for all e = {a,b} € E, L(a) + L(b) = 1.
Define the score of G, denoted by S(G), by
S(G) = inf { y L(v)},

L veV
where the inf is taken over all valid labelings L of G.

LeMMA 1. For any graph G, there exists a valid labeling L:V — {0,%, 1} such

that
S(G) = ZV L(v).

Proof. For the case of a bipartite graph, Konig’s theorem [8] states that the
number of edges in a maximum matching equals the point covering number.®
Thus for any bipartite graph G, there exists a valid labeling L:V — {0, 1} such
that S(G) = Y,y L(v).

For an arbitrary graph G, we construct a bipartite graph Gy as follows: for
each vertex v € V(G) we have two vertices v, , v, € V(Gg); for each edge {u, v} € E(G)
we have two edges {u,,v,}, {u,,v,} € E(Gg). It is not difficult to verify that S(Gg)
= 25(G) and furthermore, if Lg:V(Gp) — {0, 1} is a valid labeling of Gy, then
L:V(G)— {0,%,1} by L(v) = 4(L(v,) + L(v,)) is a valid labeling of G. O

For positive integers m and s, let G(m,s) denote the graph with vertex set
{0,1,---,(s +1)m — 1} and edge set consisting of all pairs {a, b} for which
la — bl = m.

LEMMA 2. Suppose G(m, s) is partitioned into s spanning subgraphs H;,1 < i <'s.
Then
) max {S(H)} = m.

Proof. Assume the lemma is false, i.e., there exists a partition of G(m, s) into
H;, 1 =i < s, such that S(H;) < m for 1 £i < s. Thus, by Lemma 1, for each i
there exists a valid labeling L;: V(H;) — {0,%, 1} such that

(7 Y Lv) = S(H) < m.

veV(H;)

* The reader will probably find it helpful to construct a timing diagram to understand the behavior
of this (and succeeding) examples.

* That is, the cardinality of the smallest set of vertices of G incident to every edge of G.
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Let A={a, < ---<a,Lfa) =<7 for all iy 1 <i<s}, and let $* denote
ij  S(H;). There are three cases.

(i) p £ m. In this case we have S* Zm(s + 1) — p = m(s + 1) — m = ms,
which contradicts (7).

(i) m < p < 2m + 1. For each edge {a;,a,,.,;}, 1 < j < p — m, there must
exist an i such that Lya;) + Lya,;) = 1. Thus $* 2 m(s + 1) —p+ (p — m)
= ms, again contradicting (7).

(i) p > 2m + 1. We first note that for each vertex v e V(G(m, s)), there exists
an i such that L(v) = 3. For suppose L(v) = 0 for 1 < i < s. There must be some
a; such that |a; — v| 2 m. But since Ly(a;) < ; for all i, then Lya;) + L(v) < 3 for
all i, which is a contradiction.

For each i, let n; denote the number of vertices v such that L,(v) = 1. Then

H{v:Li(v) >0} < 2m — 1 — n,,

since otherwise

Y Lvyzn-1+02m-—2n)-%=m,

veV(H;)

which contradicts (7). Therefore

) iuwuw>0Hgam—ny5inr

i=1 i=1

Let g denote the number of vertices v such that there is exactly one i for which
Ly(v) > 0. Then

) T 10 Lie) > 0} = 2mis +1) — q) +q.
Combining (8) and (9), we have

(10) gz=2m+s+ Y n.

i=1

Of course, we may assume without loss of generality that if L(v) = 1, then Liv)=0
for all j # i. Hence, by the definition of n;, there must be at least 2m + s vertices,
say by < -+ < by, such that Y5_, Li(b;) = 3, ie., for each b; there is a unique
L; such that Li(b;) = 3 and Ly(b;) = O for all k # i. Thus, if |b; — b,| = m, then for
some i, Lib;) = L{b,) = 5. Since |b; — by, = m, let iy be such that L;(b,)
= L; (b,m+s) = 3. But, by the same reasoning we must also have L, (b, ;) = L; (b,)
=3and L;(b,,+,) = Li(bj) = 3for 1 £j < m +s. Therefore

SH,)= Y L®z@2m+s)-3=m,
veV(Hip)
which is a contradiction. This completes the proof of Lemma 2. [
Recall that when 7 is executed using the list L, F(T) is defined to be the
interval [g;,0; +1;), where g; is the time at which T; starts to be executed and
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g; + 1, is the time at which T; is finished. Note that because of the way in which
the operation of the system is defined, each o; is a sum of a subset of the t;’s.
We may assume without loss of generality that w* = 1. Assume now that

w > s + 1. Furthermore, suppose each t; can be written as t; = k;/m, where k;
is a positive integer. Thus k; < m, since 7; £ 0* = 1. Also, for 1 £ i < s, each
r{t) is constant on each interval [k/m,(k + 1)/m), this value being r(k/m). An
important fact to note is that since < is empty and n = r, then, for ¢, ¢, € [0, ®)
with t, — t; = 1, we must have

max {r{t,) +rdt)} > 1.

15i<s
For otherwise, any task being executed at time ¢, should have been executed at

time t, or sooner. Thus, for each i, 1 <i < s, we can construct a graph H, as
follows:

V(H) = {0,1,--,(s + m — 1)

- (H) = { +1) }b
{a, b} is an edge of H; iff ri(g) +r,~(—) > 1.

m m

Note that if |a — b| = m, then {a,b} is an edge of at least one H;, 1 =i <.
Hence it is not difficult to see that G(m, s) = U, H,. Note that by (11), the mapping
L;:V(H;) — [0, o) defined by L(a) = r(a/m) is a valid labeling of H;. Since G = G’
implies S(G) £ S(G’) and the condition on the r; in (11) is a strict inequality, then
by Lemma 2 it follows that

12 max{(ﬁgﬂ—l ".(_,I;_)} = max{ Y Li(v)} > max {S(H))} = m.

4 k=0 4 veV(H;)

But we must have

1(s+1)m—1 k 0
(13) — ri|l— §f r{t)dt < 1, 1<i<s,
m <o m 0
1e.,
(s+t1ym—1 k
Z ri('—)ém, 1<i<s.
k=0 m

This is a contradiction, and Theorem 2 is proved in the case that 7, = k;/m, where
k; is a positive integer for 1 < i < r. Of course, it follows immediately that
Theorem 2 holds when all the z; are rational. The proof of Theorem 2 will be
completed by establishing the following lemma.

LEMMA 3. Let t = (14, - - - , T,) be a sequence of positive real numbers. Then for
any ¢ > 0, there exists T = (1, - -+, t,) such that

(@) I —nl<eforlsi=sr;

(i) forall S, T = {1,---,r},

ergztr iff ZT;§ZT;§

seS teT seS teT

(iii) all t; are positive rational numbers.
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Remark. The importance of (ii) is that it guarantees that the order of execution
of the T; using the list L is the same for t and 7". Thus if L is used to execute 7,
once using execution times 7; and once using execution times t;, then the corres-
ponding finishing times @ and ' satisfy | — w'| = re. Hence if there were an
example J with w/w* > s +1 and some of the t; irrational, then we could
construct another example J ' by slightly changing the t; to rational t; so that
the corresponding new finishing times ' and w* satisfy |w — w'| £ re and
|o* — w*| £ re, and, therefore if ¢ is sufficiently small, we still have o'/w* > s + 1.
However, this would contradict what has already been proved. Lemma 3 is
implied by the following slightly more general result. The proof we give here is
due to V. Chvatal (personal communication).

LEMMA 3'. Let S denote a finite system of inequalities of the form

r r
Y oax;=ay or Y ax;> ag,
i=1 i=1
where the a; are rational. Then, for any ¢ > 0, if S has a real solution (x,, - -, x,),
then S has a rational solution (X', - - -, x,) with |x; — xi| < & for all i.

Proof. We proceed by induction on r. For r = 1 the result is immediate.
Now, let S be a system of inequalities in r > 1 variables which is solvable in reals.
S splits into two classes: S,, the subset of inequalities not involving x,, and
S, =S — S,. Each inequality in S, can be written in one of the following four
ways:

r—1

() oo T+ Z %X S X,
i=1
r—1

(b) a + Y ox; < X,,
i=1
r—1

() Bo + Z Bix; = x,,
i=1
r—1

(d) Bo + Z Bix; > x,.

i=1

For each pair of inequalities, one of type (a) and one of type (c), we shall consider
the inequality

r—1

(e) oo t Z ox; < Bo +'i‘ Bix;.

i=1 i=1

Similarly, the pairs of types {(a), (d)}, {(b), (c)} and {(b), (d)} give rise to inequalities

r—1 r—1
(f) % + ) X < Bo + Y Bix;.

i=1 i=1
Let S* be the set of all inequalities of type (e) and (f) that we obtain from S,.
Since by hypothesis, S = S, U S, has a real solution (x,, - -, x,), then S, U S*
has the real solution (x,---, x,_,). But S, U S* only involves r — 1 variables,
so that, by the induction hypothesis, S, U S$* has a rational solution (x{, - -+, x._,)
with |x; — xi| < ¢ for all i and any preassigned ¢ > 0. Substituting the x; into
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(a), (b), (c) and (d), we obtain a set of inequalities

(g) asx, b<x, ¢zx, d>x,

where the @/, b', ¢’ and d’ are rational. Since the X; satisfy (¢) and (f), we have a’ < ¢/,
b <c,a <d,b <d. Thus for any ¢ > 0, if ¢ is chosen to be suitably small,
then there is a rational x, satisfying (g) and with |x, — x| < &, completing the
proof of Lemma 3'. This proves Lemma 3, and hence, Theorem 2. [J

The following example shows that the bound in Theorem 2 cannot be
improved.

Example 2.

9-={T1,T2,'~',’I;+1’ ,laT/Za"'aT.;N};
< =; n=s(N+1)+1=r;

;=1 for 1Zi<s+1; r§=% for 1 <i<sN;

1 1
ML) =1-5 AT)=—, j#i, iSiss;

'@i(T}) = ‘]\7,

— ’ ’ ! ’
L _(TI’TI""’ TNa TZaTN+1a""a 7;c+1’TkN+la

Tinsas s Tawvws Tevzs s Tons Tii 1)
L/ = (T,I’T/za T T.;N9 TlaTZa Y ’I;+1)'

It is easily checked that for this case, w = s + 1 and o' =1 + s/N, so that w/w’
(and hence w/w*) is arbitrarily close to s + 1 for N sufficiently large.

Proof of Theorem 3. The proof of Theorem 3 consists primarily of two main
lemmas, each of which gives a bound on w/w* which is best possible for certain
values of s and n. We let A denote ordinary Lebesgue measure® on the real line.

LEMMA 4. For B = {R,,R,, -+, R} and < empty,

Proof. Let I = {t:|f(t) = 1}. We first show
(14) M £ o*.

Consider the set T of tasks defined by T = U, f(¢). For any pair of tasks T;
T;belonging to T, there must exist some k, 1 < k < s,suchthat Z(T) + Z(T)) > 1,
for otherwise, one of those tasks should have been started earlier (unless n = 1,
in which case the lemma is trivial). But this implies that in the optimal schedule

6 Since in all of our applications, the subsets X of [0, ) under consideration are finite unions of
disjoint half-open intervals, then A(X) is just the sum of the lengths of these intervals.
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no two members of T can be executed simultaneously. Therefore we have

oz Y 52 ),
TieT
which proves (14).
To complete the proof of Lemma 4, observe that at least two processors
must be active at each time te I = [0, w) — I.
Thus

nw* 2 Y 1, 2 2401 + M) =20 — ) 2 20 — w*,
i=1

and therefore (n + w* = 2w. [
The bound given by Lemma 4 is best possible whenever n < s + 1, as shown

by the following examples.
Example 3.

T ={To, T\, T}, T,, Ty, -+, Ty, Ty}

%={'@1a%2a“'a%s}a 2§n§s+1’ <=®’
o=1; T1=1=3 15jsn—-1;
1
(Ty)) = —, 1=5i<s;
2(To) o Si<s
R(T) = R(T) =%, 1=isn-—1;
1
%(7})=%~(T})=%, i#j, 1Siss, 12jsn—1;
L=(T1’T/1’T2aT12a"'aE—I’T;—laTO);
L=(T0,T1,T2,"','I:,_1,Tll, /2""’ ;1—1)'
It is easily checked that for this case,

_n+1

=5

showing that the bound of Lemma 4 is best possible whenever n <s + 1. [0
The following example, for the case s + 1 < n < 2s + 1, is somewhat more

complicated.
Example 4. For suitably small ¢ > 0 and a positive integer k, define

w

g=¢n—1"%  1=ZiZ2k;
T =Ty U{T;1<ign—-1,1<jSkU{T;1<isn—1,1<j<k};
R={R,, Ry, , R}, stl<n=Z2s+1;, <=;

1

. r— ! —
o =2k; 1 =1 =
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R(Tj) =1—(n— Deyj_q, 1<iss, 12j=5k;

R(T) =2, 1#0, 1SISs, 1sisn—1, 15j<k;
R(Toii) =1 —(n— 1)ey, lsisn—-s—1, 12j=k;
AT} = &5, l#i—s, 1ZI<s, 12ign—-1, 1<j<Lk.

To illuminate the structure of the two lists, L and L', we describe them in block
form.

L=(A;,A4;, -, A, A}, A5, -, Ay, Ao,
where
A; = (By;, By, -+, By), lSisk;
= (T, ), 1<isk 15j<s;
= (B}, 21""’Bl—l.i)a 1sisk-1;
= (Tyijis Tajirn)s  1SiSk—1, 1Sjsn—1;
Ao = (To, Ts+ 1,1 T;+2.1’ M) 7:‘—1,1’ T;+1,k’ T;+2,ka M) T;-l,k)‘
Also
=(Co, €1, €1, Gy, Gy, -+, G, G,
where
Co = (To);
G =(Tli’T2i""a7;1—l,i)’ lsi=s

k;
(Tln 21: Y Tr,n—l,i)a 1 é é k.

It is not difficult to check that when the list L is used, each of the pairs of tasks
given in the sublists B;; and Bj; will be executed simultaneously on the first two
processors, with the other n — 2 processors remaining inactive during that time.
After all such pairs have been executed, the tasks on sublist 4, will be started.
This results in

o=kn—-1)—-m—-—s—=1)+2k=kn +1)—(n—s —1).

When the list L’ is used, each of the sets of n — 1 tasks given in the sublists C; and
C;, will be executed simultaneously on processors 2 through n, with processor 1
executing Ty. Thus w* = ' = 2k. We then have

o n+tl (n-s5s-1)

o* 2 2k
which is arbitrarily close to (n + 1)/2 for k sufficiently large. 0O
We now prove an upper bound for w/w* which is best possible whenever
n>2s +1.
LEMMA 5. For B = {R,, R, -+, R}, <= J,andn = 3,

2s +1-
-

w
—;§S+2—'
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Proof. Suppose that we have a counterexample to the lemma. By Lemma 3,
we may assume all the t; are rational, i.e., there exists a positive integer m such that
for each i, 1 < i < r, there exists an integer k; satisfying 7, = k;/m. Without loss
of generality, we may also assume that w* = 1. Thus each k; satisfies 1 < k; < m
and w = w(L) >s +2 - (2s +1)/n.

Consider the operation of the system using the list L. Let I = {t €[0, w):| f(¢)|
=1}, I' = {te[0,w):|f(t)) = n} and let I = [0, w) — I'. By the proof of Lemma 4,
AMI) £ 1. Since at least two processors are active at each time te I,

Mw

n 2 n-A) + M) + 2w — AT — A))
i=1
=2 -2 +2w -1,
or
(15) A(,/)éw,
n—2
Since w > s +2 — (2s + 1)/n, we then have
] +1—
,1(1)=w_,1(1f);w_u
n—2
. n+1-2(s+2—2s+1)
s
(16) >s+2 - -

n—2
=5 +1.

Now observe that for any t,,t, eI satisfying t, — t; = 1, there must exist
ani, 1 £i < s, such that

(17) rity) trty) > 1,
for otherwise, some task being executed at time t, should have been started at

time ¢, or earlier. Recalling that I is a collection of intervals, each having the form
[k/m, (k + 1)/m) for some integer k, let a, < a, < --- < a, be integers such that

I_={[9_i,ai+l):0§i§p}.
m’ m

Notice that (16) implies that p = (s + 1)m. For each i, 1 < i < s, we construct a
graph H, as follows:

V(H)=1{0,1,2,---,(s + I)m — 1};

{u, v} is an edge of H; iff ri(g'i) + ri(&) > 1.
m m
Note that [u — v| = m implies |a, — a,| = m, which, by (17), implies that {u, v} is
an edge of at least one H;,1 < i < s. Hence it is not difficult to see that G(m, s)
< U, H,. The same reasoning used in the proof of Theorem 2 can be used now to
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show that, for somei, 1 <i < s, f & r{t)dt > 1, which contradicts the assumption
that w* = 1. This completes the proof of Lemma 5. [

Combining Lemmas 4 and 5, we obtain Theorem 3. It remains to be shown
that Lemma 5 is best possible whenever n > 2s + 1. This is done by the following
example.

Example 5. For suitably small ¢ > 0 and a positive integer k', let k = k'n,
and define

g =&n — 1)K 1 <iZk;
0/-={T0}U{T;Jlélén—l,léjék}’
R= LR, Ry, R}y n>2 +1; < =;
T k

;o =1, 1=2isn—-1, 15jsk;

0
R(To) = &1, 1<i<s;

A(T)=1—-(n—1g, 1=

A(T;) = ¢, l#i, 121<s, 1£ign—-1, 1£j=<Zk.

IA
IA
i
IA
~.
IA
x

As in Example 4, we again describe the lists L and L’ in block form.
L=(A,A4,, -+, A,_2s_1,B1,By, -, B, C),
where
A = (Tygiins Togwias o5 Tastidd, lsisn—2s—1;
B; = (T, T4i2, Ty Tyt 3, -+, Ti-1, T;+i,k)a I<i<s;
C = (Ty, Ts+1,1a Ts+2,1a o T2s,1’ Ties T -+ 5 Ta)-
Also

L =(T09D19D2"“9Dk)

>

where
D= (T, T, -, T,_y,), 1Zisk.

It is not difficult to check that
wo=knh—-2s—1)+k—-1)s +tk=(s +2kn—(2s + 1)k — s
and w* = @' = k = k’n. Thus

2s +1 N
n k'n’

which is arbitrarily close to the bound of Lemma 5 for k' sufficiently large.

5. Concluding remarks. The results which have been discussed in this paper
lead naturally to a number of possible extensions, several of which we mention
here.

We first note that for the case Z = {#,}, n = r, and general <, Example 1
may be used to show that w/w* can be arbitrarily large.
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Regarding Lemma 1, an algorithm can be given which determines S(G) (and
a corresponding valid labeling as well) in at most

O(EI/IV))

operations. A similar algorithm may be used for the following dual problem:
given a graph G, determine

max y. L*(e),
L*

eeE

where the max ranges over all functions L*:E — [0, c0) such that for all ve V,
Y LX) =1,
e'eE(v)

where E(v) is the set of all edges incident to v. It would be interesting to investigate
the analogous questions for hypergraphs.

The following result follows more or less directly from Lemma 2.

COROLLARY. For a positive integer n, let f;:[0,n + 1) - [0,0), 1 =i < n, be
(Lebesgue) measurable functions satisfying the following condition:

Ift,,t,€(0,n + 1) with|t, — t,| = 1, then

1n<1‘?§n {filt) +f()} =z 1.
Then
max f fidi =z 1.
[0,n+1]

1<isn

It is interesting to note that, at present, no purely analytical proof of the
Corollary is known.

The techniques of Lemma 2 may also be used to derive several new results
in graph theory. In particular, it follows that if m is a positive integer and G,,
denotes the graph with vertex set

V,=1{0,1,---,3m — 1}
and edge set
E, = {{a,b} <V, ;min{a — b,3m — a + b} = m},
then any 2-coloring of E,, contains m disjoint edges having the same color.
The corresponding general conjecture is that for a fixed s = 1, if we take
Vo= {0, 1, (s + m — 1)
and
E, = {{a,b} < V,,;min{a — b,(s + )m — a + b} = m},

then any s-coloring of E,, contains m disjoint edges having the same color. At
present, this conjecture is still open. If true, it is close to being best possible,
since there exist m-colorings of the edges of the complete graph on (s + 1)m — s
vertices which have no set of m disjoint edges having a single color (cf. [1], [2]).
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Finally, it is natural to inquire under what restrictions do there exist efficient
algorithms for determining optimal schedules for problems of the type considered
herein (cf. e.g., [6], [12]).
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THE COMPUTATION OF POWERS OF SYMBOLIC POLYNOMIALS*
ELLIS HOROWITZ} anp SARTAJ SAHNI}

Abstract. Recent results on the computation of powers of symbolic polynomials are reviewed in
perspective. Then a new algorithm is given which computes the nth power of a completely sparse
polynomial using a linear number of multiplications. This is followed by experimental results com-
paring the new algorithm to iteration using both completely sparse and completely dense polynomials
as data.

Key words. polynomial powers, symbolic powers, sparse polynomial powers

1. Introduction. Let P(x,,---, x,) be a polynomial in v variables with
integral coefficients. Suppose that d = degree (P) in x;, 1 £ i < v, and that all
possible terms of P are present. Then P has (d + 1)* terms and is said to be com-
pletely dense. If P' has (id + 1)° terms 1 < i < n, then P’ remains completely dense
to power n. Using this worst case assumption of polynomial growth, and the
classical polynomial multiplication algorithm [4, p. 362], Heindel in [2] showed
that computing P" by iteration was faster than using the binary method (binary
expansion of the exponent, see [3, p. 399]). Briefly reviewing that result, we see
that it follows from the completely dense assumption that the cost for iteration
is asymptotically

Yo d4+Dd + 1) < ((n—1)d+ 1)%d + 1°(n — 1) < n*ti(d + 1)?,

15ign—1
while the cost for the binary method is bounded by
Y (2d+ 1)* < (nd + 1))*".

1 siZlogyn
Thus the ratio of these methods, iteration/binary = n°*!/n?" = 1/n*~!, and so
for v > 1 variables, iteration becomes asymptotically superior. This was a some-
what nonintuitive result in the sense that the binary method requires only
O(log, n) polynomial multiplications, whereas iteration requires O(n — 1), and
therefore one might naturally conclude (e.g., see Knuth [4]) that binary would
be better.

The binary method and iteration have one thing in common ; namely, they
are whole polynomial methods. This is an intuitive idea by which we mean that
at every step where a multiplication is done, it is done with polynomials. There
are however, other methods for computing powers which do not rely on this
whole polynomial property. One such approach, based upon evaluation and
subsequent interpolation, was presented by Horowitz [3]. Using the previous
assumptions, that method will compute P" in time proportional to (n(d + 1))°*!.
At the heart of this algorithm is a routine which computes the nth power of an
integer using the binary method. Hence this algorithm, in addition to having a

* Received by the editors October 1, 1973, and in revised form June 4, 1974. This work was sup-
ported by the National Science Foundation under Grant GJ-33169.

t Computer Science Program, University of Southern California, at Los Angeles, Los Angeles,
California 90007.

{ Department of Computer, Information and Control Sciences, University of Minnesota,
Minneapolis, Minnesota 55455.
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better asymptotic time, showed that one could operate on multivariate poly-
nomials via some transformational technique and return the problem of com-
puting polynomial powers to computing powers of single precision numbers.

At present, the method which has the best asymptotic computing time is
obtained by using the fast Fourier transform and its convolution property; see
Pollard [5].

Table 1 gives the asymptotic computing times for four “polynomial power”
algorithms applied to dense polynomials. The work factor gives the amount of
work per term in the answer that each method requires. A work factor of 1 would
be optimal; however, the best known is log(n(d + 1)). The asymptotic com-
puting times for the first 3 methods were obtained assuming the classical multi-
plication method is used. These could be reduced by using faster polynomial
multiplication methods, though the direct use of the fast Fourier transform
(FFT) would still yield the lowest upper bound.

TABLE 1
Asymptotic times, P" completely dense

Method Time = Terms * Work factor
Binary n?d + 1) =n(d + 1)"* n’d + 1)°
Iteration ntid + 1)* =n'(d + 1)" * nd + 1)
Eval-Interp ntid + 1)° ! =nd + 1)°* n(d + 1)
FFT nd + 17 log (n(d + 1)) = n(d + 1)** log (n(d + 1))

The reliance on the completely dense model alone is somewhat limited
because of the exponential growth of the number of terms in the answer. Practical
computation dictates that dense polynomials in 3 or more variables can only be
raised to quite small powers, e.g. see [3], before either core or time become
excessive.

Existing algebra systems need to handle multivariate problems, but often
these problems are of a sparse nature. In [1], Gentleman suggested the definition
for a totally sparse polynomial, the intuitive opposite of the completely dense

. t+i—1
case. If P initially has ¢ terms and P’ has ( : ) terms, 1 < i < n, then P is
t —_
said to be completely sparse to power n. The motivation for this definition is simply

t+i—1

that for P’ to grow exactly as ( ), it must be the case that the fewest

possible number of terms combine as we compute each new iterate. An example
of such a polynomial is

Plxy, -, x)=x; + - + X,
which is completely sparse for all i. Now in [1], Gentleman gives a result similar

in spirit to Heindel’s: for completely sparse polynomials, computing P" by
iteration is faster than using the binary method. The computing time for iteration
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is

(t+i—1) (t+n—1)
t =1 —t
1Sign—1 t—1 t

No closed formula for the time using the binary method has been obtained, but
in [1] it is shown that the ratio of the costs of binary to iteration needed to com-
pute P?", where P is completely sparse and initially has ¢ terms, is given by

1{2n n? _,
o n)(l——t—)+0(t ).

This implies that the binary method is more costly by at least a binomial factor.

In this paper, we will present a new algorithm for computing a power of an
arbitrary polynomial. Its motivation comes from the definition of a completely
sparse polynomial, and its computing time has a logarithmic work factor. Thus,
this new method corresponds in complexity to the use of the FFT for computing
powers of completely dense polynomials. We then present empirical results com-
paring this new algorithm to iteration.

2. The algorithm. First let us consider a specific instance of a completely
sparse polynomial, namely,

Pxy, -, x)=x;,+ -+ x,.

By the multinomial expansion theorem (e.g., see [6, p. 64]), it follows that

n
(2.1 X, 4+ -+ x)y= 3 ( )x’{‘ R AR
ny+etne=n \Ny, o, Ny
where the n; are integers in the range 0 < n; £ n. The number of distinct t-tuples

+n-—1

t
which sum to n is precisely ( ), corresponding to the definition of a

completely sparse polynomial. The definition of the multinomial coefficient is

n n!
Tal.oopnt
n17 ,nx 1 1

Moreover, we emphasize that each time the n; change, the next multinomial co-
efficient may be obtained from the previous one using one multiplication and
one division, i.e.,

n n n
(2.2) ) = —’( )
nl""’ni—l’ni+1+1""’nt ni+1+1nl,"‘,ni,ni+1""7nt
. o . . . t+n—1
Thus, if we generate the t-tuples in lexicographic order, it requires 2 )
t —
coefficient multiplications to compute the nth power of P(x,,---, x,). Un-

fortunately, for general sparse polynomials, it becomes necessary to sort the
terms thus adding a log factor to the computing time.
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The general algorithm begins with an arbitrary polynomial, say

P(yla"'7yu)= Z aiyeln.”yiw
1sist
in v variables with t nonzero terms. Conceptually, the method then proceeds by
setting

Xp = @yt YR, lsi=st,

producing the new polynomial

Plxy, -+, x)=xX; + - + X,.
The nth power of P is computed in linear time and the substitutions back to the
y; followed by a sort increase the bound by a log factor. This algorithm is now
given in complete detail.
The input polynomial with ¢ terms is assumed to be stored term by term in
the array TERM(1:t). The array N(1:t) contains the exponent vector and is
initialized to:

N()«n, N@2)« ---N(t) <0,

and the global variable POW is set to (TERM(1))". t is a global variable whose
value is the number of terms in the input polynomial. Then the following routine
is called using

(2.3) MULT(TERM(1)", 1, 1).

ArGoriTHM MULT(POL, COEF, i).
Input: POL, a multivariate polynomial
COEF, an integer
POW, a global variable initialized to (TERM(1))"
i, a nonnegative integer
Output: the global variable POW is set to: (TERM(1) + --- + TERM(r))"
1. if i=1 =t then /* move forward */
2 do; do while (N(i)— = 0);
3 N(i) « N@) — 1;
4, NEi+ 1)« NGi+1)+1;
5. COEF « COEF * (N(i) + 1)/N(i + 1);
6 POL « (POL/TERM()) * TERM(i + 1);
7 POW « POW + POL * COEF;
8. CALL MULT (POL, COEF,i + 1):
9. end;

10. ifi =1 then return

11. else do/* backtrack */
12. N(i) « NG + 1);
13. NG + 1)« 0;

14. return; ’

15. end;

16. end;

17. end POWER;



POWERS OF SYMBOLIC POLYNOMIALS 205

We now show that algorithm MULT when called as in (2.3) with POW
= (TERM(1))" and N(1) = n, N(2) = 0 results in the desired solution POW
= (), <i<, TERM())". It is clear that if all the terms of the sum in (2.1) are gener-
ated and then TERM(i) is substituted for Xx;, we obtain the desired result.
Associated with each term in the sum for (2.1) is a power sequence (n,,n,, - - - , 1,

and a coefficient ( ) For any power sequence (ny,n,,---,n,) and

nl sttt n!
2 £i £t, define the i-prefix to be (n;, ---, n;_;) and, for i = 1, the 1-prefix is
(). To see that only correct power sequences are generated and that each such
sequence is generated exactly once, we note that:

(i) Steps 3 and 4, 12 and 13 are the only ones that alter the power sequence.
Both pairs of steps preserve the value of Z N(i) and maintain N(i) = 0 (note that
the conditional of step 2 ensures that N(i) = 0 when steps 12 and 13 are executed).
Hence only valid power sequences are generated.

(i1) Each time a call to MULT is made, either initially or from step 8, the
i- or (i + 1)-prefix, respectively, is different from all other calls with the same
i-value. Hence each power sequence is generated only once.

(ii1) For any i-prefix, a call to MULT results in the generation of all power
sequences with the same i-prefix.

From (2.2) and steps 3, 4 and 5 of MULT, it follows that at all times the

value of COEF is ( ) Steps 3,4 and 6 imply that POL at any time has

n
N(1) --- N(2)
the value [ (TERM(i))™?. Hence it follows that the routine MULT, when called
as described above, results in the computation of (3, ., ., TERM())".

To get an estimate of the computing time, we note that each call to MULT
from step 8 results in 2 multiplication/divisions (abbreviated 2 M/D) in step 5,
2M/D in step 6 and another call to MULT. However, each such call results in

+n-—1

t
the generation of a new term. There are exactly ( ) such terms. To com-

pute (TERM(1))", log n multiplications are needed. Hence MULT requires

t+n—1 t+n-1
logn + 4 _— M/D ~ O L M/D.

The only other cost to be considered is that of the addition in step 7. The

. . t
best way to do this appears to be to just generate all ( ) terms, then sort

them adding together terms with identical power sequences (this will be required
only if the original polynomial P = )’ TERM(i) is not sparse to power n). This
sort-add step can be done in

of [ s}

resulting in an overall computing time of O(Tlog T), where T is the number of
terms in the answer. This is the same as for FFT over dense polynomials.
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For comparison, let us consider computing P" by computing the sequence
P, P2, ..., P"(ie., iteration). Then the number of multiplications is

A el )

Here, too, a sort-add step is needed, thus adding a log factor to the computing
time. The total computing time is then bounded by the sort-add time, which is

0( (t+n—1)l )
n ogtl.
r—1 |8

Hence we see that as far as an M/D count is concerned, MULT is optimal
to within a constant factor. It requires about O(n) times fewer multiplications
than iteration.

3. Empirical results. In this section we present the results of several tests
that were made to determine the global efficiency of these 2 algorithms. Though
asymptotic analyses are important, the value of practical testing should not be
underestimated. This is especially true when dealing with symbolic problems,
since the domain of actual computation is often moderately small, thus placing
added importance on constants and less on asymptotic results. All tests were
carried out on an IBM 360/65 using the SAC-1 System which provides, in part,
for arithmetic operations on multivariate polynomials.

Both completely dense and completely sparse polynomials were used as
test data for these algorithms. For completely sparse polynomials in v variables
the polynomials used were

P(xl,...,xv)=xl + .. +xv,

except when v = 1, in which case P(x,) = x; + 1. The completely dense poly-
nomial in 1 variable had degree = 7, while the corresponding polynomial in 2
variables had maximum degree = 2 in each variable. Completely dense poly-
nomials in 3 and 4 variables each have maximum degree = 1 in each variable.
All coefficients of P were one. Table 2 gives the results in milliseconds for com-
pletely sparse powers, while Table 3 contains the completely dense results. The
addition of step 7 was done using a standard polynomial add routine rather than
a sort-add at the end as described in the analysis of MULT. Finally, a non-
recursive version of MULT was programmed so as to reduce the overhead of
repeated procedure calls.

Similarly the additions required by iteration were not carried out by a sort-
add. Considering that only relatively small problems were tested, it is unlikely
that the advantage of using the asymptotically superior sort-add would have
been reflected in the computing times of Tables 2 and 3.

4. Conclusion. We have seen that there are two basic complementary models
for which one does an analysis of powering algorithms: completely dense and
completely sparse polynomials. The main result here has been to exhibit an
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TABLE 2
Completely sparse P"

No. of

variables 1 2 3 4
n Iter Mult Iter Mult Iter Mult Iter Mult
2 16.6 16.6 16.6 16.6 33.2 133.1 133.1 266.2
4 166 499 83.2 66.5 316.1 366.0 898.5 1064.9
6 83.2 83.2 183.0  99.8 931.8 665.6 3095.0 2579.2
8 116.4 83.2 3328 149.7 18969 1098.2 7937.2  5308.1
10 2163 1331 499.2  199.6 35776  1580.8 168729 94348
12 282.8 299.8 748.8  266.2 59904 23129 o
14 4326 1664 10649  299.5 9085.4  2995.2
16 449.2 2329 12480 316.1 13295.3  3966.3

** Power could not be computed with 23k words of work space.

TABLE 3
Completely dense P"
No. of
variables 1 2 3 4
max degree 7 2 1 1
n Iter Mult Iter Mult Iter Mult Iter Mult
2 116.4 3328 116.4 399.3 116.4 915.2 5158 2362.8
4 715.5 3927.0 848.6 3810.5 1913.6 8636.1 9368.3  63763.2
6 1597.4  22763.5 3461.1 17555.2 8253.4 464755 **
8 2812.1  99274.2 7987.2 63015.6 *
10 4509.4 >400sec  14809.6 172689.9

** Power could not be computed with 23k words of work space.

algorithm which requires O(T) multiplications and O(Tlog T) exponent com-
parisons (T is the number of terms in the nth power of a completely sparse poly-
nomial). From a complexity point of view, this means the best methods we know
of for computing powers take O(T log T') operations (T is the number of terms in
the result) for both the completely dense and completely sparse models.

In practice, a specific problem may have characteristics that give an ad-
vantage to any one of the other known methods; e.g., see [7], [8]. In addition to
the number of arithmetic operations, one may have to consider other relevant
factors such as the efficiency/inefficiency of recursion, procedure calls, etc., in
the source language. We have shown that for completely sparse polynomials
using a FORTRAN-based system, our new algorithm is better than iteration. But
for any symbol manipulation system which wants to provide only a single
powering routine, iteration seems the best choice (i) because of its simplicity,
(i1) because it yields all intermediate powers which may be useful, e.g., in sub-
stituting a polynomial for x'in P(x), and (iii) because it is uniformly good for both
polynomial models. The best known methods for either model are, on the average,
better than iteration by a factor of 2. Unfortunately, these specialized algorithms,
FFT for dense and MULT for sparse polynomials, perform very poorly on sparse
and dense polynomials, respectively.



208 ELLIS HOROWITZ AND SARTAJ SAHNI

REFERENCES

[1] W. M. GENTLEMAN, Optimal multiplication chains for computing a power of a symbolic polynomial,
Math. Comp., 26 (1972), pp. 935-939.

[2] L. HEINDEL, Computation of powers of multivariate polynomials over the integers, J. Comput.
System Sci., 6 (1972), pp. 1-8.

[3] E. HorowiTz, The efficient calculation of powers of polynomials, Ibid., 7 (1973), pp. 469-480.

[4] D. KNUTH, The Art of Computer Programming. Vol. II: Seminumerical Algorithms, Addison-
Wesley, Reading, Mass., 1968.

[5] J. M. POLLARD, The fast Fourier transform in a finite field, Math. Comp., 25 (1971), pp. 365-374.

[6] D. KNUTH, The Art of Computer Programming. Vol. I. Fundamental Algorithms, Addison-Wesley,
Reading, Mass., 1969.

[7] R. FATEMAN, Polynomial multiplication, powers and asymptotic analysis: Some comments, this
Journal, 3 (1974), pp. 196-213.

(8] , On the computation of powers of sparse polynomials, Studies in Appl. Math., 52 (1974),

pp. 145-155.




SIAM J. Compur.
Vol. 4, No. 3, September 1975

COMPUTATIONAL ALGORITHMS FOR THE ENUMERATION
OF GROUP INVARIANT PARTITIONS*

D. E. WHITE anp S. G. WILLIAMSON+

Abstract. Let G be a finite group acting on a finite set S and hence on I1(S), the lattice of partitions
of S. Computational methods are developed for enumerating the invariants of this action.

Key words. partitions of a set, group actions

1. Introduction. In this paper, computational algorithms are developed for
enumerating structures on G-invariant partitiohs. These algorithms are based on
identities derived in a previous paper [6, Thms. 1 and 2]. Using [5, Thm. 2], we
show how these results may be extended to the enumeration of partitions whose
stabilizer is conjugate to a given subgroup of G.

2. Statement of results. We recall the basic definitions and results of [6].

Let G be a finite group acting on a finite set S (notation G:S). This action
induces a natural action on the partitions TI(S) of S. A partition 7 e II(S) is G-
invariant if the stabilizer subgroup G, = G.

Let H, K be subgroups of G. We define

1
— Y x(6Ke™ ! < H),

My(K) = H]|
oeG

where

1 if statement is true,
¥ (statement) = ] .
0 if statement is false,

and |H| denotes the cardinality of H. M 4(K) is called the mark in G of H at K [1].

Let A be a system of orbit representatives for the action of G on S. Let IT(A)
be the partitions of A. Let ## be a complete set of nonconjugate subgroups of G. Let
G, be the stabilizer subgroup of t € S. We have the following theorem shown in
[6].

THEOREM 1. The number of G-invariant partitions of S is given by

Y L1 M),

oell(A) Aed Hex¥ MH(H) teA

The computational results derived below from Theorem 1 extend immediately
to [6, Thm. 2].

* Received by the editors August 3, 1974.
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Observe that the identity in Theorem 1 depends only on the conjugate classes
of the stability subgroups of the elements of A. Let H,, i = 1, ---, g, denote the
elements of # which occur as conjugates of some subgroup G,,teA. Let L,,
i=1,---,g, denote the set of all te A such that G, is conjugate to H;. Then
y={L;:i =1,---, g} defines a partition of A. We denote |L| by ;. Let n = |A|.
An integral partition of n is a set of integers {k,, ---, k;} such that k, + --- + k,

= n. Without loss of generality, we may assume that0 < k, < --- < k;. Given an
integral partition p = {k,, ---, k,} of n, we construct a class M, of nornegative,
integral g x d matrices. A matrix B = (b;;) is in M , if

d
(1) Zbij=li’ i=1,--,g;

j=1

14

(2) Zbij=kj5 ]=]a ’d9

3 if b; denotes the jth column vector of B and if p < g and

k, = k,, then b, < b, lexicographically.
Using (1), (2) and (3), any matrix B in M, may be specified by notation v}, vi, - - -,
where the vectors v,,t = 1,2, ---, are the distinct column vectors from B and

Ji,t = 1,2, -+ are their multiplicities in B.
For any vector v=(a,,---,qa,) define v!=(a,!)(a,!) - (a,)). Let I
=(ly, -, l) where |, = |L;| as defined above. Define
1!
N(B) =

THEOREM 2. The number of G-invariant partitions is

g

ST NBI T i [0
H

p BeM, j=1 Hex#

We note that the extension of this result to [6, Thm. 2] is obvious and will be
illustrated in the example below (§ 3).

We also observe that this result may be extended to count the number of
orbits of partitions whose stabilizer subgroups are conjugate to a given subgroup
of G. We do this as follows: from [5, Thm. 2], we note that if T is a finite set,
G :T and A a system of orbit representatives for this action, then for H a subgroup
of G,

(4) Y. M(H) ) %G, ~K)= x(H< G),

Kes# teA teT

where G, ~ K means G, is conjugate to K.

Thus by merely setting T = I1(S) and applying (4), we obtain our desired
result. In Theorem 11.3 of [2], M. J. Klass dealt with a slightly different problem,
that of counting orbits of given cardinality. We remark that this number may be
computed from (4). Furthermore, Theorem 11.3 of [2], which involves the Mbius
function on the lattice of subgroups of G, follows easily from [4, Thm. 13].
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3. Proofs and examples. We prove Theorem 2. Let y = {Liti=1,---,g]
be defined as above. We represent 6 = {K,, ---, K,} € TI(A) as a set

B=1{B;:j=1,---,d},

where
B, = (L, NK;, -, L, NK).

With each such & we associate a matrix B = (b;), where b;; = |[L; N K|, and we
adopt the convention that the blocks of ¢ are listed in increasing order of car-
dinality and that if |K | =k, = k, for p < g, then the column vector b, < b,
lexicographically. Observe that with this convention B satisfies (1), (2) and (3) of
§2with p = {|K,|, ---, |K,|}. Thus we rewrite Theorem 1 in the form of Theorem
2, where N(B)represents the cardinality of the set #(B) of partitions ¢ corresponding
to the matrix B.

We now compute N(B). Let 4 = S, x -+ x §;_act on 5(B) as follows (S,
denotes the symmetric group on Q) :let # correspond to § asabove,(a,, - -+, 6,)€%.
Define (6,, -, 0,)%8 =% where B, = (o6,(L, NK)), -, 0L, NK)). If &
= {K},---, K}, where |L; N K| = |L; N K| for all i, j (that is, the associated
matrices B and B’ are equal, then for each i one may choose g;€ S, such that
o{L; N K} = (L; N K)) for all j. Thus % acts transitively on n(B) and N(B)
= |9|/|%;) when %; is the stabilizer of 4 at 6. As a coneeptual aid, we display the set
2 associated with J as the following array :

Byy By, - By,

By By o By
(Bij) = . K

B, Bey oo By

where B;; = L; N K;. # is the set of column vectors of (B;;). Observe that ;
consists of all permutations in % which permute those columns of (B;;) yielding
identical column vectors in B = (b;;) = (|B;]), or which permute elements within
the sets B;;. The number of such permutations is clearly ], (v,!)/*j,!. Theorem 2
follows. 0

We illustrate Theorem 2 with the following example. Let S be the squares of
an 8 x 8 chessboard. Let G be the dihedral group of order 8 acting on S. We list a
complete set of nonconjugate subgroups of G:

G, =G = {e,0,0%, 0% 1,01,0%1,0°1},

where e is the identity, o is a 90° clockwise rotation and 7 is a reflection through a
line through opposite corners,

G, ={e,0,06%, 0%, G;={e 0% 0t,0%), G,=le, 0% 1,0%),
Gs = {e,a%}, Gg=l{e,ot}, G,={e,1} and Ggz= {e}.
The table of marks of G is Table 1.
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where the (i, j)th entry is M (G;). We list a system of orbit representatives for G:S

D. E. WHITE AND S. G. WILLIAMSON

G, G,

TABLE 1

G, G,

Gs G; Gs

b— e b e e e
NDNOONO O
DO NN ON

on the chessboard below :

DD O NN
r OO S

S o
(39

4 7 9 10

3 6 8

2 5

1

TABLE 2.
r x(r) r x(r)

1 1 18 65, 519, 488, 045
2 23, 828, 736 20 66, 268, 850, 337
3 336, 152, 832 22 66, 271, 980, 705
4 10, 675, 543, 925 24 66, 476, 118, 945
5 15,217, 251, 125 26 66, 476, 253, 345
6 26, 284, 502,917 28 66, 525, 347, 877
7 28, 249, 780, 357 30 66, 525, 350, 949
8 50, 568, 389, 776 32 66, 536, 146, 286
9 51,074, 368, 656 36 66, 538, 303, 906
10 54,278, 741, 392 40 66, 538, 696, 310
11 54, 341, 139, 856 44 66, 538, 760, 174
12 62, 293, 956, 800 48 66, 538, 769, 770
13 62, 298, 921, 152 52 66, 538, 770, 982
14 62, 780, 111, 040 56 66, 538, 771, 126
15 62, 780, 307, 648 60 66, 538, 771, 138
16 65,472, 118, 765 64 66, 538, 771, 139
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A={1,---,10}. We see that y = {{1,2,3,4},15,6,7,8,9,10}}, g =2, |, = 4,
I, =6,H, = G;and H, = Gg. Wenow ask : how many G-invariant partitions, x(r),
of the squares of the chessboard are there such that no block has cardinality greater
than r? We answer this question in the Table 2, by using the extension of the present
Theorem 2 to Theorem 2 of [6]. We remark that as was developed in [6], we may
apply modifications of Theorem 2 to count rooted trees, full cycle permutations,
etc., on the blocks of G-invariant partitions. We also observe that the classification
of the elements of A by stabilizer subgroup may be performed using (4) and need not
be stated explicitly.
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EVERY PRIME HAS A SUCCINCT CERTIFICATE*
VAUGHAN R. PRATT?}

Abstract. To prove that a number n is composite, it suffices to exhibit the working for the multiplica-
tion of a pair of factors. This working, represented as a string, is of length bounded by a polynomial
in log, n. We show that the same property holds for the primes. It is noteworthy that almost no other
set is known to have the property that short proofs for membership or nonmembership exist for all
candidates without being known to have the property that such proofs are easy to come by. It remains

an open problem whether a prime n can be recognized in only log} n operations of a Turing machine
for any fixed o.

The proof system used for certifying primes is as follows.
AxIOM. (x, y,1).
INFERENCE RULES.
Ry: (p,x,a),q+ (p,x,qa) provided x?~ 14 = 1 (mod p) and ¢|(p — 1).

R,: (p,x,p — 1) — p provided x*~! = 1 (mod p).

THEOREM 1. p is a theorem = p is a prime.
THEOREM 2. p is a theorem > p has a proof of [4 log, p]1 lines.

Key words. primes, membership, nondeterministic, proof, NP-complete, computational complexity

1. Proofs. We know of no efficient method that will reliably tell whether
a given number is prime or composite. By “efficient’’, we mean a method for which
the time is at most a polynomial in the length of the number written in positional
notation. Thus the cost of testing primes and composites is very high. In contrast,
the cost of selling composites (persuading a potential customer that you have one)
is very low—in every case, one multiplication suffices. The only catch is that the
salesman may need to work overtime to prepare his short sales pitch ; the effort
is nevertheless rewarded when there are many customers.!

At a meeting of the American Mathematical Society in 1903, Frank Cole
used this property of composites to add dramatic impact to the presentation of
his paper. Hisresult was that 267 — 1 was composite, contradicting a two-centuries-
old conjecture of Mersenne. Although it had taken Cole “‘three years of Sundays”
to find the factors, once he had done so he could, in a few minutes and without
uttering a word, convince a large audience of his result simply by writing down
the arithmetic for evaluating 267 — 1 and 193707721 x 761838257287.

We now show that the primes are to a lesser extent similarly blessed ; one
may certify p with a proof of at most [4 log, p1 lines, in a system each of whose
inference rules are readily applied in time O(log? p). The method is based on the
Lucas—Lehmer heuristic (Lehmer (1927)) for testing primeness.

In the system to be described, theorems take one of two forms:

(i) “p”, asserting that p is prime, or

(i)) “(p, x, a@)”, asserting that we are making progress towards establishing
that p is a prime and that x is a primitive root (mod p); a is a progress indicator

* Received by the editors May 24, 1974.
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! Edmonds (1965) discusses a similar situation with a “supervisor and his hard-working assistant”.
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such that when it reaches p — 1, we may establish these properties for p and x
in one more step.
The system is as follows.
AxIOM. (x, y, 1).
INFERENCE RULES.
R,: (p,x,a),q+ (p,x,qa) provided x?~ 14 = | (mod p) and q|(p — 1);

R,: (p,x,p — 1)~ p provided x*?~! = 1 (mod p).

A certificate of p is then a proof in this system with last line p.
Some familiar primes are given by the following proofs.

() 2,1,1) Axiom;

) 2 (1),R,, 1 = 1 (mod 2);

3) (3,2,1) Axiom;

4) 3.,2,2) (3),(2),R,, 2! = 2(mod 3);
%) 3 4),R,, 2% = 1 (mod 3).

No proof for 4 is possible because we would need to prove (4, x, 3) for some
x = 1 (mod 4)(by the conditionin R,), which would contradict the conditioninR ;.

(6) 5,2,1) Axiom;

0 (5,2,2) 6),(2), R, 22 = 4 (mod 5);
®) (5,2,4) (7),2),R,, 22 = 4(mod 5);
) 5 8),R,,2* = 1 (mod 5).

No proof for 6 is possible because x> 2 1 (mod 6) for all x # 1 (mod 6).
(10) (11,2,1) Axiom;

(11) (11,2,2) (10),(2),R,,2° = 10 (mod 11);
(12) (11,2,10)  (11),(9), R{,2* = 4 (mod 11);
(13) 11 (12),R,,2'% = 1 (mod 11);

(14) (23,5,1) Axiom;

(15) (23,5,2) (14),(2), R, 5" = 22 (mod 23);
(16) (23,5,22)  (15),(13),R,, 5% = 2 (mod 23);
17) 23 (16),R,, 2322 = 1 (mod 23);
(18) 47,5,1) Axiom;

(19) 47,5,2) (18),(2),R,,5%® = 46 (mod 47);
(20) (47,5,46)  (19),(17),R, 5% = 25(mod 47);

(21) 47 (20),R,, 5*¢ = 1 (mod 47).



216 VAUGHAN R. PRATT

Not counting the proof for 3, this (shortest) proof of 47 took 18 steps, not
too far from the promised bound of [4log, 471 = 22. The gap is mostly due to
the proof of 47 not using the proof of 3 that is counted in the bound [4 log, p1.
A much larger gap is exhibited by the proof of 474397531, which is 23 lines long;;
here, [4log, p1 = 116. This prime was constructed to show that our bound on
proof length is not always tight. Steps (1) to (9) are as above.

(10 (251,6,1) Axiom;

(11) (251,6,2) (10),(2),R,;
(12) (251, 6, 10) (11),9),R,;
(13) (251, 6, 50) (12),09), R,;
(14) (251, 6, 250) (13),09),Ry;
(15) 251 (14),R,;

(16) (474397531,2, 1) Axiom;

(17) (474397531, 2,2) (16),(2),R;
(18) (474397531, 2, 6) (17),(5),R,;
(19) (474397531, 2, 30) (18),(9), R, ;
(20) (474397531, 2, 7530) (19),(15), R, ;
1) (474397531, 2, 1890030) (20),(15), R, ;
(22) (474397531,2,474397530)  (21),(15),R,;
(23) 474397531 (22), R,.

2. Metaproofs. We now prove soundness and completeness of our system.

THEOREM 1. p is a prime if and only if p is a theorem.

Proof. If. No number has multiplicative order p — 1 (mod p) when p is not a
prime. If such a p is proved, it must be by application of R, to (p, x, p — 1) where
x?~!' = 1(mod p). Hence x/ = 1 (mod p) for some j < p — 1. Now jlp — 1, so
xP~ 1 = 1 (mod p) for some prime q. But to prove (p, x, p — 1), we had to build up
p — 1 as the product of primes g which satisfied x?~ /4 % 1 (mod p). Applying
the fundamental theorem of arithmetic then leads to a contradiction.

Only if. This part proceeds by induction on p. If p is prime, then p has a primi-
tive root (mod p), that is, a number whose multiplicative order (mod p) is p — 1.
A proof of p may start with the axiom (p, x, 1) for such a primitive root x. By the
induction hypothesis, each of the prime factors of p — 1 is a theorem. Moreover,
for each such prime factor g, x*~ 17 = 1 (mod p); otherwise the order of x would
be less than p — 1. Hence the proof system permits the inference of any theorem
(p, x, a), where a is a product of prime factors of p — 1. In particular, (p, x,p — 1)
may be inferred, and since x? ! = 1 (mod p), we may infer p. [J

We now establish the efficiency of our method.

THEOREM 2. If p is a theorem, then p has a proof of at most [4 log, p1 lines.

Proof. The construction given in the proof of Theorem 1 yields such a proof.
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First prove 2 and 3 in five lines. (These primes p are special because p — 1 is not
composite.) We now assume as our induction hypothesis that by not counting
the proofs of 2 and 3, each prime p can be proved in at most |4 log, p] — 4 lines.

For p = 2 or 3, this follows directly from the identities [4log,2| — 4 =10
and |4log, 3] —4=2.Forp>3,letp—1=pp, - p, k= 2 Then the cost
of proving p is bounded above by

2+ k+ Z (l41og, p;] — 4) (by the induction hypothesis)
15isk

< [4logy pypa - Pl — 4 (since k > 2)

< |4log,p)| — 4, (the desired answer).

If we now count the 5 lines required to prove 2and 3, the costrisesto (4 log, p| + 1
lines. For p > 2, log, p will not be an integer, and so the cost is bounded by
[41og, p1, a bound that is 4 when p = 2 and is therefore applicable to all p. [

Almost identical proofs may be used to show that no more than [31log, p|
lines involve an exponentiation and (2 log, p| a multiplication, facts which we
will use in the next section.

3. Picturesque proofs. The reader should have little difficulty in seeing that all
the information in the proof that 5 is prime is contained in the following tree,
whose vertices are primes together with their primitive roots.

(5,2) or, collapsing (5,2)
repeated vertices Il
2,1 2,1) for brevity: 2,1

The proof tree for 474397531, when collapsed, becomes
(474397531, 2)

fl (3.2

It is straightforward to check a proof tree without reconstructing the proof.

The “VELP” test (vertices, edges, leaves, products) is
(i) For each vertex (p, x), x?~! = 1 (mod p).

(i) For each edge (p, x) down to (g, y), x? 14 2 1 (mod p) and q|p — 1.

(iii) Each leaf is (2, 1).

(iv) For each vertex (p, x) with immediate descendants (p,, x,), - - -, (Px> Xi)»
p=pwpy-- bt L

The proof tree approach is more picturesque than the proof system, whose
raison d’étre is that it is more formally and compactly presented.

4. Computations. Returning to our customer, we find him dissatisfied with
the exponentiation he must carry out to check a line. He protests that the evalua-
tion of xb requires b — 1 multiplications, and also that the numbers produced
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along the way have O(b) digits, which he has neither time nor paper to write down
for large b.

The first protest is dealt with by the well-known trick of exponentiating by
repeated squaring, which yields x? with at most 2|log, b | multiplications. This
method is an essential feature of the Lucas—Lehmer heuristic. The method may be
described recursively as:

xt: b=0-1,

bodd —» xx*~ 1,
b even — (x2)2.

To eliminate the recursion and attendant waste of space, we translate this
algorithm into a “‘deterministic’ system whose rules are

(u,v,w) — (u?,0/2,w) if v is even,
(u,v,w) — (u,v — 1,uw) ifvis odd.

Now wu® is an invariant of these rules, each of which reduces either the
number of significant bits (provided v # 0) or the number of 1’s in v (expressed
in binary notation), but not both. Hence (x, b, 1) il (y,0, x?) in a number of steps
exactly one less than the number of bits plus the number of 1’s in b, which is at
most 2[log, (b + 1)1 — 1. By skipping the multiplication the first time w is multi-
plied by u, and beginning with (x, b, x), only 2|log, b | multiplications are required.

The second protest is disposed of by performing each multiplication modulo p
in the above algorithms when testing x* = 1 (mod p).

In any proof of p, each multiplication is performed modulo g for some prime
q < p. Moreover, in testing x®, b < p. Hence each exponentiation requires at most
2|log, p ] multiplications of numbers smaller than p. At most |3 log, p | exponen-
tiations are required, whence no more than 6logZ p multiplications plus the
|2 log, p | multiplications from R, are needed. Each multiplication may be carried
out in O(log p log log p) steps on a random access machine (RAM) (Schonhage
and Strassen, (1971)), and so O(log® p log log p) steps suffice to check a proof of p
on a RAM. (A factor of logloglog p creeps in for those who do the arithmetic
on paper (or on a Turing machine) due to time spent scanning and shuffling the
sheets!)

An item that might find a market among consumers of prime numbers would
be a pocket calculator with a predicate (x, b, p) that evaluates x?~V/* = 1 (mod p).
Only one bit of output is required, only integer arithmetic (multiple-precision) is
used, and so the unit should cost about $100 in quantity at today’s prices, assuming
that it handles integers of up to several hundred bits. Users of the Hewlett Packard
HP-65 pocket computer with the appropriate program may find it suitable but
expensive. A proof using our method of, say, the smallest Mersenne prime yet
undiscovered would require a considerably more expensive unit, with perhaps
30,000-bit integers and sufficient parallelism to make the computation time
acceptably low.

5. Complexity. The families NP (P) of sets of strings accepted (recognized)
in time some polynomial function of their length by some nondeterministic
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(deterministic) Turing machine? have recently engaged the attention of computa-
tational complexity theorists. The family P is of interest in that it includes all sets
that can be recognized reasonably quickly, a property that has become identified
to some extent with membership in P. The family NP is of interest (Cook (1971),
Karp (1972)) because it includes thirty or more operations-research-related sets
each with the astonishing property that if it belonged to P, then NP = P, implying
that all of its fellow O.R. sets would be in P, along with other sets in NP (such as
{primes} as we showed above) not known at present to belong to P. In view of
the effort that has been expended in the past twenty years or so on trying to show
that any one of these sets is in P, it is widely conjectured that none is, that is,
NP # P. These peculiar sets are called NP-complete.

A family of sets that has only very recently attracted any attention is coNP
= {S|S e NP}. Of course, coP = P, whence if NP = P, then coNP = NP. How-
ever, it is conceivable that NP # P but NP = coNP. It is straightforward to
show that NP = coNP if and only if some NP-complete set is in coNP, just as
NP = P if and only if some NP-complete set is in P, and it is conjectured that
NP # coNP.

If true, this implies that NP N coNP contains no NP-complete problems.
One is tempted to speculate that NP (| coNP = P. After all, the families RE and R
of recursively enumerable and recursive sets, whose relationship resembles the
NP — P relationship, satisfy RE ) coRE = R; and until recently, every known
member of NP ) coNP was known to be in P. Thus one could be forgiven for
wanting to conjecture that NP (\ coNP = P.

An immediate corollary of § 4 above is that the primes are in NP " coNP.
Provided NP # coNP, this settles in the negative a question raised by Cook as
to whether the composites are NP-complete. Conjecture aside, it gives us the first
known member of NP 1 coNP not known to be in P. Chvatal has recently ex-
hibited another set with this property, namely the set of pairs (linear programming
problem, optimal solution toit). No other such sets are known, although a plausible
candidate is the set of irreducible univariate polynomials over the integers.
Berlekamp (1967) has shown that over any finite field such a set is in P. A somewhat
less plausible candidate is the set of pairs of isomorphic graphs.

If the primes or the optimal-lp-solutions are not in P, it will not be because
they are NP-complete (still supposing NP # coNP) which is the usual reason.
One might therefore say that these problems were anomalously hard, although
any term for this phenomenon lacks the all-or-nothing significance of “NP-
completeness”. The whole question of proving lower bounds on the complexity of
sets in NP is completely open, and any information about the structure of hard
problems would be welcome. In particular, the criterion that membership in
NP N coNP precludes NP-completeness, though based only on a conjecture, is
nonetheless a useful guide considering how few tools we have in the area.

6. Conclusion. We exhibited a simple system whose theorems are exactly the
set of all primes and whose proofs are very short. We inferred from this that the
primes are in NP (1 coNP, giving us our first example of a member of NP N coNP
not known to be in P. We advocated membership in NP | coNP as a strong

2 That is, for each such set there is a polynomial and a Turing machine.
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reason for presuming non-NP-completeness, based on the plausible and moderately
popular conjecture that NP # coNP. We observed the striking paucity of sets
that are candidates for lying between P and NP-complete sets. It is interesting
to find the number theorists’ most famous set occupying a special position in
complexity theory.
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FINDING A MAXIMUM CUT OF A PLANAR GRAPH
IN POLYNOMIAL TIME*

F. HADLOCK

Abstract. The problem of finding a maximum cut of an arbitrary graph is one of a list of 21 com-
binatorial problems (Karp—Cook list). It is unknown whether or not there exist algorithms operating
in polynomial bounded time for any of these problems. It has been shown that existence for one implies
existence for all. In this paper we deal with a special case of the maximum cut problem. By requiring the
graph to be planar, it is shown the problem can be translated into a maximum weighted matching
problem for which there exists a polynomial bounded algorithm.

Key words. maximum cut, planar graph, geometric dual, polynomial time

1. Introduction. In this paper, it is shown that the maximum cut problem
can be translated into the maximum weighted matching problem when the graph
under consideration is planar. For an arbitrary graph, several algorithms exist
for finding a maximum cut [4] and [5]. Both require exponential time in worst-case
situations. Since the maximum weighted matching problem has a polynomial
bounded algorithm [1], [2], a maximum cut of a planar graph can be found in
polynomial time by using the translation process to be presented.

2. Maximum cuts and odd circuits. An edge set D whose removal leaves a
subgraph free of odd circuits will be called an odd-circuit cover. The purpose of this
sectionisto obtainan alternative formulation for the problem offinding a maximum
cut. First the relationship between cuts and odd-circuit covers is established.

THEOREM 1. An edge set is contained in a cut if and only if its complement is an
odd-circuit cover.

Proof. Let Q be an edge set contained in a cut C. The intersection of any circuit
with C is even and so ~ Q must contain an edge of any odd circuit. Hence ~Q is an
odd-circuit cover.

Conversely, if ~Q is an odd-circuit cover, its removal leaves a graph free of
odd circuits and hence bipartite. Thus Q is contained in a cut.

As a consequence of Theorem 1, an alternative to looking for maximum cuts
is to look for minimum odd-circuit covers. This is justified by the following corol-
lary, which follows immediately from Theorem 1.

COROLLARY 1. An edge set is a maximum cut if and only if its complement is a
minimum odd-circuit cover.

The following fact means we can confine our attention to a circuit basis
rather than looking at the entire space in constructing an odd-circuit cover. Since
a graph is bipartite if and only if its circuit space has an even basis [6], an edge set D
is an odd-circuit cover if and only if its removal leaves a subgraph with an even
basis. The term even basis refers to a circuit basis in which every element is an even
circuit.

3. Odd-circuit covers and odd-vertex pairings. To obtain a maximum cut of a
planar graph G, we suppose some embedding and take as a basis the contours of the
finite faces. It is more convenient to work with the geometric dual, Gy, of G, where

* Received by the editors November 26, 1973, and in revised form July 24, 1974.

T Department of Mathematics, Florida Atlantic University, Boca Raton, Florida 33432.
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the odd basis elements (along with the contour of the infinite face, if odd) become
precisely the set of odd vertices. An edge e in G corresponds to an edge ¢’ in G
if and only if the two faces separated by e in the embedding of G correspond to the
endpoints of ¢ in Gp.

An edge set whose removal leaves a subgraph free of odd vertices will be
called an odd-vertex pairing. Thus a subgraph with an odd-vertex pairing as edge
set has an Euler subgraph as complement. The following theorem establishes a
correspondence between odd-circuit covers and odd-vertex pairings.

THEOREM 2. An edge set D is an odd-circuit cover of a planar graph G if and only
if the corresponding edge set P is an odd-vertex pairing for the geometric dual Gy,
of G.

Proof. Let Gp, be the geometric dual of G for some embedding of G, with D and
P corresponding edge sets of G and Gp, respectively. Let G’ and Gp, be the sub-
graphs of G and Gy, left by the removal of D and P. Circuits of G correspond by the
1-1 edge correspondence to cut-sets of Gp,. This is also true for G’ and Gp,. In
particular, circuit basis elements of G’ correspond to cut-set basis elements of
Gp, as follows. A circuit basis element of G is the contour of a finite face. Its edges
correspond in 1-1 fashion with the edges of G, which are incident with the vertex
representing that face. The set of edges incident with the vertex is a cut-set basis
element.

If D is an odd-circuit cover, the circuit basis for G’ is even. Since the edge
correspondence is 1-1, the cut-set basis of Gy, is even. Consequently the degree must
be even for any vertex of Gy corresponding to a finite face of G'. The vertex cor-
responding to the infinite face cannot be the sole odd vertex. Hence P is an odd-
vertex pairing.

The converse follows by a similar argument.

To find a maximum cut of a planar graph, it suffices to find a minimum odd-
vertex pairing of its dual. The following theorem gives a useful characterization of
odd-vertex pairings.

THEOREM 3. For an edge set P of an arbitrary multigraph G, P is a minimum odd-
vertex pairing if and only if P forms an edge disjoint collection of paths with odd
vertices of G as endpoints, using each once as endpoint, and with minimum sum of
path lengths.

Proof. Let P be a minimum odd-vertex pairing for a multigraph G. The parity
of a vertex refers to its degree : odd or even. If H is the subgraph left by the removal
of P, since H is an Euler subgraph, a vertex has the same parity in P as in G. In any
component of a graph, there must be an even number of odd vertices ; hence any
odd vertex in P is connected to another. Remove a path connecting a pair of odd
vertices from both P and G to obtain subgraphs P, and G,. P, is an odd-vertex
pairing for G, since its removal leaves H. Any vertex has the same parity in P, as
G, . In going from P to P,, the number of odd vertices has been reduced by two.
Repeating the process eventually yields an odd-vertex pairing P; with no odd ver-
tices for a multigraph G;. Since any vertex has the same parity in G; as P, G, is
Euler. Since P was assumed to be minimal, G; = H and P; = (V, &) (i.e., no edges).
Then P is the disjoint collection of paths with the odd vertices of G as endpoints,
using each once as endpoint. The sum of the path lengths is minimum since P is
minimum.
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Now suppose P is a collection of edge-disjoint paths with odd vertices as
endpoints, using each endpoint once as endpoint, and with minimum sum of path
lengths. Remove P from G, one path at a time. Denote by H the subgraph remaining
after P has been removed. The removal of each path leaves the endpoints even and
does not alter the parity of intermediate vertices. Since any vertex odd in G appears
once as an endpoint, it isevenin H,and so P is an odd-vertex pairing. P is minimum
since the sum of path lengths is minimum.

4. Odd-vertex pairings. The task of pairing odd vertices so as to minimize
the sum of the lengths of the paths pairing them is easily posed as a maximum
matching problem as observed in [3].

Given a multigraph G, a minimum odd-vertex pairing P for G is obtained as
follows. Let G, be the complete graph with vertices corresponding to the odd
vertices of G. With each edge e = (u, v), associate the weight W — d(u, v) where
d(u, v) is the length of the minimum length path connecting u and v and W = 1
+ max {d(u, v)lu,v odd in G}. Let M be a maximum matching of G.. Then M
defines a minimum odd vertex pairing as follows. For each edge e = (u,v) in M,
include in P the edges of any minimum length path connecting u and v in G.

The problem is now in a form for which there exists an algorithm [2] for its
solution. It is an algorithm which is good in the sense that the amount of time it
requires is a polynomial function of an input parameter (the number of vertices in
this case).

5. An example. To illustrate the process of translating a solution to the
maximum matching problem into a solution to the maximum cut problem, we
use an example (Fig. 1) in which the matching problem is solved by inspection.
A minimum odd-circuit cover may be found by determining a minimum odd-
vertex pairing of the geometric dual Gy, (Fig. 2). In turn, this may be found by
determining a maximum matching for the complete graph on the odd vertices
of Gy (Fig. 3). Since the weights here are 1 or 2, any complete matching with all
edge weights 2 is a maximum matching (Fig. 4). A minimum odd-vertex pairing
for Gp, is obtained by taking a minimum path connecting u and v for each edge
(u, v) in the maximum matching. In this case each minimum path is single edge (u, v).

F1G. 1. Planar graph G FI1G. 2. Dual of G, Gy,
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a ¢ d g h i
a 2 2 2 2 2
c 1 2 1 1
d 1 1 1
g 1 1
h 2

i
F1G. 3. Edge weights for complete graph G on odd vertices of Gp,

M = {(aa d)v (C, g)’ (h7 l)}

F1G. 4. Maximum matching for G,

P = {(07 d)’ (67 g)# (h7 l)}

F1G. 5. Minimum odd-vertex pairing for Gp

F1G. 6. Minimum odd circuit cover for G

Their collection forms an odd-vertex pairing (Fig. 5). The corresponding minimum
odd-circuit cover for G consists of the marked edges (Fig. 6). Its complement is
a maximum cut.

6. Conclusions. Finding a maximum cut of a planar graph is a special case,
as remarked earlier, of a problem on a list [8] of combinatorial optimization
problems, including the traveling salesman problem and the problem of vertex
coloring a graph with the fewest number of colors. If any of these problems have a
polynomial bounded algorithm, all do. In this paper, the existence of a polynomial
bounded algorithm for a special case (planar graphs) of one of these problems may
aid in defining special cases of the others for which polynomial bounded algorithms
exist. At the same time, an attempt to extend this approach to the general case
might lend insight as to why a polynomial bounded algorithm does not (as is
widely believed) exist for the general case.
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COMPLETE REGISTER ALLOCATION PROBLEMS*
RAVI SETHIt

Abstract. The search for efficient register allocation algorithms dates back to the time of the first
FORTRAN compiler for the IBM 704. The model we use in this paper is a single processor with an
arbitrarily large number of general registers. The objective is to use as few registers as possible, under the
constraint that no stores into memory are permitted. The programs under consideration are sequences
of assignment instructions. We show that, given a program and an integer k, determining if the program
can be computed using k registers is polynomial complete. It should be noted that k can be any integer.

Key words. register allocation, program optimization, polynomial complete, straight line program,
basic block, dag

1. The machine model. Despite the fact that register allocation has been of
interest to compiler writers since the time of the first FORTRAN compiler for the
IBM 704 [2], there are few algorithms available for producing optimal allocations.
In this paper we will demonstrate that register allocation is a member of a class of
problems for which there is no known nonenumerative solution.

For the purposes of introduction, the machine model in this paper consists
of a single processor, a memory and an arbitrarily large number of registers.
Instructions are of two types:

(i) Load register j—take a value from a specified location in memory and

place it in register j; all other registers are unchanged.

(i) reg j « O(regi,,regi,—the result of applying the operator 6 to the con-
tents of registers i; and i, is placed in register j; all other registers are
unchanged. Registers i, i, and j need not necessarily be distinct.

The absence of input-output instructions leads to the assumption that all

initial values are already in memory. All registers are initially empty.

The absence of control flow and test instructions means that the programs
that can be computed using the above model are sequences of assignment in-
structions. Such programs have been referred to as straight line programs [1]
or basic blocks [2].

As an aside, we note that single expressions are a special class of straight line
programs. Algorithms for determining the minimal number of registers needed
to compute expressions which have no common subexpressions, may be found
in [3],[8],[9], [10]. The algorithms operate in linear time and can handle algebraic
properties like associativity and commutativity.

Another restriction on the instruction set in the model is the absence of
stores, which transfer a value from a register into memory. Straight line sections
encountered during compilation tend to require a small number of registers.
Hence the objective, as it will be in this paper, is to limit the number of registers
used, while not permitting stores.

2. Graphical representation of programs. Graphical representations of
programs are intuitive, and perhaps best introduced by an example.

* Received by the editors February 1, 1973, and in revised form May 13, 1974.
T Pennsylvania State University, University Park, Pennsylvania 16802. This work was supported
in part at Princeton University by the National Science Foundation under Grant GJ-1052.
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Example 2.1. Consider the evaluation of the polynomial a + bx + cx?2,
using the expression a + (b + c¢* x)* x. The “‘dag” corresponding to this ex-
pression is given by Fig. 1.

Addirected graph G is a pair (V, B) where Vis a set of nodes, or vertices. Elements
of Bare called branches, or edges,and are pairs of nodes. Informally, nodes represent
values relevant to a program, and a branch (x, y) indicates that node y must be
computed before node x. Given a branch (x, y), node x is called a direct ancestor
of node y, and y is called a direct descendant of x. A sequence x¢x, - - x;, k = 0,
where foralli, 1 <i < k,(x;_,, x;)is a branch, is called a path of length k. S is said
to be from x, to x,. If S is a path from x to y, then x is said to be an ancestor of y,
and y is said to be a descendant of x.

In keeping with intuitive understanding that a branch (x, y) implies that y
must be computed before x, it follows that a path from x to y means that y must
be computed before x.

A path oflength greater than 0 from a node x to x is called a cycle. A directed
acyclic graph (abbreviated dag), is a directed graph with no cycles.

The graph in Fig. 1 is a dag. An algorithm to construct the dag for a straight
line program may be found in [1]. For our purposes, we will assume that a straight
line program is specified by giving its dag representation.

F1G. 1. A dag for the expression a + (b + c*x)*x. The integers give the registers into which nodes
are computed

We need to identify nodes that correspond to initial values in a straight
line program : a node with no descendants is called a leaf. A node with no ancestors
is called a root. Register allocation for a special kind of dag has been considered
in [3], (8], [9], [10]: a tree is a dag with a single root, in which each node except
the root has a unique direct ancestor.

Since we assume that a straight line program is specified as a dag, we will
modify our notion of ‘‘computation’ so that it is defined in terms of dags, rather
than in terms of a machine model. Instead of computing a value into a register,
we will think of placing a ‘‘stone’’ that identifies a register onto the node represent-
ing the value. Computing a straight line program then corresponds to placing
and moving “‘stones’’ on the appropriate dag.
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Game 1. Let D be a dag. Let there be an infinite supply of stones, where stones
may be thought of as registers. A move in Game 1 is one of the following

1. place a stone on a leafin D, or

2. pick up a stone from a node in D, or

if there are stones on every direct descendant of a node x in D; then

3. place a new stone on X, or

4. move a stone to x from one of the direct descendants of x.

The definition above has been adapted from one in [11], [12]. In terms of
the machine model, step 1 in the definition of Game 1 corresponds to loading
an initial value into a register. Step 2 does not have an instruction counterpart.
It can be viewed as declaring that the register in question can now be used to hold
a new value. Steps 3 and 4 correspond to the operation reg j « O(regi,,regi,).
In step 3, jis not in the set {i,, i,}. In step 4, j is either i, or i,.

An important difference between the instruction in the machine model and
steps 3 and 4 is that steps 3 and 4 refer to all the possibly many direct descendants
of a given node x. While the instruction in the machine model is in terms of binary
operations, for pedagogical reasons it will be convenient to allow a node in a dag
to have a finite but arbitrarily large number of direct descendants. Restricting
the number of direct descendants to two does not change the complexity of the
register allocation problem.

Example 2.2. Consider the dag in Fig. 1. A sequence of moves in Game 1
using 3 stones is given in Table 1. In order to relate the moves to the machine
model, the corresponding machine instructions have also been given. In Example

TABLE 1
Node that
stone is placed on Stone  Move Instruction

c 2 1 load, reg2 « ¢

x 3 1 load, reg 3 « x

t1 2 4 reg2 « reg2 *reg3
b 1 1 load, reg1 « b

12 2 4 reg2 «regl + reg?2
t3 2 4 reg2 « reg2*reg3
a 3 2,1 load, reg3 «a

t4 1 3 regl «reg3 + reg?2

2.2, initially there were no stones on nodes in the dag. Moreover, a stone was
placed on each node exactly once. In §4, a “‘computation” will be a sequence of
moves in Game 1 that place a stone exactly once on each node, starting with no
stones on any node, and ending with a stone on each root in the dag. This notion of
“computation’ arises during code generation while compiling.

It will be shown in § 4 that given a dag and an integer k, determining if there
is a ““‘computation” of the dag that uses no more than k stones is ‘“polynomial
complete”. (The term “polynomial complete’ will be defined in § 3.)



COMPLETE REGISTER ALLOCATION PROBLEMS 229

Walker and Strong [11], [12] consider register allocation within the context
of flowchartable recursions. They permit recomputation of values as necessary.
The following examples shows that permitting recomputation of values may reduce
the number of stones used in a ““‘computation”.

Example 2.3. Consider the expression b + ¢ — 8(a, (b + ¢)/d, e), represented
by the dag in Fig. 2. Table 2 is a computation of the dag using 3 stones.

t4

FIG. 2. A dag for the expression b + ¢ — 6(a, (b + ¢)/d, e)

TABLE 2

Node that

stone is Stone  Move Instruction

placed on
b 2 1 load, reg2 « b
c 3 1 load, reg 3 « ¢
t1 2 4 reg2 «reg2 + reg3
d 3 2,1 load, reg3 «d
2 2 4 reg2 « reg2/reg3
a 1 1 load, reg 1 « a
e 3 2,1 load, reg3 «e
t3 3 4 reg 3 « O(reg 1, reg 2, reg 3)
b 2 2,1 load,reg2 « b
c 1 2,1 load, regl « ¢
t1 2 4 reg2 « reg2 + reg 1
t4 2 4 reg2 « reg2 — reg3

Note that b + ¢ is computed twice. If the recomputation of b + ¢ is not
permitted, then at least 4 stones will be used.

A “‘computation” in § 5 may recompute values as necessary, i.c., a node
may have a stone placed on it more than once. A result similar to that in § 4 will
be shown for the model of computation in § 5.
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When no node in a dagis recomputed, an allocation for the dag may be viewed
as a function from nodes to registers. It should be clear that not all functions
from nodes to registers are allocations. For example, it would not do to assign
all nodes to the same register. A somewhat less trivial example is given by Fig. 3.
It will be shown in § 6 that the problem of determining if a function from nodes to
registers is an allocation is ‘““polynomial complete”. Thus, not only is it difficult to
find a good allocation, it is difficult to verify that a function is an allocation.

Fi1G. 3. Suppose each node has to be computed into the register given by the integer at the node. Then
there is no viable order of computation for the values in the dag. If x is computed first into register 1, then
w cannot be brought into the same register. If y is computed first, the value of v is lost, so x cannot be
computed

In order to appreciate why the last result mentioned is interesting, consider
the coloring problem, which may be stated as follows : given an undirected graph
G, a coloring of G is a function from nodes in G to colors, such that no two nodes
joined by an edge in G may have the same color. Given an integer k, determine a
coloring of G that uses no more than k colors.

While it is known [7], that the coloring problem is polynomial complete,
given a function from nodes to colors, it is easy to check if the function is a coloring
of the graph. All that needs to be done is to check that no two nodes joined by an
edge are assigned the same color.

3. Polynomial completeness. Let X be some alphabet. Let P be the class of
languages accepted by polynomial time bounded deterministic Turing machines,
and let NP be the class of languages accepted by polynomial time bounded non-
deterministic Turing machines. P is clearly a subset of NP. It is not known if
P = NP.

Just as languages accepted by Turing machines are defined, it is possible to
define the ““function computed” by a Turing machine. See [6], [7], for instance.

Let IT be the class of functions from X* into * computed by polynomial
time bounded deterministic Turing machines. Let L and M be languages. L is
said to be reducible to M, if there exists a function f € II, such that f(x)isin M
if and only if x is in L. L is called [7] “(polynomial) complete if L is in NP, and
every language in NP is reducible to L. Either all complete languages are in P, or
none of them is. The former alternative holds if and only if P = NP.”

Demonstrating that all languages in NP are reducible to a given language
L is facilitated by a theorem due to Cook [4]. Informally, Cook showed that
acceptance of any language in NP is reducible to determining if a formula in the
propositional calculus is satisfiable. We will have occasion to deal with this
problem in some detail.
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DEFINITION. There is a set {x, x5, - - - x,} of variables. If x is a variable, then
the symbols x and X are called literals. x is called a complement of X, and X is called
a complement of x. A clause is a subset of the set of literals. A clause C = {y,, y,,

-+, Y} Will often be represented by C =y, V y, V --- V y,.

IfCc,,C,,---,C, are clauses, then C, the conjunction of the clauses, will be
represented by C; A C, A --- A C,,. C will also be referred to as an m-clause
satisfiability problem over n variables.

C is said to be satisfiable if there exists a set S which is a subset of the set of
literals, such that:

1. S does not contain a pair of complementary literals,

228SNC;# Zlori=1,2,---, m.

If the set S exists, then a literal y in S will be said to be true, or have value 1,
and the complement of the literal will be said to be false, or have value 0. If a
literal in a clause is true, the clause will be said to be true.

It is easy to associate a language with the set of satisfiability problems.
Following Cook [4], each variable can be represented by some element in X,
followed by a number in binary notation. Note that there may be an arbitrarily
large number of variables. The complement of a variable can be represented, say,
by the symbol —~ followed by the representation of the variable. The other con-
nectives are V and A. When no confusion can occur, the term ‘“‘satisfiability
problem” will be used to refer to the corresponding string, generated as outlined
in this paragraph.

THEOREM (Cook). If a language L is in NP, then L is reducible to the set of
satisfiability problems.

Proof. See [4]. O

Just as satisfiability problems were defined, it is possible to define satisfiability
problems in which each clause has exactly three literals.

THEOREM (Cook). If a language L is in NP, then L is reducible to the set of
satisfiability problems with exactly three literals per clause.

Proof. The proof is immediate from the result for satisfiability problems with
at most three literals per clause [4]. [

The approach in the following section will be to show that the problem on
hand can be associated with a language L in NP, and that the set of satisfiability
problems with exactly three literals per clause is reducible to L.

4. Reduction to register allocation.

DEFINITION 4.1. A computation of a dag D is a sequence of moves in Game 1
that starts with no stones on any node, places a stone on every node exactly once,
and ends with stones on all the roots of the dag D. A node is said to be computed
when a stone is placed on the node. A computation of D is said to use k stones
if during some move in the computation there are k stones on nodes in D, and
during every other move there are no more than k stones on nodes in D.

When this notion of computation has to be identified, we will use the term
4-computation (the 4 refers to §4).

DEFINITION. Let C be an m clause satisfiability problem over n variables with
exactly 3 literals per clause. Then C will be referred to as a (3, m, n) satisfiability
problem.
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Consider a (3, m, n) satisfiability problem C. A solution of C may be found
nondeterministically as follows. Consider variable x, . Select a value for x,; from
the set {true, false}. Alternatively, select one of x, and X, to be assigned the value
true. Then consider the variable x,, etc. Once truth values have been assigned to
all n variables, consider clause 1 consisting of literals y,,, y,, and y5. If all of
Y115 Y12 and y 5 are false, then stop. Otherwise consider clause 2, etc.

We can construct a dag D such that a computation of D simulates the above
solution of C. D will consist of n + m stages, where stages 1 through n assign
truth values to the variables, and stages n + 1 through n + m test to see if each
of the m clauses is satisfiable.

Let us consider stage i, where 1 < i < n. This stage refers to the variable x;. The
flowchart in Fig. 4 summarizes the actions performed in stage i; the dag in Fig. 5
gives the nodes and edges relevant to the stage. Stage i has a node z; such that all
nonleaf nodes in the stage are ancestors of node z;. Thus none of the nonleaf nodes
in the stage can be computed until node z; is computed. Stage i also has two nodes
x; and X;, which represent the variable x; and its complement, respectively.

It will turn out that when node z; is computed, there are exactly n — i + 1
stones in hand. Now both x; and X; require n — i + 1 stones to be computed.
Moreover, both x; and X; are direct descendants of the very last node to be com-
puted. Thus, a stone placed on either x; or X; will remain on the node in question
until the very last step. It follows that computing either x; or X; ties up one stone,
leaving n — i stones—too few to compute the other one of the pair, x;, X;,. We
want to pass exactly n — i stones to the next stage, which is stage i + 1. If one of
x; and X; is indeed computed, there is no problem. We have to take care of the case
in which neither x; nor X; is computed.

Consider the nodes u; and i, in Fig. 5. Both u; and #; are direct descendants
of the initial node. As its name implies, the initial node will be the very first nonleaf
node to be computed, since all other nonleaf nodes will be ancestors of the initial
node. Thus before stage i is reached, stones will have been placed on nodes u;
and ii;. Aslong as nodes u; and i1; have an uncomputed direct ancestor, the stones on
u; and #; must remain on them. Recall from Definition 4.1 that a stone cannot be
placed on a node more than once.

If neither x; nor X; is computed, then the stones on u; and #; cannot be moved,
and we have to place a new stone on w;, leaving n — i stones in hand.

Suppose x; has been computed. Then w;, is the only direct ancestor of u; that
has yet to be computed. So we can move the stone from u; to w;, and never need to
place a stone on u; again, for all the direct ancestors of u; would then have been
computed. Once again we have n — istones in hand. The case when X; is computed
instead of x; is very similar.

Later in this section we will show that when w; is computed, there are exactly
n — i stones that can be picked up. And when w; is computed, at most one of x;
and X, has been computed.

In case the reader is concerned about the fact that one of x; and X; has not
been computed, at a later stage (When all the clauses have been shown to be true),
the uncomputed nodes will be taken care of.

Now let us see how we can verify that the values “‘assigned’ to the variables
by stages 1 through n lead to all the clauses being true. Consider clause j given by
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¥

Start stage i by computing

node z;

Select one of the
three exits from this

point
Compute node x; Compute node X;
using using
n-i+l stones n-i+l stones
Lose a stone Lose a stone
Yes One of No
X and X;

computed

Y

Lose a stone

g

End stage i by
computing node w;

'

Fi1G. 4. Flowchart depicting the possibilities while computing the part of the dag that assigns truth
values to variables. Stage 1 is started with n stones in hand

Vi1 V yj2 V yj3. It is easy to check that the expression y;; V y;1yj, V Jj1V;2053
has the same truth valueas y;; V y;, V yj3.Inaddition,ify;; V y;1y5, V ¥1V;2053
is true, then exactly one of the three terms is true. Figure 6 represents the portion
of the dag D that checks to see if clause j is true. If the clause is true, then from the
above discussion, exactly one of fj;, f;, and f;; will be left with c; as the only
uncomputed direct ancestor. The stone at the appropriate f can then be moved to
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! to
: clauses

frqm Zi,

. to
‘ clauses

i O direct descendant of final node
(not shown)
A direct descendant of initial node
(not shown)

F1G. 5. The subdag that assigns truth values to x; and X; by computing at most one of them. If a
stone is ever placed on the direct descendant of a final node, it remains there until the last step. The com-
putation starts by placing stones on all direct descendants of the initial node

c;. If the clause is false, the computation will be unable to proceed for want of an
extra stone.

Finally we need to show how the remaining nodes in stages 1 through n can
be computed if all clauses are true. Node d indicated in Fig. 7 is a direct ancestor
ofnodec,,. From the discussion above on clauses, node c,, will be computed without
need for an extra stone only when all clauses are true. Node d has n + 1 direct
descendants b,,b,, -, b,, all with stones on them. As soon as c,, is computed
a stone can be moved to d from say b, and the other n stones can be picked up.
These n stones will be enough to compute any nodes in the dag that remain to be
computed.

ReDUCTION 1. Let C be a (3, m, n) satisfiability problem over the variables
X1,Xq,*+, X,, Where clause i, for all i, 1 < i < m, has literals y,;, y;, and y;5. The
reduction constructs a dag D and determines an integer k. The value of k depends
only on nand m, and will be equal to 5n + 3m + 1.

The dag D will be divided into a prologue, n + m stages and an epilogue. We
first give the nodes and edges within the stages.

STAGEi,i=1,2, -, n(see Fig. 5).

Nodes: r;, z;, x;, X;, u;, ;, w;, and

tjpbijyj =0,1, - ,n—i+ L
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Edges: (z;,1),
(Wi,zi),
(tu’ z) (iu’ ) ] »h— i + 1,
(tzO’ u) (ZIO’ )]=12 n"i+17
(xvtto) (x,,u,) (3?,, :0) (X,, u,)
W, uy), (W, ;).
STAGEn + i,i = 1,2, ---, m(see Fig. 6).
Nodes: ¢, fi1, fizs fis-
Edges: (c;, fij), j = 1,2,3.
Edges between stages:
(zi,wi_q),i=2,3,---,n
(CI,W,,),
(¢;,€i21),i=2,3,---, m

235

Recall that each clause has exactly three literals, and that each literal
yij 1 £i<mand 1 £j < 3, is either the variable x, or X, for some
L1 N < n.For the definition of the next set of edges, if y;; = x,, then
we use the symbol y;; in the definition of the edges to refer to node x;,
in stage [, and the symbol y;; to refer to the node X;. Otherwise if
yij = X;, we use the symbol y;; to refer to the node X,, and the symbol

yij to refer to x;.
See Fig. 6 for the following edges:

(yijaf;’j),(yijafil)’i =12---, m,j = 1,2, 3’1 =j+ L.y

from?n ij ¥i3
from V” y12

from yj)

il i2 fi3

from Cisl

€

to cj

O direct descendants of final node (not shown)

A direct descendants of initial node (not shown)

F1G. 6. The subdag that checks if clause j is true

3.

Once node c,, in stage n + m is computed, we need to ensure that there are

enough stones to compute any nodes that remain uncomputed. Once node d with
, b, 1s computed, n stones can be picked up (see Fig. 7).
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final d

initial

Gl b0 b| bn

Ut fiefisfa fm3z o 0  a

FI1G. 7. Nodes and edges in the prologue and epilogue. All other nodes and edges have not been shown

EPILOGUE.

Nodes:d,by,by, -, b,, final.

Edges: (,c,,),

d,b),i=0,1,---, n

The final node will be an ancestor of all the other nodes in the dag. Its
direct descendants are shown in Fig. 7.

(final, z,), (final, x;), (final, x;), (final,w,), i=1,2,---, n,

(final, ¢),i=1,2,---, m,

(final, d).

The prologue has been kept to the last since all leaves will be descendants of
the initial node. The purpose of the initial node is to force stones to be placed on all
leaves before any nonleaf nodes are computed. With the addition of leaves a,, a,,
-+-, a,, the initial node has 5n + 3m + 1 direct descendants, making it easy to
show that at least Sn + 3m + 1 stones are required to compute D.

PROLOGUE.

Nodes: initial, a,, a,, -- -, a,.

Edges (see Fig. 7):

(initial, r;), (initial, u;), (initial, &;),i = 1,2, --- , n,
(initial, f;;),i = 1,2, .-+, m,j = 1,2,3,

(initial, b,),i = 0,1, --- , n,

(initial, a,),i = 1,2, --- , n,

(z,, initial).
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DEFINITION. A stone is said to be available or free, if it is not on any node, or it
is on a node x, and all the direct ancestors of x have been computed.

LEMMA 4.2. Let C be a (3, m, n) satisfiability problem, and let D be the dag
constructed by Reduction 1 with input C. If C is satisfiable, then D can be computed
using 5n + 3m + 1 stones.

Proof. From the prologue in Reduction 1, the initial node has 5n + 3m + 1
direct descendants. Thus at least 5n + 3m + | stones are required to compute D.

Given 5n + 3m + 1 stones, place them on the direct descendants of the
initial node. Such a step is possible since all descendants of the initial node are
leaves. From the prologue, n of the leaves, viz., a,,a,, -- -, a,, have the initial
node as their only direct ancestor. Thus a stone can be moved to the initial node
from a, . Once the initial node is computed, node z, can be computed in the next
move, since z, has only two direct descendants—the initial node and r,, both with
stones on them.

The moment z, is computed, n stones become available. These are the stones
that were initially on a,;,a,, -, a,. Let us now refer to Fig. 5. With n stones
available, we can compute one of x; and X,, as called for by the solution of the
satisfiability problem. In fact, as Fig. 5 indicates, we can progress through stages 1
through n computing x; or X, as appropriate. When w,, is computed, there are no
more stones available.

At this point, there are stones on all direct descendants of node ¢, . Refer to
Fig. 6; since the satisfiability problem is satisfiable, each clause is true, so it is
possible to move the stone from one of f; ;, f;, and f; ; to ¢, . We can now progress
through the stages corresponding to the clauses, computing c; just as c, was
computed.

When ¢, is computed, node d (Fig. 7) becomes ready to be computed. Comput-
ing node d makes n stones onnodes b, , b,, - - -, b, available. These n stones can be
used to compute any nodes that have yet to be computed.

The lemma follows. [

LEMMA 4.3. Let D be the dag constructed by Reduction 1 for a (3, m, n) satisfi-
ability problem C. Let D be computed using 5n + 3m+ 1 stones. Then for all
J» 1 £ j £ n, just after w; is computed,

(@) foralli, 1 £i < j, at most one of x; and X; has been computed, and

(b) n — j stones are available.

Proof. From the construction of the dag D, the first moves in any computation
will be to compute the initial node, and then node z, . As in Lemma 4.2, when node
z, is computed, n stones become available. We will now prove the lemma by induc-
tion on j.

Basis:j = 1. From Fig. 5, with n stones available it is not possibie to compute
both x, and X, . A stone placed on either x, or X; must remain on the node until
the last step. If x,(X,) is computed, then the stone at u,(i1;) can be moved to w,,
and given the fact that a stone has been left at x,(X,), there are n — 1 stones
available. If neither x; nor X, is computed, the stones at u, and i; cannot be
moved, and a new stone must be placed onw, , again leavingn — 1 stones available
when w is computed.

For the inductive step, note that the only node that can be computed just
after w;_, iscomputed is z;. With n — j + 1 stones available, none of the elements
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of the set {x;,X,, -+, X;_;,X,_} that remain to be computed can be touched.
Thus we can only compute nodes in stage j with n — j + 1 stones available. As in
the basis, there will be n — j stones available when w; is computed. [

LEMMA 4.4. Let D be the dag constructed by Reduction 1 for a (3, m, n) satisfi-
ability problem. If D is computed using 5n + 3m + 1 stones, then, at all moves
between (and not including) the moves at which w, and d are computed, there are no
stones available.

Proof . From Lemma 4.3, there are no stones available just after w, is computed.
We will prove by induction on the number of moves that take place after w, is
computed that the only nodes computed between w, and d are elements of the set
{cy,¢q, -+, ¢}, and that there are no stones available at any move.

Since no stones are available initially, none of the elements of the set {x,, X,
-++, X,, X,} that remain to be computed can be touched. All of them require one
or more stones. Thus the only node that can be computed is ¢, . Note that in the
expression y;; V J11V12 V ¥11V12V13, regardless of the values assigned to y, 1, y;»
and y, 5, only one of the terms can be true. Thus, as in Fig. 6, just one of f1,, f; , and
f15 can be left with ¢, as the only remaining uncomputed direct ancestor. Thus the
stone at the node f} ;, can only be moved to ¢, . Since ¢, is a direct descendant of the
final node, the stone at ¢, does not become available.

The inductive step is very similar to the basis. [

LEMMA 4.5. Let D be the dag constructed by Reduction 1 from a (3, m, n) satisfi-
ability problem C. If D can be computed using 5n + 3m + 1 stones, then C is
satisfiable.

Proof. From Lemma 4.3, for all j, 1 < j < n, at most one of x;and X; has been
computed just after w, is computed. If x; has been computed, assign the value
true to the variable x; in C. Otherwise, assign the value false.

Since ¢y, ¢, -+, ¢,, are computed without any extra stones, for all ¢;, just
after w, is computed, one of f;;, f;, and f; is left with c; as its only remaining
uncomputed direct ancestor. As in Fig. 6, at least one literal in clause j must be
true. C is therefore satisfiable. [

Problem 1. Given a dag D and an integer k, does there exist a 4-computation
of D that uses no more than k stones. Note that the integer k is part of the input.

LEMMA 4.6. Problem 1 is in NP.

Proof. If the integer k is greater than or equal to n, the number of nodes in the
dag D, then the dag can be computed by placing a distinct stone on each node.
Therefore, suppose k < n.

Given the dag D, and the integer k, let T'be a nondeterministic Turing machine
that generates a sequence of n pairs, (i, x,), (i, X3), -, (i,, x,), 1 £i; < k, and
x;is anode in D. The integers can be represented in binary notation, and the nodes
by the symbol x followed by an integer in binary notation. The length of the
sequence will be O(n log n).

Intuitively, the pair (i, x) may be thought of as specifying that the stone i is
placed on node x.

The Turing machine then scans the sequence generated to see if there is a
computation of D that corresponds to the sequence. The time taken by T'is clearly
polynomial in n, and independent of k. [

THEOREM 4.7. Problem 1 is polynomial complete.
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Proof. Given a (3, m, n) satisfiability problem, Reduction 1 constructs a dag
with O(n* + m) nodes. It is easy to see that dag D can be constructed in polynomial
time. The theorem follows from Lemmas 4.2-4.6. [

Reduction 1 constructs a dag in which some of the nodes have large numbers
of direct descendants. We will informally indicate how the dag constructed by
Reduction 1 can be modified so that each node has at most two descendants.

In the prologue, the only node we have to be concerned about is the initial
node. The purpose of the initial node is to force stones to be placed on certain
leaves. A tree of the sort in Fig. 8 would serve a similar purpose. Node z; would
then become the direct ancestor of the root of the tree replacing the initial node.

y)

FI1G. 8. Construction used to replace some nodes of high out-degree like the initial node, by a binary
subdag. The high degrees of these nodes is used to force stones to be placed on certain leaves

In stage i, for 1 < i < n, the reason for providing nodes f;, and f;, with
n — i+ 1 direct descendants is to force a computation of nodes t;, and ;, to
require n — i + 1 nodes. A dag of the form of the “pyramid’’ represented in Fig. 9
has been shown in [5] to require as many stones as it has leaves. Nodes t,, and f;,
can be replaced by “pyramids’ with n — i + 1 leaves each.

FI1G. 9. A “pyramid” subdag that requires as many stones for computation as it has leaves. Used to
replace high out-degree nodes where the high degree forces a high register requirement

Nodes x; and X; have a number of direct descendants, forcing stones to be
held at certain leaves, until x; or X; is computed. Both nodes x; and X; can be
replaced by trees like the onein Fig. 8. Aslong as theleaf marked [ in Fig. 8 becomes
a direct ancestor of t;, or f;,, as appropriate, the other leaves can represent the
other direct descendants of x; and X;.
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Nodes d and the final node would be implemented much like nodes x; and X;.
It remains to specify how the stages representing the clauses would be imple-
mented. The answer may be found in Fig. 10. Since the modifications above add a
polynomial number of nodes in the dag constructed by Reduction 1, restricting
Problem 1 to dags in which each node has at most two direct descendants can be
shown to be polynomial complete.
from yj?’

Yie frome. |

from yj | yj 2

from yjI

O direct descendants of final node (not shown)

A direct descendants of initial node (not shown)

F1G. 10. Clause-checking using binary operators

5. Permitting recomputation. The reduction in the last section relied heavily
on the ability to hold stones at designated nodes. If recomputation is permitted,
the reductions of the last section have to be suitably modified.

DEFINITION 5.1. A computation of a dag D is a sequence of moves in Game 1,
that starts with no stones on any node, places a stone one or more times on every
node and ends with stones on all the roots of the dag D. A node is computed when a
stone is placed on the node. A computation of D is said to use k stones if during
some move there are k stones on nodes in D, and during every other move there are
no more than k stones on nodes in D.

When this notion of computation has to be identified, we will use the term 5-
computation.

Example 5.2. Consider the dag in Fig. 11. In order to compute node b, m
stones must be placed on the nodes a,, a,, - -, a,,. In order to compute node d,
stones must be placed on nodesintheset C = {cy,¢c,, - - - , ¢, . If there are exactly
m stones that may be used, once stones are placed on all nodes in the set C, none
of the nodes in C may be recomputed. In order to recompute a node in C, there
must be a stone on b. Since it takes m stones to compute b, recomputing a node in b
is tantamount to starting anew.

Clearly, treating d as the “initial”’ node, and elements of C as ‘‘leaves”, we
can ensure that no “leaves’’ are recomputed.

Example 5.2 showed how the high “‘stone requirements’ of some nodes
ensured that these nodes would be computed exactly once. We can extend the idea
so that, as in Fig. 12, we can force stones to be held at nodes z;, x;, X; and w, just as
in the last reduction.
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9 az 9m

F1G. 11. If m stones are to be used, recomputing ¢, c,, - -+, or c,, is tantamount to starting anew

x

®, . to
clauses from z,,
{eYo oo Atin-is v n-mwi
ii ' uj
. to
, R~ clauses v. .
A i,n-i
o Yi, neisl 5 "\
' i
7, i
fO. Wi r

O direct descendants of final node (not shown)
A direct descendants of initial node (not shown)

F1G. 12. A modification of the dag in Fig. 5. A construction (not shown) as in Fig. 11 forces the
direct descendants of the initial node to be computed exactly once. The moment the stone at a A node
is moved, none of the direct ancestors of the A node may be recomputed

REDUCTION 2. Let C be a (3, m, n) satisfiability problem over the variables
X1,Xy, -*, X,, Where clause i, for all i, 1 < i < m, has literals y;,, y;, and y;3. The
reduction constructs a dag D and determines an integer k. The value of k depends
only on n and m, and will be equal to 8n + 3m + 1.
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The dag D will be divided into a prologue, n + m stages and an epilogue. We first
give the nodes and edges within the stages. The major changes from reduction 1 are
in stages 1, ---, n and the prologue‘

STAGE i, i = 1,2, -, n(see Fig. 12).

Nodes: r;, z;, g;, 8;» Xi5 Xy, Uy, Uy, By, w;, and

Lij, T U’vlj’J —0 1 ,n—1i+ 1.

Edges: (z;,r),
(tll’ )( Z)’(vlj’ 1)]—0,1"",n“i+1,
(tj’gt)( g)’(vzph)j—‘()al," ,n—1i+1,
(xl’tl])( tj)a( ,,)]—0,1,--~,n—i+1,
(x5 uy), (x,,ﬁ)
(vzn i+1,U )(zn iv1sU )

STAGEn + i,i = 1,2, - m (see Fig. 6).

Nodes: ci,fil,fiz,fi3.

Edges: (c;, fi)),j = 1,2,3.

Edges between stages:

(ziyWi—q),i=2,3,---,n

(Cl ’ Wn),

(¢;yci-y),i=2,3,---, m

Recall that each clause has exactly three literals, and that each literal
yijp 1 Si<mand 1 £j < 3, is either the variable x, or X, for some
I,1 £ 1 £ n. For the definition of the next set of edges, if y;; = x; then
we use the symbol y;; in the definition of the edges to refer to node x,
in stage [, and the symbol j;; to refer to the node x;. Otherwise if
yij = X;, we use the symbol y,; to refer to the node X;, and the symbol
yij to refer to x;.

See Fig. 6 for the following edges :

(yij’ﬁj)a(yij’ﬁl)’i = 1: 2’ ) m’j = 1’ 2’ 3’ l =J + 1, 3.

Once node c,, in stage n + m is computed, we need to ensure that there are
enough stones to compute any nodes that remain uncomputed. Once node d with
descendants by, by, - - -, b, is computed, n stones can be picked up.

EPILOGUE.

Nodes:d,by,b,, -, b,, final.

Edges: (d,c,,),

d,b;),i=0,1,---,n
The final node will be an ancestor of all the other nodes in the dag.
(final, z;), (final, x,), (final, X;), (final, w)),i = 1,2, --- , n
(final, t;o), (final, {,5), (final, v,5),i = 1,2, --- , n
(final,¢),i=1,2,---, m,
(final, d).
The prologue has been kept to the last since all leaves will be descendants of the
initial node. The purpose of the initial node is to force stones to be placed on all
leaves before any nonleaf nodes are computed. With the addition of leaves a,, a,,
, a, the initial node has 8n + 3m + [ direct descendants making it easy to show
that at least 81 + 3m + 1 stones are required to compute D.
PROLOGUE.
Nodes: initial, ay,a,, -+, a,, pivot, e;, €5, -+, €gut3m+1-
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Edges: (z,, initial),
(initial, g;), (initial, g;), (initial, h;)),i = 1,2, --- , n,
(gi’ inOt)’ (gia inOt), (hia inOt), i=12---,n,
(initial, r;), (initial, u;), (initial, #;), i = 1,2, -+, 1,
(r;, pivot), (u;, pivot), (ii;, pivot),i = 1,2, --- , n,
(initial, f;)),i = 1,2, -+, m,j = 1,2,3,
(fijpivot),i= 1,2, -+, m,j=1,2,3,
(initial, b;),i = 0,1, --- , n,
(b;, pivot),i = 0,1, -+, n,
(initial, @;),i = 1,2, ---, n,
(a;, pivot),i = 1,2, --- , n,
(pivot,e),i =1,2,---,8n + 3m + 1.

LEmMA 5.3. Let C be a (3, m, n) satisfiability problem, and let D be the dag
constructed by Reduction 2 with input C. If C is satisfiable, then D can be computed
using 8n + 3m + 1 stones.

Proof. The proof is similar to the proof of Lemma 4.2. [

LEMMA 5.4. Let D be the dag constructed by Reduction 2 for a (3, m, n) satisfi-
ability problem C. Let D be computed using 8n + 5m + 1 stones. Then for all j
1 £ j < n, just after w; is computed,

(a) foralli,1 £i £ j, at most one of x; and X; has been computed, and

(b) n — j stones can be picked up without forcing the computation to start anew.

Proof. We will show that nodes on which stones were held in Reduction 1
also hold stones in this reduction.

First note that all 82 + 3m + 1 stones must first be placed on the nodes
ey,e,5, - ,€g,13m+1- Lheir direct ancestor, the pivot node, can then be com-
puted. The pivot node has 8n + 3m + 1 direct ancestors, all of which must have
stones on them for the initial node to be computed. As in Example 5.2, a stone can-
not be left on the pivot node. Thus none of the direct ancestors of the pivot node
may be recomputed. Which just says that none of the nodes that were leaves in
Reduction 1 may be recomputed.

When node z, is computed, as in Lemma 4.3, n stones become available. We
will now prove the lemma by induction on j.

Basis: j = 1. The first node to be computed is z, . Notice what happens when
one of x,, X, or w, is computed. (See Fig. 12).

Suppose the next node to be computed is x,. Since x, has n + 1 direct
descendants, there must be n + 1 stones on t;, -, t; ,. Only n stones were
available before z, was computed. We want to be able to say that only n stones
can be picked up after z, is computed. Note that r, cannot be recomputed. Thus
if the stone at r, is moved to z,, then z, cannot be recomputed. Since z; has
uncomputed direct ancestors, a stone will be held on one of r; and z,, leaving n
stones in hand.

The (n + 1)st stone for ¢,,, - - -, t;, must therefore have come from g,. But
then t,q, ---, t;, cannot be recomputed. Therefore once a stone is moved to
X, X, cannot be recomputed. Since ¢, is also a direct descendant of the final
node, two stones must remain on t,, and x, until the final node is computed.

Now note that we can no longer compute X, with the n — 1 stones that
remain.
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In order to compute w,, move the stone from u; to v, ,, the stone at h, to
V0 and place the n — 1 stones on v, ---, v, ,_,. No other situation is possible
(stones cannot be distinguished). Once w, is computed, stones must remain on
v,0 and w,, leaving n — 1 stones.

The rest of the proof follows that of Lemma 4.3. [

LEMMA 5.5. Let D be the dag constructed by Reduction 2 from a (3,m, n)
satisfiability problem C. If D can be computed using 8n + 3m + 1 stones, then C
is satisfiable.

Proof. From Lemma 5.4, when node w, is computed there are no stones free.
Stages n + 1, ---, n + m, which check if each clause is satisfiable, are therefore
just as in Reduction 1. The point here is that the moment a stone is moved from
some nodef;; to c;, ¢; cannot be recomputed since f;; cannot, and the stone therefore
remains on ¢;. The lemma follows. [

Problem 2. Given a dag D and an integer k, does there exist a S-computation
of D that uses no more than k stones? Note that the integer k is part of the input.

THEOREM 5.6. The satisfiability problem with exactly 3 literals per clause
reduces to Problem 2 in polynomial time.

Proof. The dag D constructed by Reduction 2 from a (3, m, n) satisfiability
problem has O(n? + m) nodes. It is easy to see that dag D can be constructed in
polynomial time. The theorem follows from Lemmas 5.4 and 5.5. [0

6. Validating register allocations. In this section we consider a seemingly
simpler problem in register allocation. Suppose no value is computed more than
once. Then, for any computation, a register can be associated with each node (see
Example 2.2). In other words, each computation defines a function from nodes to
registers. From Fig. 3, the converse—for each function from nodes to registers,
there exists a computation—is not true. We are interested in determining if given
a function from nodes to registers there exists a computation that computes nodes
into those registers.

DEFINITION. Let Q = x, X,, - -+, X, be a sequence of nodes in a dag. Node u
is said to appear before node v in Q, if for some i,j, 1 £ i <j < n,uis x;and vis
x;. Node v is said to appear after node u in Q. If a node u appears before node v,
and v appears before node w in Q, then v is said to appear between u and w in Q.
The term occur may sometimes be substituted for “‘appear”.

DEFINITION. Let Q = x,, x,, - -, X, be a sequence of nodes in a dag D. Q is
called a complete sequence of nodes in D if every node in D appears exactly once
in Q.

DEFINITION. Given a dag D, let L be a function from nodes in D into the set
of names. L will be called an allocation for D. The pair (D, L) will often be referred
to as a program dag, or just program.

Suppose a value is in a specified register. It should be retained in the register,
at least as long as it is needed. It will be needed until all its direct ancestors have
been computed.

DEerFINITION. Given a program (D, L), let Q be a sequence of nodes in D.
(Q, L) is said to be consistent if for all nodes u, v and w in D, if

(i) u is a direct descendant of w, and

(ii) v appears between u and w,

then L(u) # L(v).
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DEFINITION. Let Q be a complete sequence of nodes in a dag D. Q is called
a realization of a program (D, L) if (Q, L) is consistent, and for all nodes u and v
in D, if u appears before v in D, then v is not a descendant of u.

Completeness of a sequence ensures that an attempt will be made to compute
every node. A realization also forces descendants to be computed before their
ancestors. Consistency ensures that the value of a node will be retained in the
appropriate register, as long as it is needed.

Example 6.1. Consider the dag D in Fig. 1. A computation for this dag is
given in Example 2.2. The example implicitly specifies a function L from nodes
into stone labels. For convenience, L is given below.

node ¢ x tl b 12 t3 a t4

stone 232 12 2 31
(a)

The sequence of nodes in (a) is a realization of (D, L), that corresponds to the
program in Example 2.2.

c )‘c/b_a\tl 2 3 4
23132 2 2 1
(b)

Consider the sequence Q in (b). Q is complete, since it contains all the nodes in D.
Moreover, descendants appear before their ancestors in Q. However, Q is not a
realization of D, since (Q, L) is not consistent—the value of node x is needed to
compute t1, but placing a into register 3 destroys the value of x before it can be
used.
Problem 3. Given a program dag(D, L), does (D, L) have a realization?
ReDpucTION 3. Given an m-clause satisfiability problem over n variables
X1, Xy, -+, X,, Where for all i, 1 £ i < m, clause i has exactly 3 literals, y,;, y;»
and y;;, construct a program dag (D, L) as follows:
1. For all k, 1 £ k < n, construct two leaves s, and §,, corresponding to the
literals x, and X,. Let L(s,) = L(5,) = S;.
2. Foralli,j,1<i<m 1< j<3, construct nodes p;;, q;;, r;; and 7;;, as
in Fig. 13, and edges (g;;, p;)), (p;j»7i))- Let L(p;) = P, L(q;) = Q;; and
L(r;;)) = L(#;;) = R;;. Also construct the edges (q;;, 7i2), (qi2, 7;3) and

(gi3,731)-
a9, Q
LN %2 Q2 q;3,Q:5
Pil Pizy/" Fiz Pz R3
F. &R, 2 Ri \R- / /
i1 Ri ! R _\R: .
il Fis 2 %512 2tz £ Riz

F1G. 13. The subdag corresponding to a clause
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The subdag created in Fig. 13 corresponds to clause i. The nodes r;; and 7;
correspond to the literals y;; and y;;.

3. Foralli,1 i < m,clause i consists of the literals y;,, y;, and y;3. For all

j» 1 £ j £ 3, since y;; is a literal, there exists a k, 1 < k < n, such that y;;
is either x, or X,. If y;; = x,, we use the symbol y;; to refer to node s,,
and the symbol y;; to refer to node §,. Otherwise, if y;; = X, we use the
symbol y,; to refer to node §; and y;; to refer to node s,.

Foralli,j, 1 £i<m,1 < j < 3, construct the edges (r;;, y;;) and (¥;;, ¥;)).

LEMMA 6.2. Let (D, L) be the program constructed by Reduction 3 for a (3, m, n)
satisfiability problem. If the conjunction of clauses is satisfiable, then (D, L) has a
realization.

Proof. We will construct a realization for (D, L).

1. Initially the sequence Q is empty. As a convention, nodes may be added
to Q on the right only. Do step 2 as follows fork = 1,2, --- , n.

2. If the literal x, is true for the conjunction of clauses to be satisfiable, then
add s, all direct ancestors of s, , and s, to Q. Otherwise, add 3, , all direct ancestors
of 5., and s, to Q.

Note that all direct ancestors of s, and 5, are elements of the set {r;;, 7|1 < i
< m,1 £j < 3}. Each element of this set has only one direct descendant. More-
over, by construction, for all i, j, 1 £i <m, 1 £j < 3, both r;; and #;; cannot
both be direct ancestors of the same node. Therefore only one of r;; and 7;; has
been added to Q. Since L(r;;) is equal only to L(#;;), (Q, L) must so far be consistent.

3. Foralli,j,1 £i<m 1<j<3,ifr;; has been added to Q, then add p;;
and 7;; to Q. Note that p,; is the unique direct ancestor of r;;, and that for all nodes
xin D, if x # p;;, then L(x) # L(p;;).

4. At this stage, note that foralli,j,1 <i <m,1 < j < 3,7;; has been added
to the list, but that r;; may not have. For all i, 1 < i = m, do step 5 below.

5. Consider clause i, given by y;; V y;» V y;3. Since the conjunction of
clauses is satisfiable, clause i must be true. Without loss of generality, let y;; be
true. We will show that r;, appears in Q before 7;, .

Since y;, is a literal, for some k, 1 < k < n, y;, is either x, or X,. If y;; is x,,
then, by construction, r;, is a direct ancestor of s,. Since y;, is true, x, must be
true, so from step 2, above, s, and r;; are added to Q.

If, on the other hand, y;, is X,, then, by construction, r;, is a direct ancestor
of 5. Since y,, is true, X, is true, and §, and r;; are;added to Q by step 2.

Since both p;; and 7;, have been added to Q, node g;; can now be added to
the sequence Q. Once g;, is added to Q, L(F;,) (Which 7, shares with r;,) can be
used for r;,, unless, of course, r;, is already in Q. In either case, g;, can now be
computed, and similarly ¢q;5. [

LEmMMA 6.3. Let u,, u,, v, and v, be nodes in a dag D such that for i = 1, 2,
u; is a direct ancestor of v;. Let L(u,) = L(u,) and L(v,) = L(v,). Let Q be arealiza-
tion of (D, L). Then v, appears before v, in Q if and only if u, appears before u,
(see Fig. 14).

Proof. Suppose u, appears before u,, but that v, appears before v,. We will
show that a contradiction must occur.

Since Q is a realization of (D, L), descendants must appear before their
ancestors. Since v, is a descendant of u, it follows that the nodes appear in the
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UIU u2U

Vv
Voo vy

FI1G. 14. u, is computed before u, if and only if v, is computed before v,

order v,, vy, Uy, u,. Since u, is a direct ancestor of v,, and L(v,) = L(v,), (Q, L)
cannot be consistent. Hence Q cannot be a realization of (D, L), a contradiction.

The converse follows similarly. [J

LemMaA 6.4. Let (D, L) be the program constructed by Reduction 3 for a (3, m, n)
satisfiability problem. Let 0) be a realization of (D, L). Then for all i, 1 < i £ m there
exists a j, 1 < j < 3, such that r;; appears before r;; in Q.

Proof. Suppose the lemma is false. Then there exists an i, 1 £ i £ m, such

thatforallj, 1 < j £ 3,7;appears beforer;;in Q. We will show that a contradiction
must occur.

Note (in Fig. 13) that L(#;;) = L(r;;). Thus, for (Q, L) to be consistent, any
direct ancestors of 7;; must appear before r;; in Q. Note also that r;;, being a
descendant of ¢;;, must appear before g;; in Q. We therefore conclude that:

q;; before r;,,
r,, before g;,,
q;» before r;;,
r;; before g5,
q;3 before r;q,
r;; before g;,.

Thus Q cannot be a realization of (D, L), a contradiction. [J

LEMMA 6.5. Let (D, L) be the program constructed by Reduction 3 for an (3, m, n)
satisfiability problem. (D, L) has a realization if and only if the conjunction of clauses
is satisfiable.

Proof. The “if’ part is provided by Lemma 6.2. So we only need to show that
if (D, L) has a realization, then the conjunction of clauses is satisfiable.

Let Q be a realization for (D, L). For allk, 1 < k < n, if s, is computed before
5., assign the value true to x, ; otherwise assign the value false to x;,.

Suppose this assignment of values is such that the conjunction of clauses is
not satisfied. Then we will show that a contradiction must occur.

Since the conjunction of clauses is not satisfied, there must be at least one
clause such that all the literals in the clause are false. Let clause i be such a clause.

From Lemma 6.4, there exists a j, 1 < j < 3, such that r;; appears before 7;;.
Without loss of generality, let j be 1. For some k, 1 < k < n, r;; either has s, or
5, as direct descendant.

Case 1.5, isadirect descendant of r;, . Since r;; appears before 7, , from Lemma
6.3, s, appears before §,. Thus x, is assigned the value true. By construction, the
literal y,; must be x,. Hence y;; must be true, a contradiction.
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The other case follows similarly. [

LEMMA 6.6. Problem 3 is in NP.

Proof. The proof is straightforward. [

THEOREM 6.7. Given a program (D, L), the problem of determining if (D, L) has
a realization is polynomial complete.

Proof. The construction of Reduction 3 can clearly be performed in poly-
nomial time. The theorem follows from Lemmas 6.2-6.6. [

7. Practical significance. Fortunately, the dags used in the reductions in
this paper tend not to occur in practice. In most programs, straight line sections
tend to be fairly small. The practical significance of the results that have been
presented is twofold : (i) since the dags that occur in practice tend to be simple,
it would be worthwhile to study register allocation for restricted classes of dags;
(i) if the dags are small enough, then efficient enumerative techniques might be
worth considering.
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WORST-CASE ANALYSIS OF A PLACEMENT ALGORITHM
RELATED TO STORAGE ALLOCATION*

ASHOK K. CHANDRA anp C. K. WONGT

Abstract. In this paper, a discrete minimization problem arising from storage allocation considera-
tions is studied. Owing to the complexity of finding an optimum solution, a heuristic is proposed and its
performance is analyzed. The worst-case ratio of the cost by this algorithm to that by the optimum
algorithm is shown to lie between 1.03 and 1.04, implying that this algorithm produces a solution
within 4 per cent of the optimum. A generalization of this problem to a class of cost functions is also
considered. The worst-case ratios for these functions tend, in the limit, to that of the cost function
studied by Graham in his classical paper [1].

Key words. approximate solution, discrete minimization, storage allocation on disk packs, arm
contention

1. Introduction. In a time-sharing environment, different programs can
simultaneously attempt to access different data sets on the same disk pack, causing
arm contention. In Appendix A, an abstract model is proposed which leads to
the following discrete minimization problem.

Given a sequence of positive real numbers x, > x, > -+ > x,, partition
them into m parts, m > 2. The parts will henceforth be called rows. Let g; be the
sum of all numbers in row j. Find a scheme for assigning the x;’s to rows so as to

minimize the cost function

m
1) cm =73 g3
j=1

Variations of this problem also arise in other situations. For example, Cody
and Coffman [2] studied the problem of placing a set of records on the sectors of
a drum to minimize the average latency time and were confronted with essentially
the same problem. And Garey, Hwang and Johnson [3] in their study of packing
circuits on cards attacked another variation of this problem by means of dynamic
programming.

Graham in his classical paper [1] studied the same partitioning problem but
with a different cost function:

(2) C(o'g) = max (qla T qm)

He proposed a simple algorithm S and discovered that the ratio of the cost of this
algorithm to that of the optimal algorithm is bounded by 4/3 — 1/(3m).

Like Graham’s problem, our problem, too, does not seem to have any easily
computable optimal solution—both problems are NP-complete® in the sense of
Karp [4]. It is reasonable, therefore, to analyze the performance of nonoptimal
heuristic algorithms. A natural candidate is the algorithm S (§2). For our cost

* Received by the editors April 26, 1974, and in revised form August 20, 1974.

+ Computer Sciences Department, IBM Thomas J. Watson Research Center, Yorktown Heights,
New York 10598.

! This is sometimes called “P-complete” in the literature. We are using, here, the terminology
suggested by Knuth [5]. The proof of NP-completeness involves a straightforward reduction from
Karp’s PARTITION problem, and is omitted.
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function (1), it has the significance that it goes through the sequence x,, x,, - - -, X,
assigning each x; to a row (without backing up) so as to minimize the increase in
cost at each step.

As it turns out, the algorithm S performs even better for the cost function
(1) than for (2). In fact, we show in § 3 that S never costs over about 4 9, more than
the optimal algorithm. And there exist examples where S costs about 3 9, more
than optimal.

In § 4 we analyze the case where there are just two rows.

Section 5 extends these results to the more general class of cost functions of
the form

m 1/a
o e (% a] "

i=1
where o is a real number, o > 1. For each such cost function we consider the
least upper bound of the ratio of the cost of algorithm S to that of an optimal
algorithm, and find that in the limit as @ — oo, the least upper bound is the same
as that for the cost function (2).

2. Description of the algorithm S. In this section we describe the algorithm S
and present Graham’s result [1].

Given a sequence of positive real numbers x = x;,x,,- -, x,, Where
Xy = X; = -+ 2 X,,topartition them into mrows, the algorithm S is the following:

(i) Initialization. Set p,;, p,, -+, Pu t0 0, i « 1.

(ii) Placement step. If i > n, the partitioning is complete. Otherwise, let j
be the index of a row for which p; is the minimum of all p’s. Put x; in
row j, and set p; < p; + Xx;.

(iii) Repeat. i« i + 1, go to step (ii).

Note that the algorithm S is nondeterministic since in step (ii) there may be
several values of j for which p; is minimal. For our cost functions the choice of j
does not matter, and we will, unless implied otherwise, resolve ties by choosing
the smallest value for j.

Let P be any partitioning of x into m rows, and let C™(x, S) and C?(x, P)
be the costs (2) of S and P. Graham showed that

C™(x,S) 4 1
@) €%, 5) <-_ .
C™(x,P) =3 3m

The bound can, in fact, be achieved if n = 2m + 1, and
Xpiog = Xy = 2m — 1, i=1,--,m,

)

Xom+1 = m.

FiG. 1
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For example, when m = 2, the optimal partition P is shown in Fig. 1, and
CHx,S) 7

CO%x,P) 6

3. The cost function C'™. In this section, we consider the cost function (1)
and obtain lower and upper bounds for the least upper bound of the ratio of the
cost of S to that of an optimal partition.

DEerINITION. Given any sequence x of numbers, and partition P of x into m
rows, the sum of numbers in row i, 1 < i £ m, is denoted by

(6) qa{x, P)

and the cost is

(7 C™(x,P) = 3 (q{x, P)).
i=1
DEFINITION. Let P be any partition of x into m rows ; let

C(m)(x S)
8a M(x,P) = —————
( ) T (xa ) C(""(x, P)a
(8b) ™ = Lub. 7™(x, P).

x,P

The main result of this section can be stated as follows.
THEOREM 1. For allm > 1,

37
36 for m even,
) m > 8_3. form =3,
=1 81
37 1
% 36 for modd andm > 5,
and
(10) m < é
—24

In particular, for large m, ™ lies between about 1.03 and 1.04. The upper
bound implies that the algorithm S is at most 4 9 off optimum.

In order to obtain the lower bound, we have only to modify the examples
given in § 2 for m = 2 and 3. Thus, for m even, we take m/2 copies of the sequence
3,3, 2, 2, 2. The resulting ratio will be 37/36. For m = 3, we just take the sequence
5,5,4,4,3,3, 3, whose ratio will be 83/81. For other odd m, m = 5, take one element
of size 6 and (m — 1)/2 copies of 3, 3, 2, 2, 2, with resulting ratio 37/36 — 1/(36m).

The lower bound can be tightened slightly by considering more elaborate
examples and by using the worst case for m = 2, as will be discussed in §4. For
example, the lower bound for even values of m is improved from (37/36) = 1.0278
to 1.0285. The present examples, however, have the virtue of simplicity.
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The following trivial lemma is useful later.

LEMMA 1. Given nonnegative numbers q,---, qn,q;,q; such that q; + q;
= q; + qjand|q; — q;| 2 |9; — 4j|, we have
G+ tg oGt gizat o+ @+ (@) g

If no confusion is likely, we will not distinguish a partitioning algorithm from
the resulting partition.

We now consider the following auxiliary double minimization problem M :

Given an integer | > 0, a sequence x = x, - - -, x,; of positive numbers and
a nonnegative number c, let P be any partition of x into m rows yielding row sums

ris-+>ry. Let b=">b,,---, b, be any sequence of nonnegative numbers such
that Y™, b; = c. Define the cost as

(11 C(x,P,c,b) = i (r; + by)*.

i=1
(12) M’: Let C(x, P, ¢) be the minimal C(x, P, ¢, b) for all such b.

(13) M”: Let C™(x,c) be the minimal C(x, P, c) for all partitions P of x into
m rows. In the sequel the superscript (m) will be omitted.

The word ‘“minimal’’ above is in the sense of ““greatest lower bound”.
The minimization problem M is to find the value C(x, ¢) for a given x and c.
In the minimization M’ we can imagine that ¢ corresponds to some plastic
sheet of area ¢, which can be continuously stretched, shaped or broken up, and
put in the right of the solid blocks of size r; in the rows (see Fig. 2).

m-1 "P—- bm-1

FiG. 2 y

From Lemma 1 it is easy to prove the following.

LEMMA 2. Given X, a partition P of X into m rows and a positive? number c,
there exists a sequence b* = b¥, ---, bk for b, satisfying the constraints in M, that
minimizes C(X, P, ¢, b) and has the following properties:

@) r; + b¥ = r; + b¥ for all b}, b¥ > 0. Let this common value be y.

(i) If r; < y, then b} > 0.

2 When ¢ = 0 the minimization of C(x, P, ¢,b) in M’ is trivial.
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The value y will also be referred to as the boundary value of P (see Fig. 2).
Note that conditions (i), (ii) define b* uniquely. We extend this definition to
¢ = 0, then b* is the sequence of m zeros.

LeEMMA 3. Given X, P, c where ¢ > 0, and let i, j < m. Suppose the numbers in
row i (in partition P of X) are further partitioned into two (possibly empty) parts
whose sums total u and v, and let w, x be similar sums for row j and suppose u > w
and v > x. Then let P' be the partition obtained from P by transferring all numbers
corresponding to v from row i to row j, and all numbers corresponding to x from row j
torow i. Then C(x, P,c) > C(x, P', c).

Proof. Let b* be the sequence that minimizes C(x, P, c,b) as in Lemma 2.
We have the following cases (see Fig. 3):

l case (i) I

=4

case (ii)

caseliii)a)

=4

*
bj w

case (iii)(b)
FiG. 3

(i) bf > 0,b% > 0. Clearly the boundary values of P, P’ are the same and
C(x,P,c)=C(x, P, c).

(ii) bf = 0,b¥ = 0. Again the boundary values are the same, and as
u+0v)—W+Xx)|2|u+x)—WwW+0v), by Lemma 1, C(x,P,c)
= C(x, P, ¢).

(iii) b¥ = 0,b¥ < (u + v) — (w + x). Without loss of generality, we assume
that u + x = w + v. There are two subcases:
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(@) b¥ = (u + x) — (W + v). Again by Lemma 1, C(x, P, c,b*) = C(x, P, ¢, b*)
and hence C(x, P, c) = C(x, P', c).

(b) b¥* > (u+ x) — (W +v). Let b’" be the same as b* except that b
=3 W+ v+ bFf—(u+x), b;=>bF — bj; then by Lemma 1, C(x, P, ¢, b*)
> C(x, P’, c,b’) and hence C(x, P, ¢) = C(x, P’, c).

We now return to the question of finding an upper bound for ™. Clearly
the algorithm S is optimal when n < m. Given a sequence of positive numbers
Xy =Xy =0 = X,, n > m, we will apply the algorithm § to part of the sequence
in the following way :

(i) Place x;inrowifor1 <i < m.

(ii) Place x,, ., in row m — k + 1, for k=1,2,---, as long as k < m and
Xmik = 3Xm_x+ 1. Otherwise stop.
Suppose the subsequence thus placed is X' = Xx;, -+, Xp44,, ko = 0. We

have the following property:

(*) Thesum ofany two numbersin the subsequence X, + 1> Xm-ko+2> """ > Xm+ko
is not smaller than any one number in the subsequence.

Let S’ denote the partition of X’ asabove(seealso Fig.4). Letc = )

n
i=m+ko+1 Xt

FiG. 4

Then the minimization problem M for x’, ¢ has a solution that agrees with S'.
This can be restated as follows.
LEmMMA 4.

(14) C(x',c) = C(x',S,c).

Proof. Suppose P is a partition of x’ such that C(x', c) = C(x', P, c). We will
show that by a sequence of cost-preserving transformations similar to those in
Lemma 3, P can be transformed into S’ one row at a time.

First transform P into P, such that in P, no row has three or more elements:
if any row, say row i, has three or more elements, there must be a row, say row j,
which has either no element, or just one element x, where m — ko + 1 < |
< m + k,. Then by property (*) above and Lemma 3, all but two elements can
be transferred from row i to row j. This process must eventually stop to give P,.
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For any i, 0 < i < m, P, is now transformed as follows into P, such that:
(i) C(x', P;, ¢) = C(X, P, q, ¢); (ii) in P, , the first i + 1 rows are identical with
those in S’; and (iii) every row in P;, ; has at most two elements. Without loss of
generality, we can assume that x;, , isin row i + 1 of P, (by permuting the rows).

Case (i). i £m — ky — 1. If row i + ! contains only x;,,, P; is the desired
partition P, , ; otherwise row i + 1 contains another element x,, and there must
exist a row, say row j, j > i + 1, with at most one element. Then x, can be moved
to row j (Lemma 3) to give the desired P, ;.

Case (i1).i > m — ky — 1. Allrows numbered i + 1 and greater must contain
exactly two elements. If row i + 1 contains x;,,; and x,,,_;, we have the desired
P; . ,; otherwise row i + 1 contains x;, ; and some X, , and some row j (j > i + 1)
contains x; and X,,_;. But x;,{ = x;, X, = X3,,_;, s0 X, and x,,,_; can be inter-
changed (Lemma 3) to give P, ;. This completes the proof of Lemma 4.

Define

(15) K™ — Lub. (Z ®)*/ 3 (p})z),
P1s"HPm \i=1 i=1
P1:**sPm

where )™ . p, = Y™, pi, each p;, p; > 0, and max {p;} <3 min {p;}.

LEMMA 5. For any x, let X', ¢ be defined as above. Then

(m)
(16) Lub E . S)

.ub. < K™,
x CKx,c) =

Proof. Assume (16) is false, and let m be the smallest number of rows for
which this is so. Let x = x,, - - -, x, be a vector such that

C™(x, S)

— s K™,
C(x', c)

(17)

Clearly ¢ > 0. Let kg, y, S, b* also be defined as above. Let r, ---, r, be the
sums of numbers in the rows for partition S’ of x’, and ¢q,, - -, ¢, the sums for
partition S of x.

Case (i). For some j,r; > y. We have a contradiction as follows. S agrees with
S'for Xy, -+, Xp+s,- Further, min {¢;} < y,so that S will not place any additional
element in row j, and hence r; = q;. If we now consider the vector x; which is
the same as x except that the elements in row j are removed, and we consider m — 1
rows, then all rows in S, S’ remain the same, but with row j removed, so that

C" D(xy,S)  C"(x,S) —r}
Cm Yxy,¢)  C" (X, ¢) — 1}

> K™,

i.e., we have a smaller counterexample.

Case (ii). For every j,r; < y. Now max {¢;} = y, and for any row, once the
row sum exceeds or equals y, the algorithm S will place no additional x; in this
row. Thus

max {g;} — min {g;} < x' = X+ ko+ 1>
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where x’ is the last number placed in the row with final sum max {g;}. By con-
struction,

Xmtkot+1 = %min {ri} =< %min {qi}'
Therefore, max {g;} < 3 min {g;} and (17) cannot be true—again a contradiction.

LEMMA 6. 1™ < 25/24.
Proof. Let X', ¢ be defined for x as above. Then

C™(x, S) C™(x, S)
™ —lub =" < lub ——
’ wr Cx, P)= "5 T, o)
since C™(x, P) > C(X,¢) for all x, P. Thus ™ < K™ (by Lemma 5), and it

remains only to show that K™ < 25/24. Consider the continuous minimization
problem M*:

Find a piecewise continuous and monotonically nonincreasing function
q(t),0 < t £ m such that
(i) q(0) < 3q(m),
(i) {5 q(t)dt = s (s is some constant),
(iii) [ g*(¢) dt is maximized.
If q,(¢) is a solution, then
(18) f q2(t) dt
Km <=0 .
= $2m
It is easy to show that g,(t) must satisfy
o {3x, 05t<k,
0= 2x, k<t m,
where x, k are parameters to be determined (Fig. 5).
3x

2x
FI1G. 5
By condition (ii), k = (s — 2mx)/x and [7 g%(t)dt = 5sx — 6mx?, which has
maximum value
25 §? Ss

Am whenx=1—27n.

K™ < 25/24 follows by using (18).

The upper bound on 7" can be sharpened by computing K™ for specific
values of m. Thus t < K® = 51/49 and ' < K = 26/25.
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4. The case of m = 2. Unlike the general case of 1™, the value of t'? has been
determined.

THEOREM 2. T2 & 1.0285, and is achieved by a sequence of the form y, y, z, z, z,
where z = 53=5(1 + 5\/B)y.

Proof. In order to maximize the ratio C?(x, S)/C®(x, P) we can assume that
the elements of x sum to 1. We first show that in order to maximize C®(x, S)/
C¥(x, P) we need only consider those x, P where (i) C'*(x, P) < C?(x, S), and
(i) x, = 191(x, §) — g,(x, S)|.

The former is trivial. Also as C'?(x, P) = r? + (1 — r)%, where r = max {q,(x, P),
(X, P)}, is a monotonically increasing function of rin 3 < r < 1, from (i) we see
that

max {ql(xa P)a %(X, P)} é max {Ch(x’ S)’ ‘h(x, S)}

To prove (ii), suppose we are given P, x = x,, - -+, X, satisfying (i) such that
Xp < |q1(X, S) - q2(xa S)l Suppose ql(x’ S) > qZ(Xa S) (the case qz(x’ S) > ql(xa S)
is similar). Then x, must be in row 2 (of partition S). Let X' = x;, -+, X,_;.
Clearly q,(x’, S) = ¢,(x, S), g,(X’, S) = ¢,(x, S) — x,. Arbitrarily, let x, be in row
2 of P, and let P’ be the partition for x’ that agrees with P over x'. For notational
convenience, let u = ¢q,(x, S), v = ¢,(x, P). Then we claim that

Cox,8) _ CP(x, S)
CA(x', P) = COx, Py

i.e., that
(1 —u?+@u—x)>? (1—u?+u?
(1—0v24+@w-x)=00-0v)?+0>
If we let
Hx) = Cix) (1 —u?+@u~—x?
== =0 + =
then

dt _ 2(Cy(x)(v — x) — Cy(x)(u — x))
dx (C,(x))*

Butasv > u > x, and C,(x) = C,(x), we have dt/dx > 0. We can make the sum
of all numbers in x’ equal to 1 by scaling up all numbers by the same ratio. Hence,
given any x, P satisfying (i) but not (ii), we can successively remove the smallest
elements from x until (ii) is also satisfied, and we obtain an example for which the
ratio of the cost of S to that of P is at least as large as for x.

We now show that we need only consider those x, P where (iii) X contains
exactly 5 elements.

The algorithm S is optimal for any x with no more than 4 elements. The cost
C?(x, P) is a monotonically increasing function of the difference |q,(x, P) — ¢,(x, P)|
of the row sums, henceforth called the gap in P, and there is an example, viz.,
x = ,4%, 4,4, 4, for which this difference is § for S and zero for optimal P. Thus
any x, P for which the ratio of the costs is larger, must have |q,(x, S) — gq,(x, S)| > &,
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and by condition (ii), x,, > &, but this is possible only when n < 5 since x, < 1/n.

Given any X = X, X,, -+, X5, With x; = x;,, and x5 > £, we have x, < .
It follows that the sum of any three of the x;’s is greater than that of the other two.
The optimal partition P must have x,, x, in one row and x;, X, X5 in the other.

There are two cases (see Fig. 6) as follows.

[ x1 T xa | x1 X2
L*2 [*Xs [%s ] X3 [*a [*s |
S P

CASE (i)
xq! Xq Xq' ] Xo' 1
x5 [ x3 xL] Xz | xq [ x5 ]
S P
CASE(i)(a)

X" Xq' w [ x|
x2" X3 [ %5 ] x3' [ xa" [ *s ]
S P
CASE (i)(b)
xar [ xar a1 x|
x2" x3" xs" | x3" | xg" | xs5' |
S P
CASE (i) (c)

v | x4 [xs ] | x2 ]
X2 X3 X3 ] X4 l X?I
S P
CASE (ii)

Fi1G. 6

Case (i). x; + x, > x, + x3. Since x5 > &, we have x, + x5 + x5 > 3
> X; + Xx4. S is therefore as shown in Fig. 6. Let P be the optimal partition (with
Xy, X, in one row and x, x4, X5 in the other), and let the ratio C*(x, S)/C®(x, P)
be 1.

(a) Let x; — x; =g, (x; + x4) — (x + x3) = g,. Then g, > g, since
X3 = X4. Foranye 0 < ¢ < 3g,, replacing x, by x; = x; — &, x, by x) = x, + &
will result in a larger gap in S but will have no effect on the gap in P. Thus it has
a larger 7.

Increasing ¢ to 3¢, , we have in the resulting configuration x|, + x, = X, + X;.

(b) If wenowreplace x; by x| = x| — &, x3,byx) = x5 + &x,byx, = x, + ¢,
and x; by x3 = x; — ¢ where ¢ > 0 and x| > xj, t will remain unchanged. Thus,
we increase ¢ to (x; — x53)/2, resulting in a sequence x7, x5, X5, X, X5 such that
x| = x5,x5 = Xx}.
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(c) Finally, replacing x5 by x5 = x5 + 2¢, x, by xj; = x, — ¢, and x} by
X3 = x5 — & where ¢ > 0 and x5 < x%, will increase the gap in S by 2¢ and leave
the gap in P unchanged.

Thus, increasing ¢ to (x5 — x5)/3 will result in a sequence x|, x5, x, x5, X’
such that x| = x3, x; = x5 = Xj.

Case (ii). x; + x4 £ x, + x3.Sand P are as shown in Fig. 6. Replacing x; by
Xy =x3—¢and x, by x;, = x, + ¢ where 0 < & < ((x, + x3) — (x; + Xx4))/2,
will increase 7. Therefore, we increase ¢ to ((x, + x3) — (x; + Xx4))/2, resulting in
a sequence X, X,, X3, X, Xs, with x; + x, = x, + x5. This is similar to the
Case (i)(a) above.

In conclusion, the maximum value of t is achieved by a sequence of the form
¥, ¥, Z, 2, z, and the determination of this value is trivial.

5. Other cost functions. The Theorems 1, 2 stated above for the cost function
C'™ also apply, with minor modifications, to the more general class of cost func-
tions C™ and C™, o > 1:

(19a) C(x, P) = max g(x, P),
m 1/a
(19b) Ci"(x, P) = ( Y (qi(X,P))“) : .
i=1

For these cost functions, we define T™(x, P), t™(x, P), t™, t™™ as in (8a), (8b)—see
Appendix B. Graham [1] studied the case of C™ and showed that '™ = 4/3
— 1/(3m). In this section we consider the case of C™. It is clear that when « = 2,

we have essentially the case of C™, and
(20) ) = (¢™)12.

For the class C!™, the optimization problem is nontrivial in that the following
is NP-complete (in the sense of Karp [4]) for every pair of integers m, « > 1: to
decide if, for a given sequence x of rational numbers and a rational ¢, there is a
partition P such that C™(x, P) £ c. The proof is easy and is omitted.

Below we use (m mod m') to mean m — m'|m/m’ |.

THEOREM 1'. For any integer m > 1 and real number o > 1,

1/a

L%((4m’ — 1+ (m — 1)3m' — 1)*) + (mmod m') 3m')*

1) 1" > max

m(3m'y* ’
3a _ 2a o — 1 (a—1)/a
(m) < .
(22) =Ty (2-3a—3-2a)

When o = 2 these simplify to (9), (10) after using (20).

Proof. The lower bound (21) is constructed by taking a sequence X consisting
of (mmod m’) numbers of magnitude 3m’, and |m/m’| copies of the sequence
2m' — 1,2m' — 1,2m' — 2,2m' — 2, --- ,m',m’,m’.

The upper bound is obtained as in the proof of Theorem 2. We can show that

m [ (q(e)* de) '
(23) ™ < max Om—(s/m)T ,
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where q(t) is a piecewise continuous monotonically nonincreasing function in
0 <t £ m such that ¢(0) < 3¢q(m) and {4 q(t) dt = s. The right-hand side of (23)
gives the upper bound (22).

In the limit as « — oo and m is constant, the lower and upper bounds are
4/3 — 1/(3m) and 3, respectively (for the lower bound the maximum is obtained
for m' = m).

THEOREM 2'. ©$? is achieved by a sequence of the form y, y, z,z,z where y/2
<z<y

In the limit as @ — o, (z/y) » 3 and ©®) — .

The proof of Theorem 2’ is almost identical to that of Theorem 2.

Table 1 lists the lower and upper bounds (21), (22) for some values of «, m,
and the values of 1) obtained from Theorem 2'. The 7{*’s are given in percentages,
obtained by 100(z{*) — 1); so are the bounds.

TaBLE 1
Lower bound ti";’( %)
@ Upper bound (%)
%™ %%) m=2 m=3 m=S5 m =10 m=25

1.0 0 0 0 0 0 0 0
1.5 1.03 .69 .60 .56 .69 .67 71
2.0 2.06 1.38 1.23 1.11 1.38 1.32 1.42
25 3.10 2.05 1.86 1.65 2.05 1.97 2.11
30 4.13 2.70 2.50 2.18 2.70 2.60 2.1
4 6.17 3.95 3.78 319 395 3.80 4.04
5 8.17 5.09 5.05 4.15 5.09 490 5.19
6 10.10 6.12 6.27 5.19 6.12 6.05 6.23
7 11.94 7.05 7.42 6.36 7.05 7.18 7.16
8 13.69 7.86 8.49 7.52 7.86 8.23 7.98
9 15.33 8.59 9.48 8.64 8.79 9.21 8.70
10 16.87 9.22 10.38 9.71 9.71 10.10 9.33
15 23.08 11.45 13.72 14.08 14.08 14.08 11.52
20 27.35 12.70 15.71 16.92 16.92 16.92 12.76
25 30.38 13.48 16.97 18.78 18.78 18.78 13.53
50 37.89 15.06 19.57 22.65 24.15 24.12 15.08
100 42.82 15.86 20.89 24.64 27.04 27.82 15.87
') 50.00 16.67 22.22 26.67 30.00 32.00 16.67

For any x, P we have lim C!™(x, P) = C™(x, P). In view of this, and the
similarity between '™ and " as « — o0, in. Theorems 1, 2’, the following may be
anticipated.

THEOREM 3.

(24) lim t™ = ™,

a—> o0
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Proof.. Since t™ is bounded for all «, it must have lower and upper limits [, ,
respectively :

(25) I = lim ™,
(26) I = lim ™.

It suffices to show that

27) Iz
and
(28) 1< ¢,

Toshow (27), we use the fact, stated in § 2, that there exists an x and partition P such
that t™ = t"™(x, P). For all «,
m 1/a
Y. (qdx, S)F max gy(x, S)* |
™ > tM(x, P) = | 1 d

Z (ax, P)"

1)a 1/a
- (1) (cy e (l) .
m m

As o — o0, (1/m)**t™ — ™ proving (27).

Suppose (28) is false. By definition of I, for every 8, a, > O there exists an
o > oy such that ™™ >1— §. Choose & such that | — & > ™ + 6. Then for
all o > oy, 7 > 1% + 0. Choose a sequence of triples («;, x;, P), j = 1,2, -
such that a; — oo and for all j, t{(x;, P) > t&’ + 0. Then

> e
= | mmax g(x, P)*

J T

mmax gyx;, S\ '/
i

IIA

TL’:)(X,', P) = m'"*t9A(x;, P)

max 4x;, P’

<m 1/"‘f‘c(""<m”"‘1(‘c"”’(xj, P) — ).

But this is a contradiction for some large enough «; since é is independent of j.
This concludes the proof of the theorem.

6. Conclusions. This paper adds one more example to the rapidly growing
body of literature [6]-[14] dealing with near-optimal algorithms. For most cases,
the computation to obtain solutions is prohibitively large and heuristics become a
necessity. [tisrelevant, in such cases, to evaluate the performance of these heuristics.
The heuristic studied in the present paper performs very well for our particular
problem. One would conjecture that this algorithm with minor modifications
might perform as well for the following variation of the present problem. Given a
set of mk positive numbers, partition them into m parts of k each so that the corres-
ponding cost functions (1), (2) and (3) are minimized. This problem corresponds to
the physical situation of fully packed storage and bounds on the performance of the
heuristic are still under investigation.
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Appendix A. An application. We use the following abstract model: suppose
we have m disks of large capacity; n data sets are to be allocated to these m disks.
Assume that each data set is associated with a number x;, 0 < x; < 1, which is
its access probability. Therefore, we have n independent Bernoulli trials simul-
taneously in progress. The time axis is discretized, and at each point, the sequence
X, , X, completely characterizes the access pattern of the entire collection of
data sets. Simultaneous access to the same disk causes conflict. The problem is
to formalize the notion of conflict and to find a placement of the n data sets such
that conflict is minimized. Depending on the physical situation, there are many
ways to define conflict, and we mention only one very simple way here.

Suppose data sets D, , ---, D, are placed in disk i. Suppose their access
probabilities are x; , ---, x;. We can imagine that there are k windows; with
probability x; , the jth window will display the number 1, and with probability
1 — x;,, it will display 0. We define conflict in disk i, C;, as the expected number of
pairs of 1’s. Therefore

1 k 2 k
Ci=Y x;%;, = —[( Y xij) -y x,zj:I
Jsl 2 J J

1 m
(29) c=3%

For a given sequence {x;}, 1 < i < n, the second term is a constant. Therefore,
minimization of (29) reduces to minimization of the first term.

If the capacity of a disk is large relative to n, we can assume that we can place
as many data sets as desired on one disk. Then the problem of minimizing total
conflict is exactly the problem we mentioned in § 1.

If such an assumption is invalid, we then have to consider the bounded
problem as mentioned in § 6.

Appendix B. Notation and definitions.

X ordered sequence of numbers x, x,, - - -, x, such that
X1 Z X2z x>0

ordered sequence of numbers (like x).

number of rows.

partition of an ordered sequence of numbers into m rows.

algorithm (§2). This symbol also denotes the partition resulting

from this algorithm.

g{x, P) sum of numbers in row i of partition P of x (number of rows m is
implicit) (§ 3; (6)).

IR
(-

Cmx, P) = 3 (qix, P)? (§3; (7).

i=1

m 1/
C(x, P) = ( > (qi(x,P))“) (§5).
i=1
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C%l)(x’P) = max qi(xaP) (§ 5)

t(x, P) = C™(x, S)/C™(x,P) (§3;(8a).
(x, P) = CU(x, S)/C(x, P) (§9).
t@(x, P) = C2(x, S)/CP(x, P) (§9).

o = Lub.7™(X, P) (§3;(8b).

™ = lub.1(x,P) (§5).
x,P

™ = Lub.t (x,P) §5).
x,P

C(x,P,c,b) (§3;(11)) (misimplicit).
C(x,P,c) (§3;(12) (misimplicit).
C™(x,c) (§3;(13).

C(x,c) (§3;(13)) (misimplicit).

K™ (§3;(15)).
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IMPROVED DIVIDE/SORT/MERGE SORTING NETWORKS*
R. L. (SCOT) DRYSDALE IIIf anp FRANK H. YOUNG}

Abstract. This paper develops sorting networks using the divide/sort/merge strategy. These
networks require
(0.25)N(log, N)*> — (0.386)N(log, N) + O(N)

comparison-interchanges to sort a list of length N. This is an improvement of order N(log,N) over the
best networks previously reported. (Using different methods, Van Voorhis [8) has improved upon these
results.)

Key words. networks, sorting networks, sorting algorithms, divide/sort/merge strategy

1. Introduction. In this paper we develop an improved divide/sort/merge
algorithm for nonadaptive sorting. Equivalently, we develop improved sorting
networks using the divide/sort/merge strategy. Our algorithm is an extension of
procedures due to Batcher [1], Green [4] and Van Voorhis [6], [7]. We first discuss
some necessary preliminaries.

We will adopt the convention that a sorting algorithm operates on the contents
of a linear array (or list). The operation consists of a succession of ‘“‘comparison-
interchanges’ at the conclusion of which the contents of the list should be ordered,
with smaller numbers in lower numbered locations of the list; ¢(b), 1 £ b < N,
will denote the contents of position b of the list, and [a:b] will denote the com-
parison-interchange which compares c(a) with ¢(b) and interchanges them if
and only if ¢(a) > c(b).

We will frequently make use of the “‘zero-one principle” : if a sorting network
sorts all possible sequences of 0’s and 1’s into nondecreasing order, then it will
sort any arbitrary sequence of numbers into nondecreasing order. For a proof,
see Knuth [5, p. 224].

To sort alist of length 2k, (k even) by Batcher’s “odd-even merge”, one initially
sorts the first and second halves of the list. Since the contents of the odd (and even)
numbered locations in each half are sorted after this initial step, the process of
sorting the contents of all the odd (or even) numbered locations can be done by
merging two sorted lists. It will be helpful to visualize the listasa k x 2array where
the first (second) column is the odd (even) numbered locations in ascending order.
At the conclusion of the sorts and merges referred to above, the rows and columns
of this k x 2 array are sorted. However, the list is not completely sorted.

After the initial step of the sort, each half of the array has at most one row
with both a zero and a one. After the merge step, there are at most two such rows.
Thus the portion of the array which is (possibly) out of order is any square (2 x 2)
subarray. Such an out-of-order square will be row and column sorted and, when
it exists, it will be called the square of uncertainty.

* Received by the editors August 21, 1973 and in revised form March 27, 1974.

t Department of Computer Science, Stanford University, Stanford, California 94305. This research
was performed while this author was a student in the Honors Program at Knox College, Galesburg,
Illinois.

1 Department of Mathematics and Computer Science, Knox College, Galesburg, Illinois 61401.
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If the square of uncertainty starts with the ith row, then the comparison-
interchange [2i:2i + 1] may be needed to order the list. Since the square of un-
certainty could begin in any row except the last, Batcher’s sort will be completed
by the additional comparison-interchanges [2i:2i + 1], 1 £ i < k. Note that
Batcher’s sort is completed by first finding a sort for the (row and column sorted)
square of uncertainty and then performing this sort in all possible positions of
the square of uncertainty.

Green [4] extended Batcher’s algorithm by dividing the original list (of length
4k, with k a multiple of 4) into 4 parts. First each of these parts is sorted. Then
(viewing the list as a k x 4 array) each column is ordered by merging its 4 sorted
parts. Now the array has at most 4 rows of mixed 0’s and 1’s, i.e., there may be a
4 x 4 square of uncertainty somewhere in the array. Green developed a sort for
this (row and column sorted) square which takes 21 steps. Green’s sort is concluded
by performing this 21-step sort in all possible positions of the square of uncertainty.
Green’s 21-step sort is constructed so as to insure a large amount of overlap when
it is done in successive positions.

In this paper we develop methods for sorting 2" x 2" squares which are row
and column sorted. These sorts provide the necessary final step for a divide/sort/
merge procedure where the original list is divided into 2" lists. Our method
reduces to Batcher’s when r = 1 and to Green’s when r = 2.

2. Description of the sort. Our sorting networks will operate on lists of
length 2" which we will view as if they are 2"7" x 2" arrays, 2r < n. The element
in position (s, t) of the array is at position (s — 1)2" + tin thelist; ¢(s, t) will denote
the contents of position (s, t). The ith subarray of width 2¢ will refer to the positions
in 2% successive columns where the number of the last column is i - 2°. Two columns
t, and t, are corresponding columns (of subarrays of width 2%) if t, = ¢, (mod 29).
Two positions are corresponding positions if they are in corresponding columns
and in the same row.

We now define sets of comparison-interchanges, S,, ,, where 1 < w < r and
1<k=r Whenw >k,

Sw,k - {[(S, I)I(S + 2w_k9t - 2w—1)]}’
where ¢ is a column in the right half of a subarray of width 2¥. When w < k,

Sw,k = {[(s,t):(s + lat - 2k + 2w—1)]},

where t is a column in the right half of the ith subarray of width 2" where i = 0
(mod 2¥~*) together with

{[(s,0):(s,t + 27~ 1)},

where t is a column in the right half of the jth subarray of width 2" where j # 0
(mod 2¢7 ™).

The comparison-interchanges in S, , form regular geometric patterns when
applied to an array. Figures 1 and 2 depict these patterns when the original array
is 2" x 2". Figure 1 shows the action of S,,,, w > k, on a subarray of width 2".
Figure 2 shows the action of S,,,, w < k, on a subarray of width 2* which has
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been rearranged so that it is an array of width 2*. In each case the region labeled A
is compared with the region labeled B.

pAd 2

or

2r+k~w

2w-k

gw-1 Wt
FiG. 1 Fi1G. 2

We shall call a comparison-interchange in S, , special when it is of the form
[(s,t):(s, t + 2"~ 1)], where (s, t) is in the left half of a subarray of width 2* and
(s,t + 2¥~ ') is in the right half of a subarray of width 2*.

We also define three types of comparison-interchanges which we later
eliminate.

Type 1. The special comparison-interchangesin S,, , in the first 1 + 2(2" 7% — i)
rows and the last 1 + 2(i — 1) rows in the ith subarray of width 2*.

Type 2. Comparison-interchanges in S,, , between two positions in the first
(last) row which both lie in an odd (even) numbered subarray of width 2~ 1,

Type 3. When k < r — 1, the comparison-interchanges in S, , between two
positions in the second (next to last) row which both lie in the first (last) subarray
of width 2~ 1,

Note that each type of comparison-interchange defined above is between
positions which are in the same row. Hence they only occur in §,,, when w < k.

We now define S, , to be S, , minus any comparison-interchange of types 1,
2 or 3 which occur in it.

Welet G, =8,,S,_1,--S;,and G, =8, , -+ Sy .

THEOREM. GG, - -- G} will sort a 2"~" x 2" array which has been row and
column sorted and whose square of uncertainty is of size 2" x 2",

The somewhat lengthy proof of this theorem comprises § 4 of this paper.

When n > 2r, the sorts and merges that begin the divide/sort/merge strategy
leave an array which satisfies the conditions of this theorem. For a discussion of
methods which will adapt the divide/sort/merge strategy to arrays of arbitrary
length, see Van Voorhis [6], [7].
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3. Numerical results. We now count the number of comparison-interchanges
required to sort a list of length 2", n a multiple of r, using a 2"-way divide/sort/merge
strategy.

The number of comparison-interchanges in S,, , is 2"~ 1(2"™" — 2*~¥) when
w = k, and is (2" — 2"7%2")/2 when w < k. Thus the total number of comparison-
interchanges in GG’ --- G is

r w r k—19n r—koyw
o= Y Yoy p IO

w=1k=1 k=1w=1
We have g, , = r?2"~1 — 2% 4 21 — |,

Denoting the number of Type i comparison-interchanges by t;, we have

k—1
tl — i z 2r—k+12r—k2w—l,
k=1w=1

r k-1
t2 =2 Z z 2r—k(2k—w—l _ 1)2w—1,
k=1w=1
r—1k—1
ty=2% Y @7t —12vt
k=1w=1
These yield t;, = (2 +2)/3 — 2", t, =(r> — 5r + 8272 =2, ty=(r = 52" !
+ 2(r + 1). Thus the total number of comparison-interchanges in G --- G/ is
€., =8, — t; — t, — t3,and we have

) g, =121 — (Q¥*2 4 5)3 — (12 — 3r — 14)2"72 — 2r.

The procedure described in the Introduction leads to a pair of recursion
relations. Letting p,, denote the number of comparison-interchanges required
to merge 2" sorted lists of length 2"~ " and p}, denote the total number required
to sort 2" locations by the 2"-way divide/sort/merge strategy, we find that

(2a) Puy = 2Dn—ryr + 8upro

(2b) Par = 2'Pi-rs + Py

Solving (2a) and (2b) for fixed r gives

(3a) Pu,=(+a)2" ' + C(2" = 1)71,

(3b) pf,=(m*+ (a, + N+ b,)2"" % — C,/(2" — 1)%,

where a, and b, are constants determined by the boundary conditions and
C,=0Q¥*"2 + 53+ (r* —3r — 14272 + 2r.

Using p¥ , = 0 as a boundary condition, we can restate (3b) as

4) p¥,=[*+Q2a, +rn+4C2 — 1)72]2" 2 - C2" — 1)" 2.

The value of a, can be determined by setting p¥, = S(r), where S(r) equals the num-
ber of comparison-interchanges required to sort 2" locations by any strategy.
This gives us

a, = (S0) = €2 = 1) 12—
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From (4) we see that the number of comparisons required to sort N locations
by the 2" way divide/sort/merge strategy is

(25)N(log, N)* — Z,N log, N + O(N), where Z, = —(2a, + r)/4.

For Batcher’s odd-even merge, S(1) = 1 and we have Z, = .25. For Green’s
4-merge, S2) = 5 and Z, = .

The value of Z, depends on which 16-sort is chosen. Green’s 4-merge gives
S(4) = 61 and Z, = 89/240 = .37083. But Green [4] also developed a special
16-sort requiring only 60 comparison-interchanges. Using this 16-sorter gives
S(4) = 60 and Z, = 371/960 = .3864583. The best results previously known are
due to Van Voorhis [6], [7], whose values for Z, as r — oo approach .357~ without
Green’s 16-sorter and .372"* with it. To sort a 256 position list, Batcher’s procedure
requires 3,839 comparison-interchanges, Green’s requires 3,725, Van Voorhis’
requires 3,673 and ours requires 3,657.

[Subsequent to the submission of this paper, Van Voorhis [8] developed an
improvement of his previous sorting networks. Van Voorhis’ new networks
require (.25)N(log, N)* — (.395)N log, N + O(N) comparison-interchanges to
sort a list of length N. These new networks require 3651 comparison-interchanges
to sort a 256 position list.]

Van Voorhis notes that with his merge strategy the most efficient networks
occur when r is a power of 2. It thus would seem likely that the size of Z, for our
networks would increase as r increases. However, Zy =~ .384896, and this slow
decrease appears to continue. We conjecture that as r increases, there exist other
comparison-interchanges which can be eliminated.

It is interesting to note that the number of comparison-interchanges in the
2'-way divide/sort/merge 2"-sorter network that uses G, - - - G" is identical to the
number in Batcher’s 2"-sorter based on the odd-even merge. The improvement is
due entirely to the eliminations.

The reader interested in comparing these results with the best known results
for adaptive sorting should see Ford and Johnson [3].

4. Proof of theorem. We assume throughout this section that we are sorting
a2""" x 2"array, n > 2r, which is already row and column sorted and which has
a square of uncertainty of size 2" x 2". Note that these conditions are satisfied
if we perform the first steps of the 2"-way divide/sort/merge strategy on the array.
The theorem to be proven states that G} G, - - - G/ is a sufficient final step for the
divide/sort/merge strategy.

LEMMA 1. Each S, preserves the order in the columns of the array.

LEMMA 2. Ifw > k and w > max(v, j), then S, , and S, ; preserve the order of
each other.

LEMMA 3. After S, | is applied to the array, then corresponding positions in the
two subarrays of width 2"~ ! are ordered.

Proof. Suppose there exists a pair of corresponding positions which is out of
order. There are four ways this could arise. Three would contradict the ordering
of the columns, and the other would require too many mixed rows.

LEMMA 4. After S, S, , --- S, is applied to the array, the left subarray of
width 2"~ has between 0 and 22" ~*~ ' more O’s than the right subarray of width 2"~ 1.
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Proof. The upper bound follows since S,, compares all except 2"~ . 2" 7%
positions in the left subarray with a position in the right subarray. The lower
bound follows from Lemma 3.

LEMMA 5. GG, - - - G} sorts the array.

Proof. We use induction on r, noting that G} is the final part of Batcher’s
sort. We have

GGy - Gy =8§,,Gy7'5,,657 " -+ 5, ,_,GITIGY.

S,.1 leaves each subarray of width 2~ ! with a 2"~! x 2"~ ! square of uncertainty.
Thus by Lemma 2 and the induction hypothesis, each of these subarrays is sorted
by G}G% - -- G/_,. In addition, Lemma 4 implies that there are between 0 and 2"
more O’s in the left subarray of width 2"~ ! than in the right subarray after
G, - - G'_,.Thus the number of rows with mixed 0’sand 1’s following G --- G/ _,
is no more than three. S, , reduces this to no more than two, and the rest of G} sorts
these two rows in a Batcher-like manner.

COROLLARY 1. After GG - - - G%, each subarray of width 2* is sorted.

LEMMA 6. After GG --- G}, each of the first (and last) 2" * rows is sorted.

Proof. 1t suffices to show that if ¢(s,2" "' + 1) = 0, then c(s,2" ") = 0 for
s £ 2"~k Suppose that this fact is not true for some r and k. Choose the smallest
possible such r and the smallest possible k for that r (k < r). Then after applying
GG, --- Gy, wehavearows,s < 2" ¥ such that ¢(s,2" "' + 1) = O and c(s, 2" })
= 1. Because s < 2% ¢(s,2"" ') = 1 before applying G;. Therefore, since by
assumption G} --- Gj_, leaves the first 2"7**! rows sorted, c(s,2" ! + 1) = 1
before G}, which implies c¢(s + 2" 7% 1) = 0 before G}. Choose the smallest m
(1 £m < 27" such that ¢(s + m,2"~!' — m2*~ ') = 0 before G}. (This m exists
because, by Corollary 1, ¢(s + 2"7* — 1, 2~ 1) = 0 before G}.) If the contents of
this position were still zero after S, ,, then the rest of G} would move a 0 into
(5,27 1). To avoid this contradiction, (s + m — 2" 7% 2" — m2*~!) must exist
and contain a 1 before G}. Thus, since by assumption the first 2" "**! rows are
sorted, ¢(s + m — 2775 2" — m2*~! + 1) = 1 before G;. In addition, c(s + m — 1,
2! — (m — 1)2¢" 1) = 1, which implies that ¢(s + m,2""! — m2*"' + 1) = 1 by
Corollary 1. Therefore c(s + m — 2"7%,2" — m2*"! + 1) = 1 after S,,. But this
implies that the rest of G}, will move the zero from (s, 2"~ ! + 1), contradicting our
assumptions.

LEMMA 7. After G' --- Gy, S, - S, the first 1 + 2(2"~% — i) and the last
1 + 2(i — 1) rows of the i-th subarray of width 2* are sorted.

Proof. Lemma 6 shows that after G’ --- G,_,, the first 2""**! rows are
sorted. After G} --- G;_S,; - Sp+14> Where r>m >k, the first 2" 7**!
— (i — 1)2™7**! rows of the ith subarray of width 2™ are sorted since they are
always compared with ordered rows. The proof will be completed if we show that
S, cannot produce an unordered row in the first 2" "**! — (2i — 1) rows. Suppose
such an unordered row exists after S, ,. Then there must exist three rows of mixed
0’s and 1’s within the first 2"~ **! — 2(i — 1) rows of the ith subarray of width 2*
before S, , (ie., after S,,,,). Similarly, suppose there exist 2"*! + 1 mixed
rows within the first 2" 7%**! — (i — 1)2™*! rows of the subarray of width 2¢*™
before S, ,,,,- Then there must exist 2" *? + 1 mixed rows within the first 2" 7**!
— (j — 1)2™"**2 rows of the jth subarray of width 2¢*™*! (where j = [(i + 1)/2])
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before S, ;.14 Clearly as m approaches r — k, a contradiction is inevitable.
At some point there will not be enough rows available.

COROLLARY 2. Type 1 and Type 2 comparison-interchanges are redundant and
may be eliminated.

Type 3 comparison-interchanges differ from the other types in that there exist
configurations where a Type 3 comparison-interchange will actually perform an
interchange. Suppose the contents of two positions in the second row of the first
subarray of width 2~ ! are out of order after G, - - - Gj. Then Lemma 6 and Lemma
5 imply that before G, c(1,2"!) = ¢(2,1) = 0 and ¢(1,2*) = ¢(2,2*" 1) = ¢(3,1)
= 1. After G}, the first 2* positions in the first row contain 0, and c¢(3,1) = 1.
Since by Lemma 6 the first row is sorted and by Lemma 1 all columns are sorted, we
have 0’s occurring only in the first two rows of this subarray. Because k < r,
G}, ., exists and will complete the sort by first moving the first portion of the second
row to the first row and then ordering it. Thus we have shown the following lemma.

LEMMA 8. T'ype 3 comparison-interchanges are unnecessary and canbe eliminated.

Finally, the theorem follows immediately from Lemma 5, Corollary 2 and
Lemma 8.
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NEAR-OPTIMAL SOLUTIONS TO A 2-DIMENSIONAL
PLACEMENT PROBLEM*

R. M. KARP,t A. C. MCKELLAR} anp C. K. WONG?

Abstract. We consider the problem of placing records in a 2-dimensional storage array so that
expected distance between consecutive references is minimized. A simple placement heuristic which
uses only relative frequency of access for different records is shown to be within an additive constant
of optimal when distance is measured by the Euclidean metric. For the rectilinear and maximum
metrics, we show that there is no such heuristic. For the special case in which all access probabilities
are equal, however, heuristics within an additive constant of optimal do exist, and their implementation
requires solution of differential equations for which we give numerical solutions.

Key words. near-optimal algorithms, placement problems, heuristics, storage applications, expected
distances, Euclidean metrics, rectilinear metrics, maximum metrics, L, metrics

1. Introduction. The problem of positioning records in a linear storage
medium in such a way that the expected access time is minimized has been
thoroughly studied [1]-[5]. The solution is to place the most frequently accessed
record and then repetitively to place the next most frequently accessed record
alternating between the position immediately to the left of those already placed
and the position immediately to the right.

In this paper, we consider a generalization of this problem in which the
storage medium is an infinite 2-dimensional rectangular array of storage cells,
and itis desired to minimize the expected Euclidean distance between consecutively
referenced records. It is quite easy to construct examples to show that it is not
sufficient to know only the ordering of records by frequency of access in order
to construct the optimal solution. Thus there is no hope of finding as elegant an
algorithm for this 2-dimensional case as for the 1-dimensional case.

The problem we consider is a special case of the quadratic assignment
problem which arises for example in various circuit placement problems [6].

In this paper we consider an heuristic which operates only on the relative
frequency with which records are accessed and show that the resulting placement
is within an additive constant of optimal. This asymptotically optimal heuristic
consists of placing the most frequently accessed record and then filling ““shells”
of storage cells which are equidistant from the center with a set of next most
frequently accessed records.

We then consider the problem of replacing Euclidean distance with rectilinear
distance, and with distance defined to be the maximum of the difference in the
x-coordinates and the difference in the y-coordinates. In each case, we show that
there is an analogue of the “‘shell’” heuristic which is within an additive constant
of optimal when the access probabilities are equal. However, a shell no longer
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consists of the set of storage locations equidistant from the center, but rather
consists of the set of cells on a contour given by the solution of a differential
equation for which we have only been able to obtain numerical solutions. We use
these results to show that, in general, there is no heuristic for the maximum and
rectilinear metrics which operates only on the relative frequency of access and
produces solutions within an additive constant of optimal.

2. Formulation of the problem. Consider a set of n records x,, - - -, x, which
are referenced repetitively, where with probability p; the reference is to x; and
consecutive references are independent. We adopt the convention that the records
are numbered such thatp, = p, = --- = p,. We wish to place these records into an
infinite 2-dimensional rectangular array of storage cells such that the expected
distance between consecutively referenced records is minimized, i.e., we wish to
minimize

_ n n
(1) D= Z D; Z pjdij)’
i=1 j=1
where d;; is the distance between record i and record j. We will regard the storage
cells as points with integral coordinates in the Euclidean plane, and adjacent
cells are assumed to be at unit distance from each other.

Figures 1(a)and 1(b) give two examples of optimal placements. These examples
show that it is not sufficient to know the relative frequency of access to minimize D ;
one must have more detailed knowledge of the probabilities of access.

Py
Pa Pg
P P2
P P2
Pq
(P, 1Py, Py:P,) = (0.33,032,0.31,0.04) (PP, +P3.P,)=(0.70,0.15,0.10,0.05)

F1G. 1. Optimal placement depends on probabilities rather than only on relative frequency

However, in case optimal solutions are not absolutely essential, one may
want to use the simple heuristic mentioned in the Introduction, namely, filling
“shells” of storage cells which are equidistant from the center with a set of records
with next largest probabilities. This algorithm depends only on the ordering of
the probabilities of access and is referred to as the ““shell’” algorithm from now on.

In the next section, we will show that the expected distance between consec-
utively referenced records resulting from the “‘shell” algorithm is within an
additive constant of that resulting from an optimal placement algorithm.

3. Analysis of the algorithm. Define

A= p;—Dir1, lgi<n,
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and
A, = pus
so that

pi=Y A and Y rA, =) p=1.
r=i r=1 i=1

Hence D can be rewritten as

p- 3% alg Sale
i=1r=i j=1s=j
Interchanging the orders of summation yields

r=1s=

n

AFASETS b
1
where

E =Y Y d;
i=1j=1

The effect of this transformation has been to replace the probabilities by a
set of n variables among which there are no ordering constraints. Furthermore,
the effect of the placement algorithm has been localized to a term, E,;, which is
independent of the access probabilities. For given r and s, there is a placement
dependent only on the relative frequency of access which minimizes E,;. However,
that placement is incompatible with the placement for some other values of r and s.
For example, the shape of Fig. 1(a) minimizes E,; with r = 3, s = 4, whereas
Fig. 1(b) is optimal for r = 1, s = 4. Thus, in general, it is not possible to enlarge
an optimal solution for n points to an optimal solution for n + 1 points in a
straightforward way, which explains why our problem is more difficult than the
1-dimensional case.

Let D(opt), E,(opt) denote the values produced by an optimum placement
algorithm (i.e., one which minimizes D) and D(shell), E,(shell) denote the values
produced by the ‘“‘shell”” algorithm. We shall show that

(2) E,(shell) < E,(opt) + crs

where c is a constant independent of r, s. As a consequence,

3) D(shell) < D(opt) + ¢ Y. Y. AAgs = D(opt) + c.
r=1s=1

We were unable to find a straightforward proof of (2), and so we consider
the continuous analogue of E,, for which it is relatively easy to find the optimal
solution.

Since d;; = dj;, without loss of generality, we can assume r < 5. The problem
is then to find two regions w, and w, with areas r and s, respectively, and wy, < w,
such that the integral
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is minimized, where x, y denote points in w,, w,, respectively, and d(x, y) is the
distance between points x and y. The following definition formalizes an obvious
geometric property.

DEerINITION. Let w be any region and L any straight line dividing the plane
into A and B. w is said to have the covering property with respect to L if either
IANw)>(BNw)or I(BN w) o (4 N w), where I(A N w) means the mirror
image of 4 N w with respect to L. I(B N w) is similarly defined. (See Fig. 2.)

Fi1G. 2. Region with covering property with respect to L

LEMMA 1. If w}, o (wd = w?) form a minimal solution for (4), then w§, w%
have the covering property with respect to any straight line L. Furthermore, if L
partitions the plane into A and B, and if I(A N w*) > (B N w¥), then I(4 N w})
> (B N w¥). Similarly, if I(B N w%) > (4 N w¥), then I(B N w§) > (A N w}).

The lemma can be obtained easily by applying the technique used by
Bergmans [5]. The present Appendix A contains a proof.

LEMMA 2. Any region which has the covering property with respect to any straight
line must be a disk.

Proof. Let C be the center of mass of the region. (See Fig. 3.) Suppose there
exist points «, f on the boundary such that d(o, C) < d(B, C). Draw a straight line L
through C, bisecting the angle a C f and meeting the boundary at .

L
/

a Y

Yy

F1G. 3. Illustration for proof of Lemma 2

Let L' be a straight line through y cutting the region into two parts with equal
areas w,, w,. By the covering property, w,, w, should be symmetric images of
each other with respect to L'. In particular, L’ should go through C, hence L, L’
coincide. Thus a, § are symmetric with respect to L, a contradiction.
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LEmMMA 3. The minimal solution to (4) consists of two concentric circles.

Proof. Let w§,w} forman optimal solutionand w§ = w}.ByLemmas1and?2,
they must be circles. It remains to show that they are concentric. Suppose it is
not the case. Let C,, C, be the centers of w§, w¥. Let L be the perpendicular
bisector of the line segment C,C, (see Fig. 4). With respect to L, the second part
of Lemma 1 is violated, hence a contradiction.

L

(et

F1G. 4. Illustration for proof of Lemma 3

Let E*™ denote the optimal value of (4), i.e.,

E=| | o,
xew? v yewd

where w%, w§ are concentric circles with areas s, r respectively. We will compare
this with the “‘shell”” algorithm and the optimal placement algorithm.

If we look at the first r and s points (* < s) in the configuration resulting from
the “shell” algorithm, and compute the function }7_, 3%_, d;;, we obtain
E,(shell). Suppose we replace each point by a unit square with center at this point;
then we have two regions w,, w, with areas r, s, respectively, and w, < w,. Let

E™(shell) = f f d(x,y).

XEW | YEwo

We define the continuous analogue of the optimal placement in the same way
and let ES2™(opt) be the value of the integral in (4) evaluated over the corresponding
regions.

We will show that

E,(shell) < EZ™(shell) + /2rs
by Lemma 4, that
EX™(shell) < EX™ + (24/2 + 8/m)rs
by Lemma 6, that
EX™ < EX™(opt)
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which is obvious, and that

E52™(0pt) £ E,opt) + /27

by Lemma 5. Combining these results yields the following theorem.

THEOREM. E,(shell) < E, (opt) + (4\f + 8\/;)rs Consequently, D(shell)
< D(opt) + (4/2 + 8/n).

LEmMA 4. E,(shell) £ EX™(shell) + /2 rs.

Proof. Only notice that for any x in the square of i and any y in the square of j
(see Fig. 5),

dy; < d(x, y)+—\/—§+*[ d(x,y) + /2.

X
F1G. 5. Illustration for proof of Lemma 4

Although we are showing that the continuous case is bounded by the discrete
case, similar argument shows that the following lemma holds.

LemMa 5. ES™(opt) < E,(opt) + \/5 rs.

Next we will prove the following result.

LEMMA 6. EZ™(shell) < ES™ + (2,/2 + 8./m)rs.

Proof. On the regions w,, w, for the continuous version of the ‘‘shell”
algorithm, we superimpose the two concentric circles w¥, w¥* with areas r, s

)

1 = Inner disk
2 = Union of all unshaded regions in the inner annulus
3 = Union of all shaded regions in the inner annulus
4 = Union of all shaded regions in the outer annulus
- 5 5 = Union of all unshaded regions in the outer annulus

F1G. 6. Illustration for proof of Lemma 6
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respectively, such that their centers 0 coincide with the point where the record x,
is located as shown in Fig. 6. (w¥ is not shown in the figure.)

Let us look at w, and w§. In Fig. 6, the region w, — w§ is shaded in one
direction and the region w§ — w, is shaded in another. Let d denote the radius of

the largest circle centered at 0 inside w,. Let a = ./r/n be the radius of w§. Let d,
denote the radius of the smallest circle centered at 0 outside w,. Then

) dy<d+./2 and dsasd, sd+./2

To see this, let ¢ be the center of the square farthest away from 0. Let d_ be its
distance from the center. Then d, < d, + \/2/2 and d 2 d, — /2/2. The first
is obvious. To show the second one, assume the contrary; it follows that there
exists an empty square, the distance of whose center to O is less than d,, a contradic-
tion to the “‘shell’’ algorithm.

Let us classify the regions inside the circle with radius d, into 5 classes as
denoted in Fig. 6. Therefore, regions 1, 2, 3 will form the region w§, regions 4, 5
will form the outer annulus A4, and regions 2, 3 will form the inner annulus B.
Also, area of region 3 equals that of region 4.

To obtain an upper bound on area 4 and hence on area 3 we note that

area 4 < min (area 4, area B).

But min (area A, area B) is maximized when d, — d = \/5 and area A = area B.
This occurs when d; —a = %(\/5 — 2a + /4a* — 2). In this case, area A
= area B = n./2a® — 1. Therefore

6) area 3 = area 4 < n./2a? = /2nr.

Let us do exactly the same thing for w, and w%, and call the correspondin
regions 1',2',3', 4,5, A’ and B'. Also let the radius of w¥ be b. Therefore b = /s/n
Thus

E™(shell) = f ,
124 Jv1'2'4’

Econl = J’ f
" 123 J1'2'3
Ef;’“'(shell)—Eﬁfn':f f +J f —f f - f J
124 v2'4’ 124 V1’ 123 v2'3 1234 17
ot L LT
124 v2'4’ 123 V2’3 4 J1 3J1
oLl
124 Jv2'4’ 4 vJ1’ 3J1’

area 2’4’ = area 2'3' < nb? — n(b — \/5)2 =2 /2ns — 2m;

area 124 = r.
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Hence

f j < 12/ 2ms — 2m)(a + b + 2./2)
124 V2’4’

= r(2\/2ns — 2n)(\/r/T + /s/m + 2\/5)

< (22 + 6/myrs.
To bound [, [, — [,f,, we use polar coordinates (p’, ') for points in 1" and
(p, ) for points in A. (Recall that 4 is an annulus with inner radius a and outer
radius d,).

Let d(p, 0, p’, ') denote the distance from point (p, 0) to (p’, 6'). Let the radius
of I’be d.
For each point (p, 0) in A4, let

d’ 2n
Lo=[ [ 0,000 dp'av.
p'=09v0'=0

It is easy to show that (i) I, , depends on p only, and (i) if p < p, then I, , < I;,.
Therefore

d’ 2n
Los [ [ dd,0.0.00 dp @0,
p'=0v9'=0

and
dy 2n
[[ =] [ vsavavs,
4J1 p=avo=0
d’ 2rn
< (area 4) J dd,,0,p',0Yp dp’ do'.
pr=0v60'=0
Similarly,
d’ 2n
JJ = (area 3)j j dd,0,p’,0)p dp’ db.
3v1 pr=0v60'=0
Thus
f f —f f < (area 3)\/§(area 1 < ./anﬁs =2 /7rs.
4 ’ 3vJ1
Therefore

ES(shell) — ES™ < (24/2 + 8/mrs.

4. Other metrics with uniform distribution. The proof in the preceding section
goes through practically unchanged for other metrics, although the constants
change. The stumbling block is in finding the optimal solution to the continuous
problem. In this section we consider the special case in which all access probabilities
are equal. Thus we have

A":% and A, =0, l1<i<n,
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Hence we are concerned only with E,, in (2) and need only find the optimal
continuous solution for the case ¥ = s = n. In this section we state this continuous
problem in a more general form and characterize its optimal solution for two
metrics of practical interest.

Let & = (x;,y1), n = (x,,y,) be any two points in the Euclidean plane.
We shall consider the following family of metrics :

my(&,n) = (Ix; — x,|° + |y, — yalP)He, lsp=s .

By p = o« we mean m(& 1) = max (]x; — x,|,]y; — y,|). For a fixed p and a
fixed R, we need to find the solution to the following minimization problem:

™ min ([ m(¢.n

weQd
Snew

where Q is the set of all closed regions in the Euclidean plane with area R.

The following is a necessary condition for an optimal region.

LEMMA 7. Let w, be an optimal region. Let o be a point on the boundary of w,.
Define

®) P(a) = f m (o, ).
newo

Then P(a) is a constant for all o on the boundary.

Proof. Let B be another point on the boundary (see Fig. 7). Let ¢, be a region
at « inside w, and ¢, a region at f§ outside w,. Assume that ¢, and ¢z both have
area ¢. Let the new region obtained by removing ¢, from w, and adding ¢; to
w, be w,. Then w, has area R.

1= [ men= [[ men

Smews &.newo

g RN F A B R A

Ep £p LY I

U A I I N

Noting that terms 5, 6, 8 and 9 are of order ¢, we have
1=2U f —f f)+0(32)
wo vep wo Yéy
- 2(8 [ men—c | mgp. n)) +0(),
newo newg

where o, €¢,, B,€¢, are determined by the mean value theorem and o, — a,
B.— Base—0.



280 R. M. KARP, A. C. MCKELLAR AND C. K. WONG

B

/>

F1G. 7. lllustration for proof of Lemma 7

By optimality,

lim

=0

Therefore

L e - jw m(,n) = 0,

as required.

The two cases of interest are p = 1, the rectilinear metric, and p = oo, the
maximum metric. For each of these metrics, we can use Bergmans’ [5] methods
of proof to show symmetry with respect to horizontal and perpendicular lines
as well as lines at 45° and 135°.

We want to find the curve f(x) valid in the first quadrant as shown in Fig. 8.
Then, by symmetry, we can complete the figure. Because of symmetry about a
line at 45°, f(f(x)) = x. Consider any point (u,v = f(u)) in the first quadrant,
and, without loss of generality, let u < ». Then (v, u) is also a point on the curve,
asis (—v, —u).

—]

-a

Fi1G. 8. Computation of a shell for the maximum metric
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For the maximum metric, (8) can now be written as

—v S (x) [ (x)
P=J f (u — x)dydx + f (u — x)dy dx
x=—avy=— f(x) x=—-vvYy=x—utv
f(x) [ (y)
) f f (x —uydydx + f f (v — y)dxdy
x=uvy=—x+vtu y=—avx=-[(y)
f(y) x=—y+tv+tu
+f J v—1y) dxdy-i—J~ J (v — y)dxdy,
y=—uvYx=ytu—v x=y+tu—v

where the areas in Fig. 8 are numbered to correspond to the termsin (9). Performing
all integrations not involving f and collecting terms yields

P=| dw=wfndx+ [ w-nrGsas+ - e ds
—u u ]
[ e nsend+ [ 0= by + 300+ e

We apply the condition of Lemma 7 by requiring that dP/du = 0. Carrying out
the differentiation and collecting terms again yields

L_:—a 2f(—x)dx + J:; —vf(|x|)dx - fzuf(x) dx + 2f'(u) L—:-af(_x) dx

u

+ f'(u)f fUxDdx + f'@)(f*w) - u?) = 0.

X=—u

(10)

Let the total area surrounded by the curve be R. Then the area in one quadrant
is R/4. In view of the identity

R/4 + uf (u) Jf dx-i-ff

(10) can be converted to
(11) (R + 2(f2(uw) — u?) f'(u) + SJ f(x)dx — duf (u) = 0.
0
Referring to Fig. 9, it is quite easy to obtain for the rectilinear metric

S (x) )
——2f f (x+y+vdydx +2 j (x +y+uydxdy

x=uvy=—f(x) y=vvx=—f(y)

+J J (x +u+y+v)dydx,
x=—-uvy=-v

which after simplification becomes

P= 4J (x + v)f(x) dx+4J Wy + uf@y)dy + duv(u + v).
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(-u,v) (u,v)

(-urv) (+u,-v)
\— /

|

FI1G. 9. Computation of a shell for the rectilinear metric

Differentiation with respect to u and applying Lemma 7 yields

r@ [ g [T fedx+ w s + e =o.

x= f(u)
As before, let R be the total area. Noting that
a R u
s =7 - [ feax
xX=u 4 0
and that
R a a
1= f(x)dx + f(x)dx + uf (u),
we have
R u u
(12) f’(u)|:z — J f(x)dx + uf(u):l + f f(x)dx = 0.
0 0

We have not been able to obtain closed form solutions for (11) or (12).
Numerical solutions were obtained and are shown in Fig. 10 for the case R = 4,
i.e., the area in each quadrant is 1. For other values of R, the shape is obtained
by linear scaling.

A priori, one might have been tempted to guess that the square and diamond
were optimal shapes for the maximum and rectilinear metrics, respectively,
since each has the property that every point on the boundary is equidistant from
the center. Instead, the shape has turned out to be quite close to a circle in each
case, although it is true for the maximum metric that the circle is distorted toward
the shape of a square, and for the rectilinear metric, distortion is toward a diamond.
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T T
MAXIMUM
METRIC
I.0f ]
RECTILINEAR
METRIC
0.5 -
0.0 .
O 0.5 1.0

F1G. 10. First quadrant of optimum shells compared for maximum and rectilinear metrics with a total
area, R = 4

5. Nonexistence of heuristics for the general case. In contrast to the Euclidean
case, we will show that for the maximum and rectilinear metrics there is no
heuristic which operates only on relative frequencies and which is within an
additive constant of optimal.

It follows easily from the methods in § 3 that the optimal solution to the
discrete problem is within an additive constant of the optimal solution for the
corresponding continuous problem.

Given a continuous solution with total area n, we define a scaled solution
with total area 1 by shrinking each area by a factor of 1/n and increasing the
probability per unit area by a factor of n. Let D,(opt) be the expected distance
for the solution with total area n. Then the expected distance D,(opt) for the
scaled version is given by D,(opt) = ﬁ D,(opt), and the scaled solution is also
optimal.

Consider the case

pi=p and Pi= 2<i<n,

where p + g = 1. Then for the corresponding continuous problem,

D, (opt) = 2pga + ¢*b + O(1/\/n),

where a is the average distance between a point with weight np and a point with
weight ng/(n — 1) and b is the average distance between points with weight
ng/(n — 1). Thus

D,(opt) = \/nq(2pa + gb) + O(1).

The optimal solutions were obtained in § 4 for the case p = 1/n. Asymptotically
for large n, the shapes of these optimal solutions are the shapes which minimize b.
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On the other hand, the shape which minimizes a (again asymptotically for
large n) is the diamond for the rectilinear metric and the square for the maximum
metric. Thus there is no single shape which simultaneously minimizes a and b.
Thus as p varies from 1/n to 1, the shape of the optimal solution varies from the
shapes given in § 4 to the diamond or square.

Suppose that there was a heuristic operating only on relative frequencies
for the discrete case. Then for any value of n, this heuristic essentially provides a
template for position of the n records, and the shape of this template is inde-
pendent of p. The continuous analogue of the solution provided by this template
would have to be within an additive constant of optimal. But this is a contradiction,
since as argued above, given any shape there is a value of p so that the solution
deviates from optimal by a quantity proportional to ﬁ

For the Euclidean metric, of course, the circle simultaneously minimizes
aand b.

6. Concluding remarks. This paper adds another example to the growing body
of literature [7]-[18] which deals with near-optimal solutions which are compu-
tationally more efficient than any known algorithm for creating optimal solutions.

It was surprising to discover that of the three metrics studied, only the
Euclidean metric permits a heuristic dependent only on relative frequencies
which is within an additive constant of optimal. One wonders if there are other
nontrivial metrics with this property.

Algorithms which compute exact solutions appear to be prohibitively
exhaustive. Thus it would be interesting to explore other criteria for goodness of
a heuristic, e.g., within a fixed percentage of optimal, in the hope that good
heuristics would then exist for all metrics. It would also be interesting to study
heuristics which use the exact access probabilities but in nonexhaustive ways.

Finally, we remark that the constant in the theorem of § 3 is probably much
too large, and we do not have any guess as to the least upper bound.

Appendix A. Proof of Lemma 1. Suppose the lemma is not true. Without loss
of generality, we can assume that there exists a straight line L such that one of the
following cases would occur:

(A.1) (A N w}) 2 (BN o), I(A N wf) # (BN w¥),
(A2) I(A N w¥) $ (BN w?), (A N w}) = (BN w)),
and

(A.3) I(A N o}) o (BN w?), I(A N wg) $ (BN wd),

where  means ““does not contain’’. We will show that (A.1) leads to a contradic-
tion. The other two cases can be similarly dealt with. Note that case (A.1) does not
rule out I(B N w?) = (4 N w?), I(B N w§) = (4 N w§). But the assumption that
the lemma is not true takes care of the objection.

Figure 11 is an illustration of (A.1).

Denote the region HAF by 4, AKGF by </, KMG by 4, GNF by ¢, BJCE
by 9,JDC by 4, CPE by #', IQR by % and QBER by & We will show that

o Yol YA JFEDB
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Fi1G. 11. Figure for proof of Lemma 1

hence a contradiction.

P
gl O I
g I8P e R N M B

edin Lol
LAl LD L L

e 5 e 9 e Y
ol PP 8 R W g N

For each point y in 4, let y' in 4’ be its image with respect to L. Let x be a
point of 4. By properties of the Euclidean metric, d(x, y) > d(x, y'), for x, ynoton L.

GVRB GIYRB

and similarly for other pairs of integrals. Thus the result follows.
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MANAGING STORAGE FOR EXTENDIBLE ARRAYS*
ARNOLD L. ROSENBERGY

Abstract. Schemes which allocate storage for extendible arrays cannot utilize storage as efficiently
as can their nonextendible counterparts. Relative to formal notions of array scheme and (extendible)
array realization, a formal way of gauging efficiency of storage utilization by extendible array realiza-
tions is proposed;; a lower bound of O(p - (log p)* '), where p is the array size and d the dimensionality,
is derived for this measure; and an extendible allocation scheme which achieves this lower bound is
exhibited. Certain seminorms on Euclidean spaces can be used to construct extendible array realiza-
tions. It is shown that for realizations so constructed, the lower bound on storage utilization efficiency
is O(p). In the opposite direction, certain restrictions on the patterns of expansions of arrays can be
used to circumvent the lower bound: When arrays are constrained to expand according to some fixed
finite set of patterns, then one can devise extendible realizations which (a) utilize storage very efficiently
(O(p)) on arrays which conform to the patterns and (b) approach the general lower bound
(O(p - (log p)*~ 1)) on arrays which do not conform. It is not known if this improvement is available for
infinite sets of patterns.

Key words. array, array realization, extendible array, storage utilization, storage allocation for
arrays

1. Introduction. Conventional schemes for storing arrays do not admit easy
dynamic extension of a stored array. In two dimensions, for instance, the familiar
“store-by-row’’ scheme admits easy adjunction of new rows but only awkward
adjunction of a new column. Such asymmetry in extendibility is not inevitable:
it is not hard to devise computed-access schemes for storing arrays, which are
readily extendible in all directions. (A scheme is said to use computed access if
it computes the address assigned to a given position of the array as a displacement
from the address of position (1, ---, 1).) As we showed in [4], arbitrary extend-
ibility in array realizations does not come without cost. The present paper continues
the study begun in [4] of the properties and limitations of extendible array realiza-
tions. The current research investigates the cost of extendibility in terms of
efficiency of storage utilization.

1.1. Summary of main results. For ease of exposition, we discuss only
two-dimensional arrays in this summary. Any individual array can be stored
without “‘gaps’: one merely stores the array in a contiguous block of storage
locations of just the right size. An extendible array realization (according to our
worldview), however, is not storing an individual array; it is, rather, storing an
array and all its potential extensions. One cost of this flexibility is that extendible
allocation schemes must inevitably leave gaps when storing some arrays. How
big must these gaps be? We show that any extendible array realization must,
for each integer p, spread some array with p or fewer positions (an m x n array
has p = mn positions) over at least %(p) = Zle [p/k] > (p/4) - [log, p] storage
locations. We establish two positive results which take some of the sting out of
this lower bound. First, the lower bound is achievable: we present an extendible

* Received by the editors August 8, 1973, and in final revised form September 18, 1974.

1 Mathematical Sciences Department, IBM Thomas J. Watson Research Center, Yorktown
Heights, New York 10598. This research was supported in part by the Office of Naval Research under
Contract N00014-69-C-0023.
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array realization which never spreads any p-position array over more than %(p)
locations. Second, the lower bound can often be overcome! Say that one selects
a finite set of shapes for arrays. (An array shape is an infinite set of arrays specified
by a height function h and a width function w. The “‘shape’ is then all arrays of
size h(n) x w(n) for some n. Thus, we have as a shape all square arrays (h = w
= Jn[n]), or all 2n x 3n arrays, or all n x n? arrays, etc.) Then one can find an
extendible array realization which spreads any p-position array of one of these
favored shapes over at most c¢-p storage locations, where the constant ¢ is
(approximately) the number of shapes to be favored. In addition, this realization
can be designed to be “gentle’” on arrays of unfavored shapes, spreading such a
p-position array over at most roughly ¢ p - log, p locations. This realization is,
therefore, close to perfect where it counts most and close to minimax optimal
everywhere else. We do not know of any realization which favors a nontrivial
infinite family of shapes, in the sense that, for each shape S, there is an integer c;
such that a p-position array of shape S, is spread over at most ¢; - p locations;
it remains open whether or not such a realization exists.

1.2. Background and related work. Conventional schemes for storing arrays
are discussed at length in [2, § 2.2.6]. Our treatment of extendibility in computed-
access array storage schemes follows the development in [4]. Here, array realiza-
tions are rendered extendible in a particular direction by having them allocate
storage (i.e., assign addresses for) an array which is infinite in that direction.
Arbitrary extendibility is then modeled by realizations of an orthant array, an
array whose set of positionsis the set ofall positive integer d-tuples (in d dimensions).
The rationale behind this worldview is discussed in [4] and is summarized in § 2.3.
This method of modeling extendibility makes the notion of pairing function
(= a one-to-one function from N x N to N) very germane to our investigation.
Brief discussions of pairing functions frequent the literature of mathematical
logic and computability theory ; a number of examples of such functions appear in
(3, pp. 182, 288fT.].

Extendibility in array realizations can be attained also by abandoning
computed-access allocation schemes in favor of either a linking strategy or a
hashing scheme. Linked allocation schemes for arrays are described in [2, § 2.2.6].
We know of no systematic study of hashing-based schemes for storing arrays,
but an interesting empirical study of such schemes is reported in [1]. The advantage
of computed access in array realizations is that such realizations afford one both
easy probing of the array (which is inevitably lacking in linked schemes) and easy
traversal along, say, rows and columns of the array (which is not present with
hashing schemes). The concomitants of easy traversal in extendible computed-
access realizations form the subject of an interesting paper by Stockmeyer [7].
In that paper, he considers the effect of easy traversal in extendible realizations
on other criteria for assessing the quality of array realizations, notably efficiency
of storage utilization.

2. Arrays and their realizations.

2.1. A formal notion of array. We need a formal notion of “array” which
emphasizes those aspects of arrays germane to the study of computed-access
realizations. In this context, the key to the structure of arrays resides in the



MANAGING STORAGE FOR EXTENDIBLE ARRAYS 289

familiar coordinate system which pictures a d-dimensional array as being
imbedded in the positive orthant of d-dimensional space, with array positions
laid on the lattice points. (Consider the name of position a;;.) The domain from
which the contents of array positions are chosen is immaterial, providing that
we assume—as we always shall—that only one memory location need be assigned
to each array position. (The same scheme will allocate storage for an array of
integers, of literals, etc.) Thus, our formal notion of array takes the following
simple form.! Let d be a positive integer.

DEFINITION 2.1. A d-dimensional array scheme (array, for short) is a set
A=C; x Cy x -+ x Cyof positions; each coordinate set C; is either the set N of
positive integers or the set N, = {1, ---, n} for some ne N. When C, = C,
= ... =C,= N (ie, A = N%, then A is called the d-dimensional orthant array
and is denoted Q,. For any array scheme A, position {1, ---, 1> € 4 is called the
base position of A and is (ambiguously) denoted ¢. (Context will assure unam-
biguity.)

Note that, in accord with convention, we demand ‘“‘rectangularity™ in our
arrays; that is, each A is the cross product of its coordinate sets. Anticipating our
formal notion of extendibility, we do not constrain our arrays to be finite. In
order to orient the reader for subsequent illustrations, we depict the array scheme
A = N; x N, in Fig. 1. Note that the base position of A4 is in the southwest
rather than northwest corner of 4 in order to emphasize the imbedding in the

orthant.

FIG. 1. The array scheme A = Ny x N,

! Because of the questions studied in [4], we needed a more complicated notion of “‘array scheme”
there; this simplified notion suffices here.
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2.2. Realizations of array schemes. We seek a formal notion of “computed-
access array realization™. Informally, we wish to model those realizations which
determine the memory location assigned to each position n of an array as a dis-
placement from the location assigned to the base position ¢, the displacement
being computed from the coordinates of n. To simplify our task, we view the
computer in which our array is to be stored as having an infinite random access
memory with locations indexed (or ‘‘addressed”) by natural numbers. Our
formal notion of realization (or allocation scheme, or storage map) can, in this
framework, have the following simple form.?

DEFINITION 2.2. A realization of the array scheme A is a total one-to-one
functionr: 4 —» N such thatr(e) = 1.

The normalizing condition “r(¢) = 1°° is useful in the sequel but is not
indispensable for our investigation. There seems however, to be some aesthetic
merit in “‘beginning’’ all realizations with the base position.

Note. The existence of pairing functions guarantees that all array schemes
can be realized.

2.3. Extendibility in array realizations. At an intuitive level, we adjudge an
array realization to be extendible (in a given direction) if it can be “easily”’ con-
verted to a realization of any extension of an array (in that direction), all the while
“retaining its computational characteristics”. While this statement can have no
precise meaning in view of the undefined terms, it should, nonetheless, convey to
the reader that we view extendibility as basically some kind of stability in the face
of certain changes in the environment. We home in on a formal notion of extend-
ibility by examining two sample realizations of the array 4 = N5 x N,.

Realization 1 (Store by row). For (i, j>e N3 X N4, ¥(i,j) = 41 — 1) + j.

This realization is easy to compute. It uses storage well, storing the 12
positions of 4 in ‘“‘locations’’ 1 through 12. It is easy to extend along columns;
that is, it is easily converted to a realization of any superarray of A of the form
N, x N,.Theextended realization will remain easy to compute ; in fact, it will be
represented by the same linear form. Moreover, the new realization will also
utilize storage well, assigning locations 1 through 12 to the original array A4
(as did r) and locations 13 through 4k to the new positions. In contrast, the realiza-
tion is not easy to extend along rows. Consider, for example, converting r to a
realization of N; x N, ie., A with an additional column. One is faced with two
undesirable alternatives (since r is not one-to-one on N5 x Nj). One could store
the new column (positions <1, 5>, (2,5), (3,5)) in some arbitrary manner, but
then the “‘simplicity’”” inherent in r would be lost. Alternatively, one could retain
r's simplicity by using the linear form 5(i — 1) + j, a 5-column store-by-row
scheme, to store the extended array. This latter alternative, though, is hard to
implement, since it entails reallocating storage for all but the first row of 4.
Itis thus clear, even at this intuitive level, that r possesses a certain stability relative
to the adjunction of rows that it does not enjoy relative to the adjunction of
columns.

% As with the notion of array scheme, our investigation in [4] demanded a more complicated
notion of realization than that used here.
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Realization 2 (Gédel numbering). For (i, j> € N3 x Ny, r,(, j) = 2713/~ 1

This realization is bad in almost every respect. It is hard to compute, requiring
anumber of multiplications which grows with max {i, j} . It uses storage abysmally,
spreading A’s 12 positions over 108 storage locations. But, it is easily extended
along both rows and columns. If one extends A to any superarray N, x N,,
the corresponding extension of r,, will retain r,,’s exponential form, will leave the
positions of 4 unmoved, and will retain r,,’s pattern of storage utilization. In
other words, r,, enjoys the stability which we are equating with “‘easy extend-
ibility”.

Why is Realization 2 easily extendible? What makes Realization 1 easily
extendible along columns but not along rows? Intuitively, it appears that the
answer is the same in both cases: the realization in question is a restriction (qua
functional restriction) of a realization of a superarray which is infinite in precisely
the directions of easy extendibility. The alternative to this explanation is to
envision some notion of “‘adaptive” realization which starts out small and grows
on demand. This is certainly one view of extendibility ; however, it is hard to see
how such a growing realization can progress “‘uniformly’” without some infinite
model to line up with. Since we are compelled at this time to proceed by intuition,
we shall adopt the “infinite superarray’” model. While this choice may detract
from the generality of our investigation, it cannot lead us astray : finite restrictions
of infinite realizations are surely easy to extend along infinite directions. In
particular, this view of extendibility leads us to the following definition: a
d-dimensional extendible array realization is a realization of the d-dimensional
orthant array Q,.

A strategy for constructing extendible array realizations is presented in [4];
we briefly describe this shell strategy since it is useful in the sequel. For de N,
let s: N4 —» N be any total function which is monotonic in all variables (for all
ne NY and all e (N U {0})4, s(n) < s(r + 8))* and which has finite preimages
(for all ne N, the set s™ !(n) is finite, maybe empty). Call each set s~ '(n) a shell,
and call s a shell index. Shell indexes, which often arise naturally in computational
situations, can be used to construct extendible realizations in the following simple
way: design r:N? —» N to linearize the partial order induced by s. (r linearizes
the shell index s if r(n) > r(z') whenever s(n) > s(r'), for all n, o’ € N%) Thus,
r assigns locations, in order, to the shells s~ (1), s~ !(2), and so on. The following
realizations, which are depicted in Figs. 2 and 3, respectively, illustrate the shell
strategy.

Realization 3 (Diagonal shells). For <{i,j>e N x N, ri,j)) =3+ j—1)
i+ j—=2)+

This realization is constructed from the diagonal shell index s,(i, j) = i + j.

Realization 4 (Square shells). For i, j>eN x N, r(i,j)=(m — 1)* + m
+ j — i;m = max(i, j).

This realization is based on the square shell index s (i, j) = max (i, j).

3 As we noted in [4], s’s monotonicity removes one obstacle to efficient storage use since, for
instance, gaps needn’t be left while storing a row for later entries in that row.
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FI1G. 2. Realization 3: Q, stored by diagonal shells

3. Efficiency of storage utilization.

3.1. A measure of efficiency and the lower bound. Few readers would dispute
our contention that Realization 2 (Gddel numbering) utilizes storage very
inefficiently. We would probably retain the readers’ concurrence when we claim
that Realization 3 (diagonal shells) is more efficient in its management of storage
than is Realization 2. A comparison between Realization 3 and Realization 4
(square shells), however, is unlikely to lead to a clear-cut decision since they both
have the same order of worst-case behavior (although r, has certain advantages
over r, which are discussed in § 4). It is our purpose in this section to propose and
study a formal measure of efficiency of storage utilization by extendible array
realizations. The measure exposes the behavior of an extendible realization on
finite array schemes. We then “*diagonalize’ over all realizations of Q, to obtain
from our measure a minimax lower bound on efficiency of storage utilization by
d-dimensional extendible array realizations.

DEerFINITION 3.1. The spread function now defined associates an integer with
each extendible array realization r and integer p. For each realization r of Q,,
foreach pe N,

SL(p;r) = max{l'("la “'ana)|li[ n = P}

i=1
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FI1G. 3. Realization 4: Q, stored by square shells

Informally, &(p; r) is the highest “‘address’’ that r assigns to any position of
an array scheme having p or fewer positions. (Recall that an array is a set of
positions, so that, eg., A =N, x --- x N, has []n; positions.) Since every
array realization maps ¢ onto 1, the function & measures the extent to which r
spreads out p- or fewer-position arrays in memory. Obviously % is a measure of
worst-case behavior.

Returning to our informal discussion, one shows easily that, for all integers p:
Lp;rg) =371 Lpsr) = p?; L(p; rp) = 0(p?).* (Look at r,,, 1, and 1, on
row arrays, that is, arrays of the form N, x N,.) Minsky ([3, pp. 288ff.]) exhibits
pairing functions r with &(p; r) = O(p* *°) for arbitrarily small e > 0. How good
can an extendible realization be with respect to this measure of spread?

DEeFINITION 3.2. For each dimensionality d € N, for all pe N,

U, (p) = min {&F(p; r)|r realizes Q}.

The storage utilization function %, represents a minimax lower bound on efficiency
of storage utilization by d-dimensional extendible array realizations.

4By “g(n) = O(f(n))” we mean that there exist positive constants K, and K, such that K, f(n)
< g(n) < K, f(n).
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THEOREM 3.1. For all dimensionalitiesde N and allpe N — {1},

Ufp) = Y [plky - ka—y] = O(p-(log py*~ ).
<k1’“:t’l:(‘i.l_k‘>ENd-l
wi iSp

In particular, %,(p) > (p/4)[log, p]. Moreover, for each d, a realization r of €,
exists for which (p; ) = U[p).

Proof. Letde N and pe N — {1} be arbitrary.

(@) % p) 2 Y. [p/[] k. Let r be any realization of Q,. Since r is one-to-one,
P(p;r) can be no smaller than the number of <{h,,---, h,> e N? which are
positions of some d-dimensional array with p or fewer positions, i.e., which
satisfy [ h; < p. But [ h; < p iff by < [p/[[¢Z] hi]. Therefore, in the “‘column”
{hy} x -+ x {hy_,} x N of Q,, there are precisely [p/[],.,h:] such positions.
(Intuitively, this is saying that, due to the rectangularity of arrays, all of the columns
{a;} x -+ x {a4_,} x N with a; < h; must each contribute as many positions
to an array as does the column in question.) It follows that %(p;r)

> Zk,~~~kd-,§p [p/[ ] k:; hence the same inequality holds for %,(p), the smallest
of the #(p;r).

|

vo|[slo|lo|~N|o|o|O
N
@

8
6
4| 6| 8i0]12]14]16]18
2| 3| 4| 5] 6] 7| 8] o[ 10|11 |12]13]14]15]16]17] 18]

F1G. 4. The first eighteen hyperbolic shells for Q,

5 [x] denotes the integer part of real x.
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(b) %,p) < Y. [p/[1ki]. We describe a family of d-dimensional extendible
array realizations which assign storage in as conservative a manner as possible.
We describe the two-dimensional case in some detail, being more sketchy in
the general case. The realizations in question assign storage in shells, first for
arrays having just one position (the array N9), then for arrays having exactly
two positions (the d arrays S, x --- x S; with some S; = N, and all other
S; = N,), then for those with three positions (d more arrays), then four positions,
and so on; see Fig. 4. For each integer p, the shell that must be added to accom-
modate p-position arrays contains precisely d,(p) (= the number of {n, - -+, ny)
e N* with [ [ n; = p, the number of divisors of p for d = 2) positions. To see this,
consider any d-element factorization of p, say p=m;---my. Now N,

X --- x N, is a p-position array ; moreover,

le)(“' X de“_’ {<m1’ ""md>} U (U Na; X oo X Nad)
where the second union is over all tuples <a,, ---, a;) with some a; = m, — 1
and all other a; = m;. Of these positions, only position {m;, ---, m;» has not
been dealt with (i.e., assigned an address) in an earlier shell. Thus, the described
shells arise from the d-dimensional hyperbolic shell index s,(m,, - -+, my) = [ m;.

One realization which linearizes this shell index is the following ; see Fig. 5 for the
two-dimensional version.

FIG. 5. Realization 5: Q, stored by hyperbolic shells
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Realization 5 (Hyperbolic shells). For (i, -« -, i;» € N%,
Mi;—1
l‘h(il s T ld) = z 5d(k)
k=1 4 (the position of <i,, - -, i,> among factorizations of [] i
into d parts, in reverse lexicographic order).

The first term of r, is the number of positions in shells lower than {i,, ---, i;)>’s;
the second term (which when d = 2 is the number of divisors of i,i, which do not
exceed i,) determines {iy, ---, iy»’s position in its shell. It is easy to verify that
Lpsn)=r1,1,---,p)=YP_ J,k) = (the number of <h,, ---, h;» € N* with
[1h < p). Letky, -, ky_, be such that [ k; < p. As in part (a), the number of
points in question which reside in the “‘column” {k,} x --- x {k;_,;} x N of Q,
is precisely [p/[ | k;]. Moreover, every position <hy, ---, hy> with [ ] h; £ p must
reside in one of these columns. It follows that &(p;r,) < Zklmm L <p (p/[1kd;
hence, the same inequality must hold for %,(p), the smallest of the £(p;r). The
expression given for r, is rather cumbersome computationally. For the case d = 2,
a computationally superior expression for r, derives from the following lemma.
LemMA 3.1. ([7, pp. 159f.]). For allpe N,

z d,(k) = z [p/kl=2" z [p/k]—[f 12

(c) %,p) = O(p-(log p)*~'). We establish the order of %,(p) by means of the
following lemma.
LEMMA 3.2. Forallpe N — {1} and all ee N U {0},

Y. [p/]]kd = O(p-(log p)°).

kikakeSp

Proof. We estimate the sum above and below using integrals.

Below.
Y, WwIlkl> Y WIlk-1
Okisp Nkisp
[p/e]
> > lk-1
kl!“'!kg:l
[p'/e]
ky,ke=1
UL gy dx
>p- (J - ¢ _ 1)
X1, Xe=1 Xy ot X,
= O(p - (log p)).
Above.
P
z [P/nki] = Z p/l—[ki< Z P/l—[ki
Mk;<p Nki<p ki, ke=1

prl dx, -+ dx
<K~p-f —1L "¢ forsome K > 0
Mrexe=1 X1t X,

= O(p-(logp)). O
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Our claim (c) follows from parts (a) and (b) and from Lemma 3.2 with
e=d— 1.

(d) #,(p) > (p/4)[log, p]. The inequality ) [p/k] > (p/4)[log, p] can be
verified using standard estimates. We shall not verify claim (d) this way, however,
since the claim will emerge as Corollary 1 of Theorem 3.2.

This completes the proof of the Theorem. [

The message of Theorem 3.1 can be encapsulated as follows.

COROLLARY. Let r be any realization of Q,. For each integer p, there is an
array A with p or fewer positions such that max (r(4)) = Y [p/k]; that is, r spreads
A’s positions over at least roughly p - log, p locations.

3.2. Two special cases. We examine two special realization problems which
are interesting for different reasons. First, we investigate the problem of storing
only arrays whose sets of positions have cardinality a power of two. The storage
problem for these arrays will lend some insight into the occurrence of the logarith-
mic gaps predicted by Theorem 3.1. Second, we consider efficiency of storage
utilization by extendible realizations which linearize shell indexes arising from
norms on Euclidean spaces. (These are discussed briefly in [4, § 4].) Many pairing
functions, for instance r,, and especially the polynomial ones, such as r, or the
excess-squares function r(i, j) = (i + j)*> + j — 4, can be viewed as arising from
norms. All of these pairing functions have a spread &(p; r) which is O(p?). We shall
see in Theorem 3.3 that such a spread is inevitable with norm-based pairing
functions.

3.2.1: Powers of two. We define analogues of the spread and utilization
functions.

DEerINITIONS 3.3. For each realization r of Q, and each p € N, define

S(p; r) = max {r(i, )I<i, j> < some {m,n) withm-n = p}°
and
U(p) = min {S(p; r)|r realizes Q,}.

Informally, (i, j> is in some p-position array precisely when {i, j> < some
{m,n) with m-n = p; thus, S(p; r) measures the extent to which r spreads out
arrays having exactly p positions.

Remarks. (a) For all realizations r of Q, and all pe N, S(p;r) < L(p;r);
(b) forall pe N, U(p) < %,(p).

THEOREM 3.2. For all ke N, U(2¥) > k-2*"!. Hence

lim sup U(p)~ > 0.
p~o D 10g2 p

Proof. We employ the same counting technique as in part (a) of the proof of
Theorem 3.1.

Let r be any realization of Q,. Since r is one-to-one, S(2; r) must be at least
as great as the number of (i, j> € N? which are positions of some 2*-position
array, i.., which are < some {29 2> with a + b = k. In N x {1}, there are 2*
such positions. For be N, there are 2~ ? such positions in “column™ N x {c}
for all ¢ in the range 2°7! < ¢ < 2b It therefore follows that S(2%;r) = 2*

5¢a,by < {c,d>iffa < cand b < d.
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+ Yk_ 22712%7P = (k + 2)-2*7 . Since r was arbitrary, this lower bound must
hold also for U(2¥), the minimum of the S2*;r). 0O

COROLLARY 1. Forallpe N, %,(p) > (p/4)[log, p].

Proof. The result is clear for p < 4. We find the following inequalities for
p=24:

U,(p) = U(2Lioe2r)) (since %, is monotonic nondecreasing
by definition)
> 2Mlee2p1"1 . [og, p] (by Theorem 3.2)
> (p/4)[log; p] (since [log, p] > log, p — 1). a

Remark. %, is a monotonic increasing function ; U is not even nondecreasing.
The former assertion follows from Theorem 3.1 ; the latter follows from Theorem
3.2 and the easily verified fact that U(p) = 2p — 1 whenever p is a prime.

Finally, we note that Theorem 3.2 ensures that the logarithmic gaps of
Theorem 3.1 appear even if one restricts attention to arrays whose height and
width are both powers of two.

COROLLARY 2. Let r be any realization of Q,. For each integer k, there is
anarray A = Nya X N, witha + b = k such that max (r(4)) > k-2¥ 1.

3.2.2. Norm-induced shell indexes. Natural shell indexes are often dictated by
external considerations (as was the hyperbolic index, and as will be the indexes
discussed in §4); however, one often encounters problem situations which offer
no hints about how to construct a realization. In [4], it was suggested that one
could often look for inspiration to those functions on Euclidean spaces which, in
the continuous case, are used to determine the shapes of neighborhoods, namely
norms. We now show that realizations based on norm-induced shells must
exhibit materially inferior worst-case storage characteristics than that of Theorem
3.1. The results reported now were obtained jointly with Larry Stockmeyer.

DEFINITION 3.4. The shell index s:N? — N is norm-induced (is an N-index) if

(a) for all m, pe N4, s(n + p) < s(n) + s(p); and

(b) forallme N?and ne N, s(n-n) = n-s(r).

Thus, s comes from a seminorm which is integer-valued at the lattice points.

THEOREM 3.3. Let r be any realization of Q, which linearizes an N-index s.
For all integerspe N, #(p;r) > [(p — 1)/d]".

Proof. Let pe N be arbitrary, and consider the position (p + d — 1)-£e N
Since s is an N-index, we have (by Definition 3.4(a))

s((P+ d— 1)‘8)§S(1,"', I,P) +S(1,"‘ » P> 1)+ e +S(p911”', 1)
Hence for at least one of the positions 7 on the right,
(1) s(m) 2 (1/d)-s((p + d — 1)-¢) 2 s(([(p — 1)/d] + 1)-¢).

This last inequality follows from Definition 3.4(b). Next, letting ¢ = [(p — 1)/d],
nate that, for all p e (N,)%, we have

8(p) =s(g-¢) <s(lg + 1)-¢) = s(n).

These inequalities follow, respectively, from the monotonicity of s, from Definition



MANAGING STORAGE FOR EXTENDIBLE ARRAYS 299

3.4(b), and from the inequalities (1). Thus, at least ¢ = [(p — 1)/d]? positions of
Q, reside in shells lower than that of wn. Since r linearizes s, we have r(r)
> [(p — 1)/d)°. Since = is in some p-position array, the theorem follows. [

The diagonal and square shell indexes are both norm-induced ; hence, their
linearizations’ spread behaviors are as good as possible in terms of growth rate,
among norm-induced realizations. We infer from the multi-dimensional versions
of these realizations that %,(p) = O(p) when only norm-induced realizations are
considered.

4. On favoring arrays of specified shapes. The results in § 3 have a predomi-
nantly negative tone: sizable (and growing gaps are inevitable concomitants of
extendible array realizations. Yet the square shell realization r, (Realization 4)
gives some reason for optimism. Despite r,’s poor worst-case storage utilization—
which, by Theorem 3.1, is materially worse than even the pessimistic lower
bound—r, manages storage perfectly for square arrays; that is, for all ne N,
r, maps (N,)? one-to-one onto N,.. Thus, when confronted with an algorithm
which uses successively bigger square arrays, one has access to an extendible
array realization which manages storage perfectly. This section is devoted to
showing that analogues to rycan be devised for any fixed array ““shape”. Moreover,
any fixed number of such perfect-storage-managing shape-favorers can be
combined into an extendible realization which favors all of the shapes its con-
stituents do—and also approaches the minimax optimality of the hyperbolic shell
realization on arrays of unfavored shapes. This combined realization is not free
of gaps even on the favored arrays, but the size of the gaps is bounded (multi-
plicatively, by approximately the number of shapes to be favored). We close the
section with an open question about the existence of realizations which favor
infinitely many shapes.

4.1. Realizations which favor a specific shape. We begin by formalizing the
notions of “array shape” and “storing an array compactly’’.

DEFINITIONS 4.1. (a) A d-dimensional array shape is a d-tuple of functions
S = <hy, -+, hy), where each h; is an unbounded nondecreasing total function
from N into N, such that for no ne N do we simultaneously have all h,(n)
=hn +1).]

(b) The array N, x --- x N, has shape S if, for some ke N, n; = hy(k)
for all i.

The intention of Definitions 4.1 is that the formal analogue of “‘array shape”
is the specification of the infinite family of arrays having that ‘‘shape”. The
specification is by means of the functions h,, ---, h,;, where hy(k) specifies the
height along axis i of the kth array having that shape. Thus, the shape <h,, --- , h,)>
specifies the infinite indexed family of arrays 4,, 4,, - - -, where, for each ne N,
A, = Np@m X **+ X Nyp,». The examples in Table 1 should aid the reader’s
intuition. (Functions in the table are specified using A-notation.)

DEFINITIONS 4.2. Let r be a realization of Q.

(@) r stores the array 4 =N, x --- x N, with bound b (beN) if
max (r(4)) < b-[[n;.

7When d = 2, we denote the shape by S = <h, w) for height and width.
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(b) r is b-linear (b€ N) on array shape S if r stores every array of shape S
with bound b.

(c) r is compact on array shape S if r is b-linear on S for some be N.
It is assumed, of course, that the array shapes of (b, ¢) are d-dimensional.

TABLE 1
Some array ‘‘shapes” and their formal analogues

*“Shape” Shape : Height Width
square An[n] An[n]
even side square An[2n] An[2n]
nx(n+1) An[n] Anfn + 1]
n?xn n[n?] An[n]

Our earlier remark that r, stores square arrays ‘‘perfectly’”” can now be
formalized: r, is 1-linear on the shape {An[n], An[n])>. The existence of analogues
of r, for arbitrary shapes can also be stated formally.

THeEOREM 4.1. Let S = <hy, -- -, h,) be any d-dimensional array shape. There is
a realization r of Q4 which is 1-linear on S.

Proof. We design r to linearize the following shell index s which exposes
the structure of the shape S. For {n,, ---, n;> € N%,

s(ny, -+, ny) = max {least k with h;(k) = n, ; least k with h,(k) = n,;
-+ ; least k with hy(k) = n,}.

For each ke N, denote by A4, the array scheme Ny 4, x --- x Ny . Informally,
the first shell s~ !(1) is the set of positions of the array scheme 4, ; for k > 1, the
kth shell s~ (k) comprises those positions of the array scheme A4, which are not
positions of the array scheme A4,_,. (See Fig. 6.) Any onto realization r which
linearizes s is easily seen to be 1-linear on S. [

In order to illustrate that the realization constructed in the previous proof
need not be computationally prohibitive, we remark that the following realization
r of Q, is 1-linear on the shape S = ¢h,w): let M = s(j, j); then

i, ) =hM)-( j— 1) +hM —1)- WM — 1) — min {j, w(M — 1)}) + i.

A derivation of r is given in the Appendix.

Remark. In [5] (the technical report underlying this paper), we used a more
general notion of shape than here, by insisting only that some h; be unbounded
(so, for instance, all arrays of the form N; x N, would be a shape). The price of
this generalization is that the subsequent development gets very awkward;
for instance, Theorem 4.1 must be weakened to assert that r stores all but finitely
many arrays of shape S with bound 2. Since our main concern is with shapes as
defined here, we have opted for cleanliness rather than generality. Should the
reader be tempted to consider the more general notion of [5], we suggest that the
constants used to measure storage bound and linearity be allowed to be rational
rather than integral, for in the general case the constant 2 can usually be reduced
to 1 + e for arbitrarily small e > 0.
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(©) = <hlk),wik)>

SHELL | 2 S“g'—'—

[AXES—/

FI1G. 6. A possible layout of shells from the array shape (h, w)

4.2. Compact handling of sets of shapes. Theorem 4.1 can be combined with
the following basic lemma to show that any finite set of shapes can be handled
compactly by some realization.

THE DOVETAILING LEMMA. Letr,,r,, - -+, r berealizations of Q,. There exists
a realization r of Q, such that, for all n € N*,

r(n) < k-min {r(n)lle N,}.
Proof. Define r by
r(n) = min {k - (r(n) — 1) + l|le N,;}.

Now, r is total since the r, are; r is one-to-one since each r, is, and since r uses a
distinct residue class modulo k to “select”” from each of the r;; also, r(¢) = 1.
Intuitively, r is computed by giving each n € N? the integers all of the r;’s would
give it—adjusted so that each r; uses only integers in the residue class ! (mod k)—
and then selecting the smallest integer as r(n). [0

THEOREM 4.2. Let Sy, ---, S, be array shapes. There is a realization r of Q,
which is compact on all of the S;. Moreover, r can be chosen to spread any p-position
array which is not of any of the shapes S; over at most O(p - (log p)*~ 1) locations.

Proof and discussion. The Theorem can be proved using Theorem 4.1 and the
Dovetailing Lemma. The most straightforward method of proof would take the
k realizations to be combined and would combine them according to the prescrip-
tion of the lemma’s proof. (We assume that Theorem 4.1 has been used to translate
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82 83 84 85 86 87 88 89 90 91
65 66 67 68 69 70 71 72 73 92
50 51 52 53 54 55 56 57 74 93
37 38 39 40 41 42 43 58 75 94
26 27 28 29 30 31 44 59 76 95
17 18 19 20 21 32 45 60 77 96
10 11 12 13 22 33 46 61 78 97

5 6 7 14 23 34 47 62 79 98

2 3 8 15 24 35 48 63 80 99

1 4 9 16 25 36 49 64 81 100
(a) r,—square shell realization

>103  >10%  >10%  >10% >105 >10° >10% >106 >107 >107
>103  »103  >10% >10% >105 >10° »10% >10® >107 >107
768 >103  >103  s10% »10% >10° >10° >106 >10% >107
384 >103  »10%  »10%  >10% >10% >10° >10° >10% >10°
192 576 >103  »>10%  >10% >104 >105 >10° >10% >108
96 288 864 >103  »10%  >10% >10% >10° >105 >10°
48 144 432 >103  >103  »10% >10% >10° >10% >10°
24 72 216 648 >103  »>103  »10% >10% >10° >10°
12 36 108 324 972 >10%  »10%  >10% >10% >10°

1 3 5 7 9 11 13 15 17 19
(b) r,—stores “‘row arrays” 2-linearly
24 62 106 153 204 255 308 363 419 478
21 54 93 135 179 223 270 320 371 420
17 47 79 116 154 193 235 277 321 364
15 39 68 98 129 164 200 236 271 309
11 31 55 80 107 136 165 194 224 256
9 25 43 63 86 108 130 155 180 205
6 18 32 48 64 81 99 117 137 156
4 12 22 33 44 56 69 82 94 109
2 7 13 19 26 34 40 49 57 65
1 3 5 8 10 14 16 20 23 27

Fi1G. 7. Three realizations to be dovetailed

(c) r,—hyperbolic shell realization
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shapes into realizations and that the hyperbolic shell realization has been added
to the set to be combined, if desired.) If k realizations are so combined, then the
number of locations over which a p-position array is spread by the resulting
realization is k times the least number of positions it is spread over by any of
the k input realizations. In particular, if an input realization stores a given shape
c-linearly, then the resulting realization stores that shape ck-linearly. Often,
one might wish to favor some k shapes but to super-favor certain of them ; that is,
one is unwilling to suffer the dilation factor of k for those certain shapes. One can
easily use the lemma to attain such differential favoring as follows. Take the
input realizations and represent them as the leaves of a rooted tree in such a way
that (i) each nonleaf of the tree has at least two sons, and (ii) the less favored a
realization is, the farther is its leaf from the root. Then, combine the realizations
according to the lemma from the bottom up, according to the usual rules for
evaluating such a tree. (A node “becomes’ a realization, via the lemma, when all
of its sons “‘are’’ realizations; the realization it ‘"becomes’ is the one obtained by
combining its sons.) To illustrate these applications of the lemma, consider three
realizations : r, the square shell realization, r, which stores row arrays 2-linearly,
and r, the hyperbolic shell realization which stores arrays in space roughly
p-log, p (See Fig. 7.) The straightforward combination (r,,r,,r,) would store
squares 3-linearly, row arrays 6-linearly, and all other arrays in space roughly
3p-log, p. If one desires to super-favor r,, say, because most arrays of interest
will be square, then one could combine the realizations according to the (encoded)
tree (r,(r,,r,). The realization so obtained would store squares 2-linearly,
row arrays 8-linearly, and all other arrays in space roughly 4p - log, p. The layout
of storage under these sample schemes is illustrated schematically in Fig. 8.

As to the constant of linearity of the resulting realization, we see now that
we have some flexibility. However, the straightforward combination technique
demonstrates that, when k shapes are combined, the resultant constant of linearity
for each shape need never exceed k (or k + 1 if we wish to be gentle on unfavored
arrays). This upper bound may not be optimal, but it cannot be more than a factor
of 2 from optimal. To wit, say that one wishes to favor k two-dimensional shapes
simultaneously. Assume that each shape contains a distinct 2%~ !-position array—
there are precisely k of them. Then, since U(2*~ 1) > (k — 1)-2*~2, the constant
of linearity of the resulting scheme must exceed (k — 1)/2 for some shape. We have
thus proved the following more detailed version of Theorem 4.2.

THEOREM 4.3. (a) Let S,, -+, S, be d-dimensional array shapes. There is a
realizationr of Q whichis(k + u)-linear onshapeS;(i =1, ---, k),whereu = 10r0
according as r, respectively, does or does not achieve the O(p - (log p)*~ ') bound on
unfavored arrays.

(b) For each k, there exist array shapes Sy, -- -, S, such that any realization
which is compact on all S; must be c-linear on one of them for some ¢ > (k — 1)/2.

4.3. On favoring infinitely many shapes. The construction used in proving the
dovetailing lemma can obviously not be used to combine infinitely many shapes.
Barring degenerate cases, we know of no realization which stores infinitely many
shapes compactly. We do not even know if such a realization exists.

Open problem. Is there an extendible array realization which is compact on
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72 186 250 253 256 259 262 265 268 271
63 162 199 202 205 208 211 214 217 274
51 141 154 157 160 163 166 169 220 277

45 112 115 118 121 124 127 172 223 280

33 79 82 85 88 91 130 175 226 283
27 52 55 58 61 94 133 178 229 286
18 31 34 37 64 97 136 181 232 289
12 16 19 40 67 100 139 184 235 292
4 7 22 43 70 102 120 147 171 195
1 8 14 20 26 32 38 44 50 56

(a) (l's, I, rh)

96 165 167 169 171 173 175 177 179 181
84 131 133 135 137 139 141 143 145 183
68 101 103 105 107 109 111 113 147 185
60 75 77 79 81 83 85 115 149 187
44 53 55 57 59 61 87 117 151 189
33 35 37 39 41 63 89 119 153 191
19 21 23 25 43 65 91 121 155 193
9 11 13 27 45 67 93 123 157 195

3 5 15 29 47 69 95 125 159 197

1 7 17 26 34 42 50 58 66 74

(b) (rs’ (l',., rh))
FIG. 8. The result of dovetailing r, r,, and r,: (a) equal weighting ; (b) super-favoring r

each of infinitely many array shapes? In order to bar trivial solutions, we require
that each shape in the collection specify infinitely many arrays specified by no
other shape. Perhaps this nontriviality condition can be weakened to the following :
given any two shapes in the collection, each specifies infinitely many arrays not
specified by the other. Any nontrivial solution to this problem would be interesting.

Appendix: A 1-linear storage scheme for the shape Ch, w). We are presented
with an array shape <h,w). From it we infer the shell index s presented in the
proof of Theorem 4.1. We linearize the shells delineated by s by listing the positions
in each shell, in turn, “by columns”. Note that the realization we arrive at is
computable—in the technical sense—whenever h and w are, and that it is not
exceedingly more difficult to compute than the worse of those two functions.

The general paradigm for constructing shell realizations is to represent r as
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the sum of two functions A and p, where, for each position © e N2,
Mn) = the number of positions in shells lower than 7’s;
() = w’s position in its shell.

(cf. the specification of the hyperbolic shell realization.) We show how to compute
r(n) = A(n) + w(n) for one fixed arbitrary n = i, j>.
Conventions. To avoid repetitive use of long formulas, let

M =s(r) and W=wM — 1),

so that 7 lies just outside the array Ny, _;, x Ny .
Lower shells. For any shape S and any position =, A(r) will be the number of
positions in the largest array not containing n. For our particular example,

Mr) =h(M — 1)-w(M — 1),

using the convention that h(0) = w(0) = 0.

Current shell. To store the current shell s~ (M) by columns, we must take care
of the portion of the current shell which lies above lower shells and the portion
which extends all the way down to the axis. (Either of these portions can be empty,
but both cannot; see Fig. 6.) To ease our way into u(r), we separate these two
portions. Note that the former portion is characterized by j < W and the latter
byj> W.

i—hM —1)+ (M) —hM - 1))-(j — 1) ifj<w,
K ={i + W-hM) —hM — 1))+ hM)-(j —W—-1) ifj>W,
which simplifies to
i—h(M) + (h(M) —h(M - 1))-j ifj<W,
§ ={i+ W.h(M — 1)+ h(M)-(j — 1) ifj> W,
which finally simplifies to
um) = i +h(M)-(j — 1) — (M — 1)-min {j, W}.

Alternatives to this y function will readily occur to the reader. For instance,
one could store shell by “bands” in analogy to the square-favoring realization
(Fig. 3). In specific instances, a variety of strategies should be investigated, with
an eye toward simplifying traversal of rows and columns.
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suggestions and for asking whether “‘added information’ might allow one to
overcome the p-log p bound of Theorem 3.1. Several discussions with Larry
Stockmeyer concerning this work were invaluable, especially those leading to
Theorem 3.3, to the current proof of the dovetailing lemma, and to the suggestion
to present the utilization function % via the spread function ., Conversations with
several other colleagues, too numerous to cite individually, were helpful in
organizing the current presentation of this work. Special thanks are due the
referee for his many valuable suggestions and criticisms.
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RECURSION STRUCTURE SIMPLIFICATION*

H. R. STRONG, JR., A. MAGGIOLO-SCHETTINI{ anp B. K. ROSENY

Abstract. This paper discusses a family of algorithms for transforming a recursive program into
an equivalent program with a simplified recursion structure. The simplification is performed by
integrating copies of certain procedures into the bodies of other procedures. This procedure integration
process is analogous to macroexpansion, involving procedure calls rather than macro-opera:ors.

We measure the complexity of the recursion structure in terms of the calling graph of the program.
This is a directed graph with nodes representing the procedures of the program and arcs representing
the relation “‘calls”. We say that the recursion structure is complex if there is a high degree of cross
linkage resulting in a small number of large strongly connected components in the graph; and we say
it is simple, if the strongly connected regions are small, preferably containing one node each.

One algorithm in our family is optimal in the sense that it finds a program with the same number
of procedures and the maximum number of strongly connected regions obtainable via macroexpansion
of procedure calls. We discuss suboptimal algorithms which require less running time, and we discuss
open problems related to finding simplification algorithms optimal with respect to a wide range of
transformations including the inverse of macroexpansion. In particular, we present a very simple
open problem concerning the decidability of the word problem for certain semigroups.

Key words. recursion, copy rule, calling graph, strongly connected component, covering problem

1. Introduction. We are concerned with the simplification of the recursion
structure of programs as a first step toward the systematic removal of recursive
procedure calls. There is now a somewhat extensive literature on the subject of
recursion removal. Some entry points into this literature include [2], [4],[11],[17].
It has been remarked in several places in this literature that a natural first step in
recursion removal is the decomposition of a recursive program into a system of
mutual recursions, i.e., recursive subprograms consisting of procedures (or
functions, etc.), each of which calls all the others directly or indirectly. Each of
these mutual recursions is then to be converted to an equivalent nonrecursive
subprogram, and all the subprograms are then recomposed to yield a nonrecursive
program equivalent to the original. However, this natural decomposition of the
program is not always best for further processing.

The complexity of recursion removal algorithms generally increases dramati-
cally with the number of distinct procedures in the mutual recursion. Moreover,
itis often possible to further decompose the program, reducing the size of mutually
recursive components. One technique for further decomposition involves the
substitution of a modified version of a procedure body for a call in some other
procedure body in a way analogous to macroexpansion. In this paper, we present
an algorithm for the optimal use of such substitutions.

The reader will need no familiarity with recursive programming and only a
minimal familiarity with directed graphs to understand the algorithm. We do not

* Received by the editors December 14, 1973, a. 1 in revised form September 11, 1974.
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discuss application of the algorithm to any specific programming language,
although some of our examples are presented in a pseudo-ALGOL.

In § 2 we present a definition of the problem. In § 3 we describe a family of
algorithms aimed at its solution. Section 4 designates the optimal algorithm and
provides a proof that it does solve the problem. Suboptimal but faster members of
the family of algorithms are discussed in § 5. In § 6 we discuss a wider range of
program transformations with respect to which our algorithm is strictly sub-
optimal. Here we present a number of open problems and areas for investigation.
Finally, in § 7, we treat one of the most concise and algebraically oriented of these
open problems in more detail.

The algorithm presented here is essentially that of [13]. A preliminary
report of some of the work presented here appeared as [8].

2. Definition of the problem. No specific definition of the class of recursive
programs will be used here; our results are applicable to many different formaliza-
tions of recursion, including branched recursion equations [14], recursion with
embedded conditionals [9], program schemes with recursion [3] and high level
programming languages such as ALGoL 60 and PL/I. Any notion of “‘recursive
program’ with some elementary general properties may be used.

We assume that each recursive program has associated with it a finite set
{f.gh,---} of “procedures” and a relation ‘“calls” among the procedures.
Thus some of the information expressed by writing a program can be displayed
in a calling graph with a node for each procedure and an arc from f to g whenever
f calls g. We will use P to represent the calling graph of a program P. We wish to
transform a program in ways that preserve whatever the program computes
but that simplify the calling graph by increasing the number of strongly connected
components (while maintaining the same number of nodes). The resulting small
collections of mutually recursive procedures may be more amenable to recursion
removal techniques [15], [17] than the original components.

Only one kind of transformation is considered here : the ALGOL 60 copy rule
[10] and its analogues in other formalisms. Wherever a procedure g is called from
within the body of a procedure f, we may replace the call by an appropriately
modified copy of the body of g. (The main modification is to replace formals
by actuals. For call-by-value or call-by-reference it is also necessary to add
evaluations of the actuals or their addresses.) We do not consider the syntactic
details because all we need here is the following general property : for any program
P and any procedures f, g and P, we can form a program Q equivalent to P that
uses the same procedures and calling relation, except that f calls in Q all the
procedures which g calls in P and f no longer calls g in Q unless g called itself in P.
To get this, we have to apply the copy rule to all calls on g from within the body
of f, even nested ones. If g does not call itself, then no calls on g will be left in
the body of f.

Thus the copy rule, when applied to all calls on g in the body of f, maps P
to a new program which we call [f — g]P, and [f — g]P the calling graph of
[f — g]P is formed from the calling graph P by this operation :

(i) Delete the arc (f, g).

(i) Add a new arc (f, h) for each h such that the arc (g, h) is in P but (f, h)
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is not in the graph resulting from (i).

If g calls itself in P, then (f, g) reappears in the calling graph [ f — g]P.

Our problem is to find a finite sequence [ f, — g, ][ fo-1 — w1l - [f> — &3]
-[fi — g1]P of these copy rule substitutions that maximizes the number of strongly
connected components, at least compared to all other sequences of substitutions.
Our solution is applicable to any definition of the substitution operation, so long
as substitution preserves the function computed by a program and is reflected
in the calling graph by the operation (i), (ii) above.

Consider, for example, the following pseudo-ALGOL program P:

procedure q;
begin
procedure f(x, n);
real x; integer n;
begin
if n = 0 then x:= 0 else
begin
ni=n—1;x=x+1;
g(x,n);
k(x, n);
x=x—1;
h(x, n)
end
end of f;
procedure g(y, m);
real y; integer m;
begin
if m = 0 then y:= 1 else
begin
m:=m— 1;
k(y,m);
h(y,m);
Sy, m)
end
end of g;
procedure h(z, i);
real z; integer i;
begin
k(z,i);
=i+ 1;
k(z, Q)
end of h;
procedure k(w, j);
real w; integer j;
begin
integer i;
for i:== 1 step 1 until j do g(w, i);
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j=j-1
fw,))
end of k;
Sw,w)
end of g.

For our purposes, the particular operations are irrelevant ; we are concerned
only with the calling graph P, shown in Fig. 1.

The relevant part of [f — h]P would be

procedure f(x, n);

x=x—1;
begin
k(x, n);
=n+1;
k(x, n)
end

end;

and [ f — h]P would be as shown in Fig. 2,
‘\,_
(O
@
O,

FiG. 2

®
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while [k — h][k — g][k — f]P would be as shown in Fig. 3.

o
N
®

FiG. 3

Note that, in each of these example graphs, there are two components {q}
and {f, g, h, k}. Since we are interested in maximizing the number of components,
the reader might find it helpful to try to find a sequence of substitutions that
increases the number of components before studying the algorithms of the next
section. The maximum attainable via these substitutions is four.

3. The algorithm. Given a recursive program P, the algorithm applies a
variant of topsort [7] to its calling graph P, simultaneously choosing a set * of
nodes which is a covering of the graph. (By path we mean an alternating sequence
of nodes and arcs, beginning and ending with nodes, such that each arc is directed
from its predecessor to its successor node in the sequence. A cycle is a path that
begins and ends with the same node. A node cuts a cycle if it appears in the sequence.
A set of nodes cuts a cycle if one of its members does. A covering is a set of nodes
that cuts all cycles.)

The result of the sorting is a linearization (LIST) of the partial order provided
by the original graph with arcs into * nodes deleted. This linearization then
determines the order of application of the substitutions. We present the algorithm
below in flow chart form. The internal structures mentioned are lists for nodes
(LIST and POOL), a queue for nodes (QUEUE), two cells for nodes (FOCUS,
NEXT), a cell for arcs (PTR), and a structure for a set of arcs (GRAPH).

There are three phases in the algorithm. From a program we pass to a calling
graph together with the number N of nodes in the graph and a list POOL of nodes.
For the present, the only constraint on POOL is that it must be a covering.

The second phase manipulates the graph with no reference to the program
text. It differs from topsort [7] in that an empty queue is no longer enough for
termination. An empty queue together with a NO answer to ‘“N NODES
LISTED?” indicates that some cycles remain in the graph. (Only acyclic graphs
are allowed in topsort.) To continue sorting we choose a node not already in
LIST from POOL. We mark this node with * and delete its inarcs, so that any
cycles involving this node will be cut. We queue this node and continue as in [7].
We only dip into POOL when necessary.

The third phase uses LIST and the * marks to direct a series of macro-
expansions in the program. We have actually specified a family of related
algorithms. The members of our family of algorithms can differ in the method of
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[INPUT: PROGRAM WITH N PROCEDURES |

I PRODUCE CALLING GRAPH AND POOL
QUEUE ALL NODES WITH INDEGREE O

I 2]
p vEs 1_QUEUE EMPTY P [= - ™
T){ CHOOSE A NODE
NOT IN LIST FROM POOL,; FOCUS——HEAD OF QUEUE,
% ITS PROCEDURE ; REMOVE FOCUS FROM QUEUE;
DELETE ITS INARCS; ADD FOCUS TO LIST
QUEUE IT
YES
o [ OUTDEGREE (FOCUS)=0? )_:<
~—— >[N _NODES LISTED?] NO
e PR;E:DURE PTR=—ANY OUTARC OF FOCUS;
: NEXT—=— HEAD OF PTR,
EXPAND ALL CALLS TO DELETE PTR FROM GRAPH
NON * PROCEDURES THAT
ARE LISTED BELOW IT
[ INDEGREE (NEXT)=07 |-NO—
| OUTPUT: PROGRAM | YES

[QUEUE NEXT }———

FI1G. 4. A family of algorithms. The list POOL of nodes formed in box 1 must include enough nodes to
cut all cycles. The methods for forming POOL in box 1 and for choosing from POOL in box 11 are
not specified

constructing POOL initially and in the method of choosing which node in POOL
to use in box II.

As an illustration we apply our algorithm to the example P of the last section.
Alphabetical order will be used as the method of choice.

At point I, g is put on the queue and nodes f, g are put into POOL. The
queue is not empty; so ¢q is placed in FOCUS, the queue is emptied, and q is
placed at the top of LIST. The outdegree of g is not zero; so (g, f) is placed in
PTR, f is placed in NEXT and the arc (g, f) is deleted. We proceed to point II,
at which f is chosen and its inarcs, (k, /) and (g, f), are deleted. After placing f
on LIST and in FOCUS, we place (f, g) in PTR (using alphabetical order again
to choose the outarcs), place g in NEXT, and delete (f, g). Since the indegree of g
is still not zero, we place & in NEXT and delete (f, h). Similarly, we delete (f, k).
Now, with outdegree (f) = 0, we return to point II and choose g, deleting (k, g).
With g in FOCUS and h in NEXT, we delete (g, h) and queue h. After deleting
(g, k), we place h in FOCUS, delete (h, k) and queue k.

At point III, LIST contains ¢, f*, g*, h, k. Thus the instructions at point III
are to produce [g — k][g — h][f — k][f — h]P. The calling graph [g — k][g — h]
-[f — k][f — h]P is shown in Fig. 5. The only changes to P are in the bodies of
procedures f and g. But now the calling graph has four components {q}, {f, g},
{h},and {k}.Ifthe only entry to Pisa call to ¢, then the structure can be simplified
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FiG. 5

further by deleting h and k. However, for the rest of this paper we will ignore this
kind of simplification, assuming that any procedure of the program is a potential
entry point.

4. The solution. The following results are concerned with the application of
the algorithm to any program P. By *‘the algorithm” we really mean any algorithm
in the family specified by Fig. 4.

LEMMA 4.1. At any time when box 11 is entered during a computation, GRAPH
contains a cycle.

Proof. The assertion

(1) ALL NODES OF INDEGREE 0 ARE IN QUEUE OR IN LIST

is true on exit from the box I. The operations which falsify (1) are promptly
followed by operations which make it true again, and (1) is true whenever box II
is entered.

Let box II be entered at time t. By (1) and emptiness of QUEUE, there is
a node f; which is not yet listed and which has positive indegree. Given f; for
any nonnegative integer i, if f; has positive indegree we choose f;,, such that
(fi+1,f;) is in GRAPH at time ¢.

If the sequence (fy,f1,fs, - - *) is infinite, then GRAPH has a cycle. Suppose
instead that the sequence is finite, so some i > 0 has f; of indegree 0. We will
derive a contradiction.

By (1), f; is in LIST at time ¢. Therefore f; was added to LIST from FOCUS
at a time prior to t. Between that time and ¢, the loop governed by “OUTDEGREE
(FOCUS) = 07 deleted (f;, f;—;) from GRAPH. But no arcs are added, so
(f;, fi—1) is missing from GRAPH at time¢. [

LEMMA 4.2. The algorithm terminates normally.

Proof. An abnormal termination is an attempt to do something impossible
such as dividing by zero. The algorithm contains one box that might be impossible
to execute at some point in a computation : box II presupposes that POOL has
at least one more node not yet in LIST. By Lemma 4.1, GRAPH has cycles when
box II is entered. Since POOL includes a covering C on exit from box I, there
must be nodes in C with positive indegree when box II is entered. These nodes
must be not in LIST and still in POOL, so execution of box II is indeed possible.
Therefore, any terminating computation terminates normally.
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In the flowchart presentation of the algorithm, the nodes corresponding to the
tests “QUEUE EMPTY”’ and “OUTDEGREE([FOCUS) = 0 cut all cycles
of the flowchart. On each return to “QUEUE EMPTY”’, the number of nodes
not yet on LIST has been decreased by one. On each return to “OUT-
DEGREE(FOCUS) = 07 without passing through “QUEUE EMPTY"”, the
number of arcs not yet deleted has been decreased by one. Thus there can be at
most N returns to “QUEUE EMPTY” and at most N + E returns to “OUT-
DEGREE(FOCUS) = 07, where there are N nodes and E edges in the original
graph. Let ¢ be the maximum length for cycle free paths in the flowchart. Then
the algorithm terminates in no more than 2cN + cE + c steps [

For nodes or procedures (we use these terms interchangeably), we define
an ordering: g > f if g appears ahead of f on LIST. Thus, in our example,
q>f>g>h>k Wealsowrite f £ gif fand g refer to the samenodeorg > f.

LemMA 4.3. If f < g and f calls g in P, then g is in *.

Proof. The arc (f, g) must be deleted before g can be added to LIST. The
only ways the arc (f, g) could be deleted during the operation of the algorithm
are at point I or while f is in FOCUS. But since g appears earlier on LIST than f,
all inarcs to g have been deleted before f is in FOCUS. [J

COROLLARY 4.4. The set * is a covering of P.

Proof. Because > is transitive and no node h in a cycle can have h > h,
at least one arc (f, g) in a cycle must have f < g. Therefore g is in *. [

We write AP and AP for the program and calling graph resulting from the
application of the algorithm.

LEMMA 4.5. Each non * node forms its own component in AP.

Proof. By Lemma 4.3, each procedure in P calls only * procedures and
procedures below it on LIST. At point III, the arcs corresponding to substitutions
are those from * nodes to non * nodes in order of appearance on LIST. When
[f — glis performed, the only arcs introduced are those to elements of * and nodes
< g. Thus in AP there are no arcs from * nodes to non * nodes. Consider a com-
ponent of AP with at least two nodes. It must contain nodes f and g and an arc
(f,g) with f < g. The algorithm does not alter arcs between non * nodes; so,
if f and g were both non *, then f would call g in P, contradicting Lemma 4.3.
Hence, at least one of the nodes must be in *. But, since there are no arcs from the
node to non * nodes, the whole component must be in *. [

The following result is concerned with any sequence B of substitutions,
not necessarily following the algorithm. Recall that a cycle is a sequence of nodes
and arcs. A prime cycle is a cycle in which no proper contiguous subsequence
is a cycle. A set of nodes cuts all cycles if and only if it cuts all prime cycles.

Consider the effect of the substitution [/ — g] on a prime cycle. For it to
have any effect, the arc (f, g) must be in the cycle with f # g. Each occurrence of
(f, g) in the cycle appears in a subsequence of the form f, (f, g), g, (g, h), h, with
h # g. (If (f, g) is the last arc in a cycle from g to g, we take (g, h) to be the first
arc in the cycle.) For each occurrence of (f, g), we replace this subsequence by the
corresponding sequence f, (f, ), h to form the descendant prime cycle in [/ — g]P.
(Note that if g begins the original cycle, then h will begin the new cycle.) The nodes
of a descendant prime cycle are always a nonempty subset of the nodes of its
ancestor.
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LEMMA 4.6. After any sequence B of substitutions, for each component C of P,
there is a component D of BP which cuts all the cycles of C when viewed as a subset
of the nodes of P.

Proof. Consider any two prime cycles « and f of C. Let Ba and B be their
descendant prime cycles in BP, so that Ba and Bf lie in unique components
Do and DB of BP. It will suffice to show that Da = D, since then all descendants
of prime cycles will lie in the same component D.

By symmetry, we can show that Do = Df§ by proving the existence of a path
in BP from a node of Ba to a node of BB. To prove this by induction on the length
of B, we need only consider the case B = [f — g].

Choose nodes a in [f — gla and b in [f — g]B, with b # g unless f is a self-
loop g, (g, 8), g. Let y be a minimal length path from a to b in P. If y is also a path
in [f — g]P, there is nothing more to prove. Otherwise, y must include an arc
missingfrom[ f — g]P. Therefore, [ f — g]Placks(f, g)and Placks (g, g). Therefore
b # g and y has the form 9, (f, 2), g, (g, h), ¢ for some path é from a to f, node h,
and path ¢ from h to b. Null paths are allowed, of course. By minimality of y,
the arc (f, g) does not appear in  or ¢. Therefore, 6, (f, h), ¢is a path in [ f — g]P
fromatob. 0O

THEOREM 4.7. Consider any algorithm A in the family such that the starred
nodes form a covering of minimum cardinality. The algorithm A produces a program
AP witha calling graph AP which has the maximum number of components obtainable
via substitutions.

Proof. If there is no path from a to b in P, then no sequence of substitutions
can provide one. Thus the result of any sequence of substitutions is a refinement of
the component structure : components are divided, but never coalesced.

Consider the effect of A on a single component C of P. (Assume C contains
at least one cycle.) If we ignore arcs into and out of C, the action of A on C is
the same whether it is operating on all of P or on C only. The intersection of *
with C is a minimal set of nodes which cuts all cycles of C. By Lemma 4.6, there is
a component D of AC which cuts all the cycles of C.

Now there are two cases to consider. If D meets *, then D is included in *
by Lemma 4.5, and so D is exactly the intersection of * with C by minimality.
If D does not meet *, then |D| = 1 by Lemma 4.5, and so the intersection of * with
C has just one member by minimality. In both cases, the intersection of * with C
has|D| members. Thus the number of components of AP in Cis one plus the number
of non * nodes of C. By Lemma 4.6, this number is the maximum obtainable,
since any component which cuts the cycles of C has at least as many nodes as
the intersection of the * nodes with C. [0

Note that Theorem 4.7 deals with any version of the algorithm that obtains a
minimum cardinality covering, regardless of how this is done. One way to do this is
to start with a listing of such a covering when forming POOL in box I as follows.

COROLLARY 4.8. If POOL is formed by listing a covering of minimum cardinality,
the algorithm stars exactly the nodes of this covering.

Proof. This follows from Corollary 4.4 and the inclusion of * in POOL. 0O

5. Running time and suboptimality. In § 3 we specified a family of algorithms.
Except perhaps for boxes I and I, the graph operations and tests in the flowchart
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can readily be programmed so as to require amounts of time essentially inde-
pendent of the calling graph. Here we will also assume that the method of choice
in box II is simply to take the next node in POOL not already in LIST. Thus we
do not consider members of the family that reorder POOL dynamically.

Now we may assume that all boxes strictly between I and III in the flowchart
have running times independent of the calling graph. From the proof of Lemma 4.2,
it follows that this portion of the algorithm (the portion that does not involve
the program text) has a running time linear in the size (N, E) of the calling graph.

The linearity just established would be of little consequence if the formation
of POOL required more than linear time. Consider two extreme methods of
forming POOL. The first is to list all the nodes in an arbitrary order. This is
rapid but may lead to absurdly many * nodes. We cannot apply Theorem 4.7.
The second method is to find a minimum cardinality covering and list it in some
arbitrary order. By Corollary 4.8, the * nodes will be exactly this covering. Theorem
4.7 establishes optimality, but it is highly unlikely that POOL can be generated
rapidly. The problem of finding a minimum cardinality covering is polynomial
complete [6].

It will be more practical to form POOL by listing a small but perhaps non-
minimal covering in linear time. The algorithm will then * only those members
of the covering needed to cut cycles for topsort. Thus * will be a small covering
obtained in linear time. Will the recursion structure obtained be close to optimal
whenever the cardinality of * is close to minimal? Theorem 4.7 does not apply
directly.

To analyze the situation, we consider a program P whose calling graph P
has N nodes, K components, and M, as the minimum number of nodes in a
covering.

LEMMA 5.1. The maximum number of components obtainable via substitutions is
K+ N - M,.

Proof. Let algorithm A, in the family form POOL by finding and listing
aminimum cardinality covering. The maximum number of components obtainable
by substitutions does exist and is the number of components of A P, by
Theorem 4.7.

Let C be a component of P and let Q be the intersection of * with C, so that
C contributes 1 + |C — Q] = 1 + |C| — |Q| components to A, P in the proof
of Theorem 4.7. Summing over all Cleadsto K + N — M,. [

LEMMA 5.2. Let M be the number of nodes starred when algorithm A is applied
to P. The number of components of AP is K + N — M.

Proof. Let R be a program like P except that each * procedure in P calls
itself as well as the procedures it calls in P. Thus R has enough self loops to make
* be a minimum cardinality covering but is otherwise like P. In particular,
K(R) = K, N(R) = N, and M(R) = M. By Lemma 5.1, A,,Rhas K + N — M
components. Choosing A, so as to treat R the way A treats P (except for carrying
along the extra self loops), we find that AP has K + N — M components. [

THEOREM 5.3. Let MAX be the maximum number of components obtainable via
substitutions in P and let ACT be the actual number obtained when algorithm A
is applied to P. Let My be the minimum number of nodes required to cut all cycles
in P and let M be the number of * nodes in AP. Then MAX — ACT = M — M,

opt
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Proof. By Lemmas 5.1 and 52, MAX—-ACT=(K+ N - M,)
—(K+N-M)=M-M, 0O

These considerations come into sharper focus in the context where each
program has but one entry point and is not guaranteed to call each procedure it
declares. (This is indeed the application we are most concerned with.) Now the
graph of interest is the subgraph formed by considering only those nodes in a
larger graph which are accessible from a single node MAIN (representing entry
to the program). In order to obtain this subgraph we would, of course, perform a
depth-first search [16].

During a depth-first search, it is easy to list the nodes which have inarcs from
themselves or from their descendants in the search [16]. These nodes form a
covering which is reasonably small in many examples and which is obtained
in linear time. Still within linear time, we can order POOL so that the nodes with
inarcs from themselves precede all the other nodes, and the other nodes appear in
the reverse of the order in which they were last visited during the depth-first
search. This is called “rENDORDER” in [5].

Using the above method of forming POOL, the graph manipulations of the
algorithm have been programmed in PL/I and subjected to some preliminary
experiments. Postponing a detailed discussion until further experiments have
been performed, we remark on two easily proved results suggested by the simple
examples considered so far. For any positive integer X, we can construct a graph
such that depth-first search uses X nodes to cut all cycles, but only one node is
starred. We can also construct a graph such that X nodes are starred, but only
one node is needed to cut all cycles.

6. A more general problem. The substitution of this paper has a definite
one-way flavor. Once a particular substitution is made, the results cannot generally
be undone by further substitution. For example, if we choose [ f — g] to operate
on Fig. 6, we produce Fig. 7, which no further substitutions will change. However,
by choosing [g — f] instead, we obtain Fig. 8 with one more component.

While no substitution will reverse the action of [f — g], the inverse transfor-
mation is applicable to programs. This information consists of replacing an
appropriately modified copy of a procedure body by a call to that procedure.
We cannot expect to be able to apply this transformation often, at least in a
mechanical way. But it does correspond to a programming technique. We might
hope to tell the programmer some of the effects in terms of recursion structure.
Thus we would like to discover an algorithm for an optimal sequence of

o . [t-9] @= . [o-f]a=
§ e 3
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transformations in the wider context including substitutions and their inverses,
deciding when such an inverse is applicable and when it should be performed.

We know that our optimal algorithm is suboptimal in this wider context.
It can do nothing for a program corresponding to [f — g]Q in the previous
example; but the sequence, [ f — g] ™! followed by [g — f7, will produce [g — f]0.
We have not been able to obtain an optimal algorithm. We have even encountered
difficulty defining optimality in this context. For suppose that as a result of various
transformations, two procedures become identical (except for names). We would
certainly want to identify them and this would simplify recursion structure while
possibly reducing the number of components. It might be that the sequence of
transformations effecting this simplification would not otherwise have been
optimal.

Temporarily assuming away the identification difficulty, one might suppose
that we had only to perform all possible inverse transformations before applying
our algorithm. However, it is possible that two inverse transformations be both
applicable and incompatible, i.e., the application of one precluding that of the
other. Moreover, it is possible for some inverse transformation to become
(nontrivially) applicable only after certain substitutions have been performed.
We have not found any way to bound the implied search tree.

These questions also force us to look more closely at the substitution trans-
formation itself. In our algorithm, the only procedures modified are the * pro-
cedures, and the only procedures used to replace calls in the * procedures are
non * procedures. But in general we might perform a sequence of the form [ f — g]
(modifying f) followed by [h — f] (modifying A with copies of f). The question
then arises of whether to use the modified or original f in making the substitution.
Either choice has its supporting arguments, especially in the context of inverse
transformations where the modified f may be shorter than the original.

In this paper we leave this entire area open for further investigation.

7. A specific open problem. In this section we study a specific algebraically
oriented problem related to the identification problem of the last section.

A standard result of recursive function theory tells us that we cannot expect
to decide whether two procedures perform identically. Thus we will take the
simplifying assumption that we would only wish to identify procedures that
were syntactically identical (except for some trivially decidable name substitutions).
Our problem is to decide whether two procedures can become identical via
substitutions and their inverses. If the answer turned out affirmative, we could
consider making all such identifications in advance and define an algorithm to
be optimal if it maximized the number of components, as in the earlier sections of
this paper. Otherwise, we would be stuck with a much more cumbersome definition
and less hope of success.

We now greatly oversimplify our problem to obtain a semigroup word
problem whose solution is likely to indicate that of the identification problem.
The oversimplifications include treating each procedure as if it were simply a
string of procedure calls. Substitution is then the replacement of one of these
calls by its corresponding string ; the inverse transformation is the contraction of
some substring to an appropriate call. Thus, corresponding to a program, we
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have a semigroup for which the carrier alphabet is the set of procedures and which
is presented by a set of equivalences of the form: one procedure is equivalent to
a string of others. Our problem is then to decide whether two procedures (elements
of the alphabet) are equivalent.

Consider, for example, the following semigroup on two generators a and b:

a « — abaa, b «— aaba.
We have the following expansions (substitutions) and contractions :
a — abaa — aaabaaa < aaaa, b — aaba — aaaabaa « aaaa.

Here the forward arrow indicates an expansion while the reverse arrow indicates
a contraction. Thus a and b are equivalent in the semigroup.

If the semigroups corresponding to programs were arbitrary, then our word
problem would be recursively unsolvable [12]. However, the restriction that each
generator appear as the left side of at most one equivalence and that there be no other
relations on the semigroups leaves the problem open.

In the example above, we could make all the expansions before all the
contractions as follows:

a — abaa — a(aaba)aa — aa(abaa)(abaa) <« aalaaba)a — aaba < b.

This process generalizes to the following lemma.

LeEmMMA 7.1. If there is a sequence of expansions and contractions connecting
two words of one of these restricted semigroups, then there is a sequence connecting
the words in which all expansions appear before all contractions.

Proof. If an expansion immediately follows a contraction and does not
reverse its effect, then it must expand some other element than the one contracted
to. Thus the order of application can be reversed. []

COROLLARY 7.2. Our word problem is equivalent to the intersection problem for
a pair of context-free grammars which differ only in start symbol and are restricted
to have at most one rule per nonterminal (except that each nonterminal has an
additional rule of the form A — a,where ais a terminal distinct from all the terminals
corresponding to other nonterminals).

8. Conclusion. We have established a family of algorithms for simplifying
recursion structure by means of “‘copy rule”’-type expansions of procedure calls.
We can apply the algorithms to other contexts. For example, within one procedure,
we could expand gotos rather than calls in order to produce a program more
suitable for storage in a paged memory.

The algorithms in the family vary according to the method for choosing a
collection POOL of candidates for inclusion in a covering (set of nodes cutting
all cycles) and the method for choosing nodes from POOL when they are needed.
The collection POOL must at least contain a covering. The optimal algorithm in
the family uses a minimum cardinality covering.

It appears likely that any method for finding a minimum cardinality covering
of a directed graph must run in exponential time. Thus it is probably impractical
to run our optimal algorithm on large programs. We have discussed one linear
time heuristic method for the choice of POOL. Our family of algorithms has the
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advantage of operating with any such heuristic and producing a covering without
listing all the prime cycles in advance.

Of the open areas presented in the later sections, we found the word problem
of § 7 especially intriguing. We conjecture that the problem is solvable, but can
offer as evidence only the failure of a few standard techniques for proving
unsolvability.
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INTERACTIVE COMPUTATION OF HOMOLOGY OF
FINITE PARTIALLY ORDERED SETS*

R. BUMBY.,t E. COOPER} anp D. LATCH}

Abstract. We outline a method for practical use of an interactive system (APL) to compute the
homology of finite partially ordeted sets.

1. Prerequisites. All partially ordered sets (posets) are assumed finite.

Given a poset (P, <), we say that b covers aif b > a and a < ¢ < b implies
a = cor b = c. Since we deal with finite posets, the order relation can be obtained
as the reflexive, transitive closure of the cover relation. Our programs allow the
user to describe posets by the cover relation considered as a list of ordered pairs
(more precisely, as an N x 2 matrix). For its own convenience, the program only
accepts cover relations which are subsets of the usual order on the natural numbers.
There is no difficulty representing any poset in this fashion, e.g., the cover relation
of a “labeled Hasse diagram™ [1].

In order to calculate the homology of a poset, we define a functor, C : Z, — ./b?,
from the category of finite posets to the category of finite chain complexes of
abelian groups. If P is a poset, then the group of n-chains, C,(P), is the free abelian
group generated by symbols a, < a; < --- < q, in P. The boundary operator 0
is defined on each generator a, < a; < --- < q, by the formula

dag < - <a)= Y (=lag<---<d<--<a

0<isn

n>

where a4 < -+ < d; < --- <a, is the generator of C,_;(P) obtained from
ag < ---<a; <---<a, by deleting the element a;. The n-th homology group
of P, H,(P), is defined to be the nth homology group of the complex C(P). For
the category of small categories, ©at, which includes Z%,, homology is usually
defined as the homology of the simplicial set nerve of P, N(P). It is well known
(3], [6], that these homology theories are isomorphic.

2. Method. We begin by describing some of the functions in our APL-
workspace:

PO: PO computes the graph of the < relation in poset P and represents it
as an N x N matrix called POMAT.

CHAIN: CHAIN computes the list of K — 1-chains in the poset P from
the list of K-chains and POMAT.

BD: BD computes the matrix representing the boundary homomorphism.
Input to this function consists of the list of K-chains and the list of K + 1-chains.

Following the sketch for computation of the homology of finite chain
complexes found in Eilenberg and Steenrod [2, p. 138], we diagonalize the matrix
giving the boundary map while saving the left transition matrix. For this diagonal-
ization, we use a method of Nijenhuis [5] for determining the Smith canonical
form of an integral matrix [4]. The functions actually used in the workspace are:

* Received by the editors June 27, 1974,
+ Department of Mathematics, Rutgers University, New Brunswick, New Jersey 08903.
1 Department of Mathematics, Lawrence University, Appleton, Wisconsin 54911.
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NIJ1: NIJ1 reduces an integer matrix to a matrix whose nonzero entries
are confined to main diagonal and an adjacent diagonal. Only these diagonals
need to be stored for the remainder of the computation.

NIJ2: NIJ2 reduces output of NIJ1 to diagonal form.

Communication with user is accomplished via the function HOM. After
loading the workspace, entering the single command HOM causes the response
“ENTER POSET”, followed by the request for input ([]:). The user then enters
the N x 2 matrix of the cover relation, either directly or from a stored array.
After computing the list of 1-chains, H,(P) is computed and displayed in the form

HO:RANK(#),

where (#) is the rank of Hy(P). From here HOM enters a loop, which computes
the chains of next highest length, computes the structure of the next homology
group and displays it in a format similar to that used for H,(P) (see examples).
If there are any elements of finite order in H,(P), the display includes the word
“TORSION” followed by the orders of the factors in a direct sum decomposition.

3. Miscellaneous comments. An outline of an algorithm for performing this
computation was developcd by the second author. Actual programming was done
by the first and third authors.

An early version of the workspace was produced fairly quickly, but proved
too wasteful of space in the diagonalization routine. The appearance of Nijenhuis’
abstract [5], while we were attempting to avoid WS-FULL errors, encouraged
us to rewrite the workspace in the present form. In addition, this allowed a certain
saving of time by not computing the Smith canonical form, but rather stopping
as soon as the matrix was diagonalized. The workspace includes all functions
necessary for the computation of the Smith canonical form of any given integer
matrix.

Computation of integral cohomology via the dual chain complex, C*(P),
can be computed similarly, and is included in the workspace.

The workspace is currently being used on the Rutgers University System.
A listing of the contents of the workspace will be furnished upon request from
Professor R. Bumby.

4. Examples. The cover relation 4 was derived from a triangulation of the
projective plane. The arrays EL 291, etc., are cover relations of posets on at most
6 points named according to their occurrence in the list obtained by Ellis Cooper

(1].

HOM
ENTER POSET
:

A

HO: RANK 1
H1: RANK O TORSION 2
H2: RANK 0O
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HOM
ENTER POSET
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HO: RANK 1
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HOM
ENTER POSET
:

EL137
HO: RANK 1
Hl: RANK 1
H2: RANK O

EL316

W W WK NN ===
[« NV, N "o SRV, I N NIV S

HOM
ENTER POSET
O:

EL316
HO: RANK 1
Hl: RANK 4

HOM
ENTER POSET
O:
O« EL315

A WLWWLWNDN ==
AN NN NN DN

RANK 1
RANK 3

HOM
ENTER POSET
O:

aafiey
—_ O
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O« EL 61
1 4
1 5
) 4 1 2 3
2 5
3 4
3 5
HO: RANK 1
H1: RANK 2 4 5
HOM
ENTER POSET
:
|:|<—-EL 11 1 2
1 3
2 3
2 4
HO: RANK 1
Hl1: RANK 0
HOM 3 "
ENTER POSET
O: .
O«EL 13
1 2
1 3
2 4 3
3 4 2
HO: RANK 1
H1: RANK O
H2: RANK 0O
4
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THE POWER OF NEGATIVE THINKING IN
MULTIPLYING BOOLEAN MATRICES*

VAUGHAN R. PRATTY

Abstract. We show that n* distinct and-gate inputs appear in any circuit constructed from and-gates
and or-gates that computes the product of two n x n Boolean matrices. Using not-gates as well, it is
possible to realize a circuit for this problem using only O(n'#27 log? n) gates, whence we infer a much
larger complexity gap between and-or and and-or-not circuits than was previously known.

Key words. Boolean, matrix, multiplication, monotone, lower bound, computational complexity,
circuit, network

We are interested in combinational circuits synthesized from and-gates and
or-gates. We first show that n® distinct and-gate inputs are needed to form the
product of two n x n Boolean matrices, and hence O(n*) two-input and-gates
are needed to compute the transitive closure of a Boolean matrix. While this
result has the flavor of Kerr’s (achievable) lower bound [3] of n® +-gates for
computing the min/+ product of integer-valued matrices using only min-gates
and + -gates, the problem turns out on closer inspection to be considerably more
subtle, and in fact, using our methods, we have been able to come only to within
a factor of two of the best known upper bound of n* and-gates. Paterson (private
communication) has recently disposed of this factor.

Secondly, we use this result to study the effect on combinational circuits
of not using not-gates (inverters). (With inverters and either and or or, it is clear
that only a constant factor improvement can be had by increasing the variety of
available types of gates.) A recent conjecture that this entailed a loss of at most
a constant factor is defeated by the observations of Muller and Preparata [5],
who point out that a circuit for sorting v 0- and 1-valued inputs can be built
using O(v) and-gates and inverters, and Lamagna and Savage [4] who show that
at least vlogv and-gates and or-gates are required if inverters are forbidden.
This raises the question, what is the greatest loss of economy a circuit designer
may incur in implementing monotonic functions using only and-gates and or-gates?

Since every monotone function of v variables may be implemented using
O(v2") such gates by constructing a circuit based on the disjunctive normal form
of the function, the gap is at most a factor of 2°. This is two exponentials larger than
the above gap of a factor of log v. We improve the gap by almost one exponential,
to a factor of order v'!/21°¢28/7)/]0g2 v, using the result that Boolean matrix multi-
plication can be carried out on a Turing machine with the help of the Strassen
[7]-Munro [6]-Fischer-Meyer [2] method in time O(n'°%2” log? n). This computa-
tion is performed obliviously—that is, the machine’s head trajectories are a function
solely of the length of the input. By a result of Fischer and Pippenger [1], the
same computation may be carried out by a circuit using a number of and-gates
and inverters proportional to the running time of the oblivious machine.

* Received by the editors May 30, 1974, and in revised form August 23, 1974. This research was
supported by the National Science Foundation under Grant GJ-34671.
+ Project MAC, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139.
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THEOREM. There are at least n® distinct and-gate inputs in a circuit for multiply-
ing two n x n Boolean matrices A and B, when the only components permitted in
the circuit are and-gates and or-gates.

Proof. We shall take a syntactic, rather than semantic, approach to describing
wires. With each wire we associate its expression, which is a partially simplified
disjunctive normal form expression describing what function of the inputs this
wire realizes. Formally, the expression of a wire is a list of terms. A term is a list
of input-variables. A typical expression is (@;,b3,, d34, A24055, a34), With corre-
sponding function

(@i A b3y) V(aszs) V (azs N ays) V (a3s).

We associate expressions with wires inductively, starting from the inputs.
An input wire’s expression is just one term consisting of the corresponding input
variable. The expression of a wire attached to the output of an or-gate is the
concatenation of the two lists of terms comprising the two respective expressions
on the respective inputs of this or-gate. For example, if (a,, a,,b;,) and (by,, a,,)
are the expressions of the two inputs, the output is (a,,,a,1b;1,b;2,4a,,). For an
and-gate, the Cartesian product for lists is taken instead of concatenation and for
convenience each term is simplified by removing repeated variables. In the
preceding example, replacing the or-gate with an and-gate, with the same input
expressions, would change the output expression to

(@y1byy, @110y, @y byibyy, agibiiag,).

Note that we do not effect simplifications based on relations between terms.
In this way, the expression carries along some information about the structure of
the preceding circuitry, as well as about the corresponding function.

Let C be the product matrix AB. Then there are n? outputs, labeled ¢;; for
i, jin the range 1 to n. The next two lemmas supply a syntactic characterization of
the function ““Boolean matrix product” realized at these outputs.

LEMMA 1. In the expression associated with the c;; output, every term includes
variables a; and b, ; for some k.

Proof. Suppose some term did not have such variables. Now the pair of
matrices 4 and B in which every entry named in this term is 1 and every other
entry is 0 has the product C = ABin which ¢;; = 0, since there is no pair a;, and b,
simultaneously 1. But the c;; output of the circuit is 1 because one term is 1 by
construction, a contradiction. [

LEMMA 2. For each i, j and k in the range 1 to n, there is a term ayb,; in the
¢;; output expression.

Proof. Consider matrices A and B in which a; = b,; = 1, and all other
entries are 0. Then ¢;; = 1 in the product. Hence some term in the ¢;; output
expression is 1, and therefore consists solely of a;, and/or b,;, all other variables
being 0. By Lemma 1, both variables must be present. [

These lemmas supply necessary conditions for an expression to realize
matrix product. The reader may verify that they are also sufficient, a fact unused
below.
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We are now ready to prove the theorem. We shall give a method for finding n®
and-gate inputs in a circuit Y for multiplying n x n Boolean matrices that

(i) has a minimal number of and-gate inputs and

(ii) with respect to the class of circuits satisfying (i), has a minimal number

of gates.
(Condition (i) must take priority over condition (ii) because we are trying to bound
from below the number of and-gate inputs. If a circuit with fewest and-gate inputs
has n3 of them, every circuit has n®, but if it is a circuit with fewest gates, then the
conclusion that it has n® and-gate inputs cannot immediately be applied to all
circuits.)

For each of the n3 triples i, j, k in the range 1 to n, we select an and-gate input
whose expression has one term equal to b,; and every term containing €ither
b, ; or a; for some [, and which is an input to an and-gate whose output expression
includes the term a;b,;.

We first verify the existence of such an input. Suppose to the contrary that
every and-gate with ayb,; as a term in its output, and b,; as a term in one of its
inputs, also has a term in the same input that has no occurrence of b,; or a; for
any . We shall show that this would give rise to “‘noise’’ in the ¢;; output.

LemMMA 3. If every and-gate whose output expression includes the term ayb,;,
and which has the term b, ; in one of the input expressions, also has a term in the same
input which has no occurrence of by; or of a, for any |, then in the c;; output there
appears a *‘noise’’ term which does not simultaneously contain a,, and b,,; for any m.

Proof. We prove by induction on the distance from the furthest circuit input
that every expression containing the term a,b,; also contains a term with no
occurrence of b,; and no occurrence of a; for | # k. This is vacuously true for
expressions at the circuit inputs, and it follows by induction trivially for expressions
at the output of or-gates. For and-gates, if a,;b,; appears as a term in the output,
then either a;, or b,; or a,b,; must occur as a term in each input. Accompanying
b,; is a term containing no occurrence of b;; or of a; for any [, and by induction,
accompanying aub,; is a term containing no occurrence of b,; or a; for | # k.
Hence we know there is a term in the output formed by taking from each input
either the term a;,, or a term containing neither b, ; nor a;, for I # k, and concaten-
ating them.

By Lemma 2, a,b,; appears in the output, whence a term accompanies it
containing neither b, ; nor a;, for | # k, and hence does not simultaneously contain
a;, and b,,; foranym. [

This lemma together with the preceding hypothesis and Lemma 1 leads to
a contradiction. Hence the desired and-gate input always exists.

We now claim that no gate input is selected twice. Suppose the contrary.
Since b, is the only variable from the B matrix that can appear by itself as a term
on this wire, only i can differ in the two selections; suppose the two selections are
made for the triples i, j, k and m, j, k.

Every term on the selected wire contains either b,; or both a; and a,, for
some /, I'. We first show that the terms containing two such ““a” inputs play no role.

LEMMA 4. Giveni # mand a circuit Y that computes the Boolean matrix product,
if the expression e of some gate’s output consists of the term by ; together with other
terms each of which contains, for some | and ', the variables a;, and a,,., then an
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equivalent circuit Y' can be built from Y by omitting this gate and connecting the
wire(s) formerly connected to its output directly to the input variable b, ;.

Proof. Suppose Y’ differs from Y for some input. Then by monotonicity,
some output ¢,, must be 1in Y and 0 in Y', whence b,; is 0 and one of the other
terms in e is 1. Setting the ith row of A4 (that is, all elements a;,, | < r < n) to zero
will then set ¢, to zero, again by monotonicity. Hence p = i. Similarly p = m,
a contradiction. [

Hence if the expression at the selected input is other than b,;, it follows that
either condition (i) (number of and-gate inputs) has been violated, or if not, then
both Y and Y’ satisfy (i), whence Y violates (ii) (minimal number of gates within
the class satisfying (i)). In either case, this contradicts the conditions on Y.

The and-gate whose input has been selected twice (an input which we now
know has the expression b, ;) has on its output the terms ayb,; and a,,.b, ;. We show
that b, ; alone will do the same job as this output.

LEMMA 5. Given a circuit Y that computes the Boolean matrix product, if the
expression of some and-gate’s output includes terms ayb,; and a,b,; for i # m,
and one input is just the expression b;, then an equivalent circuit Y' may be built
from Y by omitting this and-gate and connecting the wire(s) formerly connected to
its output directly to the input variable b, ;.

Proof. Suppose Y’ differs from Y for some input. Then, again by monotonicity,
some output c,, must by 0 in Y and 1 in Y’, when b,; is 1 and both a; and a,,
are 0. Hence changing either a; or a,, to 1 will send c,, to 1 in Y. This implies
that i = p = m, a contradiction. 0O

Thus, if we had selected the same and-gate input twice, we could have found
a circuit with fewer and-gate inputs, in violation of condition (i).

We have exhibited n® distinct and-gate inputs in a circuit with a minimal
number of and-gate inputs. Hence every circuit has n® and-gate inputs. This
completes the proof of the main theorem.

Discussion. As remarked earlier, the main theorem gives us a much larger
lower bound for the complexity gap between and/or and and/not circuits than we
have had previously. However, the improvement was by only one exponential, from
a ratio of order log n to order n'!/1°828/"/10g2 . The best upper bound to date for
this ratio is 2".

In conclusion, we raise the question, is the complexity gap between and-or
and and-or-not circuits for every function at most a polynomial in the number of
inputs?
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SPEED OF RECOGNITION OF CONTEXT-FREE LANGUAGES
BY ARRAY AUTOMATA*

S. RAO KOSARAJUt

Abstract. The recognition speed of context-free languages (CFL’s) using arrays of finite state
machines is considered. It is shown that CFL’s can be recognized by 2-dimensional arrays in linear
time and by 1-dimensional arrays in time n?.

Key words. context-free languages, array automata, recognition speed

1. Introduction. Recognition of context-free languages (CFL’s) has attracted
considerable attention [4], [10], [12]. Multitape Turing machines or list-like
structures have been employed for such recognition. The known upper and lower
bounds for the speed of CFL recognition are n'°827 and linear time, respectively.
In this paper we show that the recognition speed of CFL’s is tightly bounded by
linear time on 2-dimensional array automata. We also present an n? algorithm
for 1-dimensional array automata.

The array automaton model is introduced in § 2. A brief review of the CFL’s,
and the Younger’s algorithm for CFL recognition are given in § 3. Sections 4
and 5 are devoted to recognition of CFL’s by 2-dimensional and 1-dimensional
array automata, respectively. Throughout we shall skip many trivial details, for
clarity, and consequently some familiarity with the array automaton will be
helpful.

2. Array automata. A d-dimensional array automaton (notationally d-AA)
consists of a 1-way input tape together with a d-dimensional regular array of
cells (d-dimensional integer space I1%), each of which contains a finite state machine
(fsm). There is a single input head which scans a square of the input tape, and a
single array head which scans a cell of the array. Any two cells which are separated
by no more than a unit distance along every axis are neighbors of each other; i.e.,

{Si+00,8 + 0y, -, &+ 04 16) S Mfori=1,2,---,d}

is the set of neighbors of (¢, &,, - - -, &,). Thus there are 3¢ neighbors for any cell.
When there is no ambiguity, the fsm in any cell is simply referred to by the cell
itself.

A step of computation consists of an input head move and an array head move,
together with a state transformation for each fsm in the array. The moves of the
input and array heads depend on the input symbol scanned and the state of the
cell scanned by the array head. The input head moves right only, and in one step
it may move right by at most one square. In one step the array head may move
to any one of the neighbors of the cell it is currently scanning. The next state of
any cell depends upon the present state of each of its neighbors; the next state of
the cell containing the array head also depends upon the input symbol being
scanned.

The fsm’s in all cells are identical and start in a designated starting state.
There are two designated states : g, (accept state) and g, (reject state). When a cell

* Received by the editors July 27, 1973, and in revised form June 26, 1974.
T Electrical Engineering Department, Johns Hopkins University, Baltimore, Maryland 21218.
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goes into either state, it cannot change into any other state. When the head scans
a cell in either state, it cannot leave that cell, and we say that the automaton has
halted.

For language recognition, to decide the membership of a,a, - - - a,, the string
aa, --- a,# is placed on the input tape with the input head positioned on a,;
and each cell of the array is set to the starting state. a,a, - - - a, is accepted (rejected)
by the d-AA, M, if and only if the input head eventually scans # with g, (q,,
respectively) as the state of the cell scanned. The language accepted by M, denoted
by L(M), is the set of strings it accepts.

Other variations of this model were considered in the literature [2], [3], [5],
but our results are not sensitive to the particular model employed.

A d-AA, M, recognizes a language L within time T(n) if and only if M halts on
every input string of length n within T(n) steps and L(M) = L. T(n) = n is known
as real time. T(n) = cn, where c is a constant, is known as linear time.

In the following, for ease of description, we might consider each cell of the
array to consist of an (ordered) set of k registers, for some k. At any instant the
state is given by the ordered k-tuple formed by the contents of the k registers.
In addition, many trivial details are omitted.

3. Context-free languages. A context-free grammar (CFG) G is a 4-tuple:
G = (Vy, Vr, P, S), where V, and V. are finite nonterminal and terminal alphabets
of G, respectively. S is the starting symbol, S € V},. P is a finite set of productions,
each member of which has one of the forms (for simplicity, the null string A is
excluded):

(a) A > a,where Ae Vyandae Vg,

(b) A —» BC, where A4, B, Ce Vj,.
If P contains the production 4 — y, then for any a, e (Vy U Vp)*, we write
oA B =ayp. Let = be the reflexive and transitive closure of =. The language,
L(G), generated by G is given by

L(G) = {x|xe V}and S % x}.
Alanguage L is a context-free language (CFL), if and only if there exists a context-
free grammar G such that L(G) = L.
In the following, we show that context-free languages can be recognized by
2-AA’s within linear time and by 1-AA’s within n? time. The algorithm we use is

the classical algorithm of Younger [12]. For any string a,a, --- a,, n =2 1 and
each g, e V, let

Al ={AlAeVyand A% aq; - a;}, 1<i<jsn.
ALGORITHM.

Al = {A|AeVyand A >a; € P}, 1

Al= U AfxA,,, 1Zi<j<n,

iSk<j

i<n

= ’

IIA

where X * Y = {4|(3AB,C)(Be X,Ce Y,and 4 > BC € P)}.
a,a, ---a,e L(G) <= SeAl.

Thus the algorithm involves computing many ‘‘convolutions™.



SPEED OF RECOGNITION 333

4. CFL’s and 2-AA’s.

THEOREM 1. Any CFL can be recognized by some 2-AA within time T(n)
= (1 + &)n, for any given real number ¢ > 0.

Proof. Let the array cell where the head starts be cell (1,1). If aja, --- q,
is the input string, then at the end of the computation, A/ will be contained in
cell (i, j) of the storage array, for 1 £ i £ j < n. From the input string and the
grammar, A}, A2, ---, A" can be easily computed and stored properly. For
1 i< j<n, cell (i, j) receives AL, Ai*! ... Ai~! along the Y-axis (vertical)
from its “‘down neighbor’ (i, j — 1). Simultaneously, cell (i, j) receives Al ,,
Ay, oon, Aj: along the — X-axis (horizontal) from its “‘right neighbor™ (i + 1, j).
In a straightforward implementation, it is seen that the computation of A’} requires
a time on the order of n?.

In our method, each cell (i, j) receives the above convolution terms from
its down and right neighbors in folded form, folded at the middle, with the middle
terms coming first. When j — i is odd, there is only one middle term. To maintain
this folding, each cell needs to store only a finite amount of information.

Each cell contains 8 registers: V, V,, V;, H,, H,, H,, B and A. The V, and
H, registers are the vertical and horizontal propagation registers, respectively.
These registers provide the necessary delay for maintaining the folded form.
Register B of cell (i, j) is used for storing A}. Every one of the registers V,, V,, Vs,
H,,H,, H,and B can store any subset of the set of nonterminals of the grammar.
Register A controls the various phases of the recognition process. For simplicity,
we will not go into all the details of the operation of register A. Initially every one
of these registers, except B, contains a special symbol —, different from the empty
set (7, and B contains (.

The productions of the grammar are built into the state transformations,
as will be evident subsequently. The following recognition scheme gives the
important details.

Phase 1. When the first symbol a, is received, A} is computed and stored in
register B of cell (1, 1). Register A of cell (1, 1) is set to indicate that it is the starting
cell. It also sends a control signal, which propagates at the rate of 1 cell/step along
the Y-axis. The propagation of this signal suitably changes register A of each
cell (1, j), j = 1, to facilitate the positioning of the array head on the cell (1, n) in
Phase 3. For ease of description, let us call this the a-signal. The head then moves
to cell (2,2) in one step. For i > 1, when the ith symbol is received :

(a) if it is not #, then Al is computed and stored in register B of the cell

scanned by thehead ;i.e., cell (i, i). Thenthe head movestocell (i + 1,i + 1).

(b) if it is #, then the head moves from cell (i, i) to cell (i — 1,i — 1) and

initiates Phase 2.
Phase 1 takes n + 1 steps.

Phase 2. Cells (j,j), j=1,---,n, act as the classical firing squad, using
register A of each cell. The firing squad operation simultaneously sets register A
of each cell (j, j) into a designated “‘firing state”. As soon as register A of a cell
goes into the firing state, the content of its B register is copied into its V3 and H,
registers, and Phase 3 starts. Phase 2 takes 2n — 2 steps.

Phase 3. This is the main computational phase. In this phase, each cell (i, j)
computes A} from the convolution terms received from cells (i, j — 1)and (i + 1, j).
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At the beginning of this phase Vi, Vo, Vs, H,,H,, Hyand B of the cell (i, i),
1 i< n, contain —, —, A, —, -, Al and Al, respectively. In addmon for any other
cell, each of V,, V,, V;, H . H, and H, contains —; and B contains .

At the end of this phase, in each cell @, 1 § i< js<mneachof V|, V,, Vs,
H,, H, and H; will contain —, and B will contain AJ.

The registers of each cell undergo the following parallel transformations in
one step. Notationally, the superscripts d and r stand for down and right neighbors,
respectively ; e.g., for any cell (i, j), V4§ refers to V, of cell (i, j — 1), and H}, refers
to H,ofcell (i + 1, j). Inany transformation, the right-hand side gives the contents
before the step, and the left-hand side after the step. The transformation
(061,062, ) OCm) ‘_(Bl’ﬁb T Bm) stands for oAy < ﬂl’“z - BZ’ T, Oy < Bm

(V2, Hy) « (Vy, Hy),
(Vl’ V3aH17H3’B)

(V3. VS, Hy, Hy, BU Vo Hy U VE* HY) if V) # -, @
(V4,-,Hy,—, BU Vi*H,) ifV4=-and V4 # —, (In)
(~B,—,B,B) ifVy, Vi=— andV, # —, (I11)
(-,—,—,—, B) otherwise. av)

In parallel with these transformations, the head moves left (along — X-axis)
at the rate of 1 cell/2 steps and reaches cell (1, n) in exactly 2(n — 1) steps. Cell
(1, n) is located by the a-signal sent in Phase 1. In the next step, cell (1, n) goes into
state g, or q,, depending upon whether or not S is in the set stored in B of cell (1, n).

This phase takes 2n — 1 steps. Now we prove that when the head scans
cell(1, n),its Bregister contains A’ , which establishes the validity of the recognition
process.

Let us count steps from the instant when Phase 3 starts. Notationally, let the
contents of registers X, X,, ---, X,, of cell (i, j) at instant ¢ be represented by
(XI’XZa R Xm);’l'

LEMMA 1.1. Forany 1 £ i<i+ 6 <nandt =0,

(Va, Hy)y'™? = (Vy, Hy)e2YP (assuming (Vy, Hy)Y P = (5 9).

Proof. Registers V, and H, of any cell always undergo the transformation
(Vy, H,) < (V,, H,). Note that in addition for any cell (i,i + &), (V,, H,)}'*?
=(--). QED.

LEMMA 12. Forany 1 £i<i+d<nandt =0, (V,,Vs,H,H;,B)"*is
given by the following two cases:

Case 1. 6 = 2j (0 even).

(11) (_”“a_a_’ @) lft < 3.]’
(1.2)  (AFTTE AR AL AT s U (AT ALY i)

—(k-1)Smsk



SPEED OF RECOGNITION 335
(13) (A Y, AP AT if = 4,
(14 (=== ATY) i >4
Case2. 6 = 2j + 1(J odd).
21y (- ft<3i+1,
(22) (AL - AN S AR A2 if =3+ 1,
(2.3) (A::+j—k, A;+]+k, Ait2it1 A'+2’+1 U (Az+, m *A.+2,+1 ))

itj+k+1s Sitj—k+i» i+j—m+1
J Jj ksm<k i=

ift=3j+k+ 1,15k},
(24) (L ATHTL S ATHTLATETY ift=4) + 2,
25) (== AT >4+ 2,

Proof. We prove this by induction on 5 Ifo=0,thenj=0,and1 £i < n
When Phase 3 starts, (V,, Vs, H;, Hy, B)§' = (= AL, — A}, A)), satisfying (1. 3).
For any ¢ = 1, transformation IV applies, and hence (V,,V;,H,,Hy, B){
= (-, -, — =, A)), satisfying (1.4).

As inductive hypothesis we assume that the lemma holds for any 6 < n — 2,
and then show that the lemma must hold for § + 1. We treat the case of §
even (i.e, 0 =2j) and leave the other case as an exercise. The validity
for 6 + 1 is established by induction on the instant t. When Phase 3 starts,
Vi, Vi, Hy, Hy, BY5' " 2% = (= = — — (), satisfying (2.1). Let Case 2 hold for
cell (i,i + 2j + 1) at any instant t.

fO<St<3j—1ort=4j+2 then (Vy)it% = (V)iit% =~ (V,)hi*t2
= —, and (V,)"*%*! = — Hence by transformation (IV) above,

(Vla V3aH1aH3’B)ll+21+l = (_ s ~’(B)§’i+2j+ 1)’

satisfying (2.1) and (2.5).
If ¢t =3j, then (V,)"*% = (V)12 =~ and (V3)'*% = AtV £ — Also

(H,)i* V21 = Al121% 1 Hence by transformation (II) above,

it+2j+1 __ i+j _ +2j+1 i+j i+2j+1
(VI’V3’H1’H3’B)13;+1J _(Ai J’ Ai+J-J+1 H ’gUA *A )

i+j+1
satisfying (2.2).
If t = 3j + k, for 1 < k < j, then (V,)*%/ = (V,)i*2J # — Hence by trans-
formation (I) above and Lemma 1.1,

i,i+2j+1 it+tj—k i+j+tk i+2j+1 z+2;+1
(VI’V3’H1’H3)31+k+1 _(A A Al+]+k+1’ it j— k+1),

and

Qi+ 2j+1 _ u+2,+1 i+j—kg Ai+2j+1 +j+k +2j+1
(B)3j+k+1 = (B)3j+ U A; *A+, k+1 UA[ ! *A:+,ik+1,

satisfying (2.3).
If t = 4] + 1, then (B)g,i+2j+1 — Ali'+2j+1, (VZ’ )u+21 — (_ __) and
(V,)ii*2i*1 & — Hence by transformation (III) above,

ii+2j+1 __ (_ i+2j+1 _ i+2j+1 it2j+1
(V1aV3aH1,H3aB)4j+2 - ( aAi ] ’ ’Ai J ’Ai J )’

satisfying (2.4). Hence the induction on ¢ is complete. Q.E.D.
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As a consequence, for any cell (i,i + 2j), 1 £i < i+ 2j < n, B contains
Al*?atanyinstantt > 4j;and foranycell(i,i + 2j + 1),1 i <i+ 2+ 1 <n,
B contains Ai*2/* 1 at any instant t > 4j + 2. Hence for cell (1, n), B contains A"}
at any instant t = 2(n — 1). Thus when the head first scans cell (1,n), the B
register contains A'}.

The complete recognition process takes n +1+2n—2+2n—1=5n—2
steps. Now the theorem follows from linear speedup. (The classical linear speedup
for Turing machines by tape compression can be trivially adapted for d-AA’s.)

Q.ED.

This is the best we can attain using d-AA’s, since there is a CFL which cannot

be recognized in real time by any d-AA [2], [3].

5. CFL’s and 1-AA’s.

THEOREM 2. Any CFL can be recognized by some 1-AA within time T(n) = n?.

Proof. Let the input be a,a, - -- a,#, where n = 2. The computations are
performed in n? contiguous cells, divided into n blocks numbered 0, 1,2, - -- , n — 1,
left to right. Block b, 0 £ b < n — 2, is of length n + 1, and block n — 1 is of
length 1. Let the cells in the bth block, b = 0, be addressed (b,0),(b, 1), ---,
from left to right. Thus block b, 0 < b < n — 2, consists of cells (b, 0), (b, 1), - -,
(b, n).

Block b,1 < b < n — 1,computes A3* !, A8*2 ... A"_,. To compute these,
cell (b, 0) receives the sequence of terms

(A5, APTD), (AT, AT, - (AL AT, ()T L AT, AR,
(A25Ag+2)5(_a _)n—b—l,' a(An baAn) (An ba n— b+1)

in(n — b — 1)(n — 1) + b consecutive steps from the rightmost cell of block b — 1,
ie., cell (b — 1,n). From these convolution terms, cell (b,0) computes A§*?,
A”” .-, A"_,, and the other cells of block b provide proper delays so that
correct input sequence is presented to block b + 1. The details are given below.

Each cell consists of 8 registers: Dy, Dy, V,, V;, Hy, H;, B and A. Registers
Dy,D,,V,,V,,Hyand H, provide the necessary delays, and initially each of them
contains —, different from (J. Register A provides proper control sequencing.
For cell (b,0), 1 £ b < n — 1, register B stores partial results of computation of
convolutions, and initially it contains ¢. The computations are performed in
3 phases as given below.

Phase 1. Let the cell where the head starts be cell (0, 0). When the symbol g,
is received, if a; # #, then Al is computed and stored in register B of the cell
scanned (i.e., cell (0,i — 1)), and the head moves right by one cell. If the symbol
received is #, then the head moves left by one cell, and starts Phase 2. This phase
takes n + 1 steps.

Phase 2. By proper control signals, a 0 is stored in register 4 of cell (b, j),
for1<b<n-—2and 1< j<n;alisstored in register 4 of cell (b,0), for
1<b=<n-—1;and cell (n— 1,0) is marked distinctly, to facilitate the positioning
of the head over cell (n — 1,0) in Phase 3. Then Phase 3 is initiated ; and in parallel,
cell (0, n) successively places

(AL AY, (=72 (A2, A3), (=72, - (An, A
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in registers (V,, H,) of cell (1,0) in (n — 2)(n — 1) + 1 consecutive steps ((—-)" 2
stands for (—,-), (), - -, () (n — 2 times)). We skip the details, which are
rather involved but trivial in nature. The part of Phase 2, done before Phase 3
starts, can be performed in cn? steps, for some constant c; and the rest of Phase 2
requires (n — 2)(n — 1) + 1 steps.

Phase 3. This is the main computational phase; let the instant when this
phase starts be instant 0. From the description of Phase 2, (V,, Hy)! "% is (A1 1, AiT2)
ift=m-1i+1,for0<i<n— 2and (-, -) otherwise. Also, (Dy,D,, V,, V;,
Hy,H, B/ = (——————-), for 1<b<n-2and 0<j<n, or (b,j)
= (n — 1,0). The cells undergo the following parallel transformations (notation-
ally, superscript [ stands for the left neighbor):

A = 1 cells.
if D} = —
(D Dy <
otherwise;
H’l) if Vi, H, # -
(1) Vo, Hy) < (Do, HY) if Vi =-and H',D, # -,
(=) otherwise;
B UV,*H, ifV, # -,
(I1) B« 0T e
Q otherwise ;
(Iv) Vi Vo

(B,B) ifVy=—andV, # -,
V) (HI,DI)«{ ° '

(Hy,—) otherwise.

A = 0 cells.
(VI) (DI’VO’VlaHl)h(Dlla Vlla V09Hi)9
(VII) (Do,Ho, B)‘_(Do, Ho, B).

In parallel with these transformations, the head (which is on cell (0, n)) moves
right 1 cell/2 steps until it scans cell (n — 1,0) (marked in Phase 2); and in the
next step, cell (n — 1,0) goes into state gq, or ¢,, depending upon whether or not
itsregister Bcontains S. Thehead scanscell(n — 1,0)atthe(2(n — 2)(n + 1) + 2)nd
instant. In the following, we show that register B of cell (n — 1, 0) contains A’} at
instant 2(n — 2)(n + 1) + 2, verifying the correctness of the recognition process.

Notation. For 1 £b<n—1l,lett,=0b—-1)2n+ 1)andy,=n—>b — 1.

LEMMA 2.1. For L b <n—landt = 0,(V,, Hy)° is given by
{(Ai’:; LA ) ft=t 4+ (= Di+ ), where0<i<vy, 1=jsb,

-, otherwise.

Proof. Lemma 2.1 holds for b = 1 (from Phase 2). Assume that the lemma
holds for any b £ n — 2. From transformation (III) above, it can be easily proved
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that
lggmmw“*ﬂm%ﬂi“=n+m—w+j+h
By = 0<i<y, 1=jsh,
(%] otherwise.
Thus
(1) (B)g;,(:-(n—-l)i+b+l = AT for0 < iy,

By transformation (IV) above, (V,)!"° = (V,)!°; . Hence (V,)"*® = —and (V,)>° # —
ifandonlyift =1, +(n—1)i+ b + 1,0 £ i < y,. Hence from transformation
(V) and (1),

Aiilh, ift=rg+m—Di+j+1, 05isy,

(o = 1<jshl,
- otherwise;
(D)b’o_{A?:iﬂ ift=t,+(—1Di+b+2, 0Zi<y,
- - otherwise.

From transformations (IV) and (VI), (V)" = (V2:%, = (Vo)'%,_:, and
(Hy,D,)" = (H,,D)?°,. Hence

AT fe=1,+(n—1)i+j+2n+1
b =T +tm—10Di+j, 05i=y,
(Vl)t’n = .
1<j=b,
- otherwise ;
A, ift=t,+@m—1Di+j+1+n
b =Ty t—1Di+j—n, 0Si=y,
(Hl)t’n = i
- otherwise;
bri+d ift=t,+(m—1)i+b+2+n
(D))" = =7, +m—=1Di+b+1—n, 0Zi<y,
- otherwise.
Now from transformation (I),
(De)*1% =~ ifandonlyif t <1, +b—1—n;

and
b+ 1,0 _ b+i+1 .
(Do), i =1y = AT for0<i=<y,.

Thus (V,)p", (H)!"# —ifand only if t =1,, , +(n— )i+ j, 05 i<y, — 1,
1< j<b (V)" =-and (H)"" (Dy)" # — if and only if t = 7, , + (n — 1),
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0 £i £ v, — 1. Hence by transformation (II),

(AT A TS ft=r,+m—1i+1,
0 é i é Vo — la
(VO,HO)?H’O = (A?“_ﬁz, Aﬁiftfwa) ft=1,+m—1Di+ ],
(=) otherwise.

This can be rewritten in the form
(AT ) ift=1,0 + (n = i+,
(VOaHo)?H’O: 0Sisppser, 1SEjSEb+1,
(=,-) otherwise.

This proves the lemma. Q.E.D.
Thus forb =n — 1,

{(M")M-,wﬂ ft=mn-2)2n+ 1)+ ), 1<sjsn-1

(=) otherwise.

b

(Vo, Ho)t ™10 =

Thus by transformation (II1), (B)j,_ 520+ 1)+ = A7, which verifies the recognition
process.

The whole process takes n + 1 + cn® + 2(n — 2)(n + 1) + 3 steps = c'n?,
for some constant ¢’. Now the theorem follows from linear speedup. When n = 1,
cell (0, 0) handles input a, # as a special case. Q.E.D.

6. Conclusions. We studied the recognition of CFL’s, using Younger’s
algorithm, by arrays of finite state machines. It would be interesting to investigate
whether Earley’s [4] algorithm could give equally efficient realizations on array
machines.
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OPTIMUM PARTITIONS OF TREE ADDRESSING STRUCTURES*
W. H. HOSKENY

Abstract. We consider the problem of finding the best partition of a binary tree addressing structure
where the maximum block size is given and a one-block buffer is available. An algorithm is presented
for finding an optimum partition. The algorithm operates in time proportional to N -n?, where N is
the number of nodes in the tree and n is the block size.

Key words. data base, index, tree, partition, access

Introduction. In large data base systems the directories or indexes involved
in the access method are often large files in their own right. In this case, the access
information must be partitioned into blocks and, assuming random access to
blocks, the dominant cost of a search becomes the number of block accesses in
a search. We consider here the case of a tree structured access method. Searches
are assumed to begin at the root of the tree and proceed to the descendants.
Weights (e.g., the frequency that a node is the terminal point of a search) are
assumed for each node.

We present an algorithm to find a partition of a weighted binary tree so that
the “weighted path length” is minimal where *‘path length’ to a node v is the
number of times blocks are entered in a path from the root to ». The algorithm
operates in time proportional to N -n? where N is the number of nodes in the
tree and n is the maximum number of nodes in a block.

The algorithm may be extended in a straight-forward way to more general
trees. However, the operating time increases drastically.

This problem suggested itself in reading Knuth [1], and variants of it are
treated in Muntz and Uzgalis [2] and Kernighan [3], [4].

1. Preliminary definitions and notation. A weighted binary tree is a structure
vt =<V, I,r,L,R, W) where

V is the finite set of nodes,

I = V is the set of internal nodes,

V — I is the set of leaves,

r € Vis the root,

L:I — V determines the left son,

R:I - V determines the right son,

W:V— N U {0} assigns nonnegative integer weights to nodes.
The following conditions hold :

1. L(v) = L(¥')impliesv = v, R(v) = R(v')impliesv = v', L(v) # R(v)foranyv.

2. The root r is the only node not in the range of L or R. For nonroot nodes v,
F(v) (the father of v) is the node such that R(F(v)) = v or L(F(v)) = v.

A path from v, to v,, in 7 is a sequence of nodes v,,v,, - -+, v, where v,_,
= F(v,) fori =2, ---, m. Of course, if a path exists between nodes, it is unique.

* Received by the editors May 28, 1974, and in final revised form September 3, 1974.
+ Whitmore Laboratory, Computer Science Department, Pennsylvania State University,
University Park, Pennsylvania 16802.
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The height, ht(v), of a node v is the length of the longest path from v to any leaf,
ie.,

ht(v) =1 for leaves v,
= max [ht(L(v)), ht(R(v))] + 1 for nonleaves.

The subtree of 7 at v is the binary tree with v as root and including all of the
descendants (in 7) of v. A part of a binary tree is a set B of nodes of a subtree 1’
of © which includes the root of 7" and for any v € B not the root of 7/, includes the
father of v. The function s(v) is the number of nodes in the subtree at v.

An n-partition P of 7 is a partition of V with at most n nodes in any block.
To simplify a later statement it will be useful to define an n-j-partition as an
n-partition with at most j nodes in the block with the root.

If P is a partition of a weighted binary tree 1, the cost of P is defined as

Cost (P) = Y, M)W(v),
veV
where M(v) is the P-path length defined as follows: Let r = v,,0v,, -+, 0, =0
be a path in 7 from root r to node ». Then

M(vl) = 1,

{M(u,.) if v; and v, ; are in the same block,
M(v;44) = )
M(v;) + 1 otherwise.

2. Preliminary remarks. Before presenting the algorithm it will be useful to
show that least cost n-partitions of a simple form can be found.

LEMMA 1. Let t be a weighted binary tree. There is a least cost n-partition P of ©
with blocks that are parts of .

Proof. First observe that a block B containing the root will not be a part of t
if and only if there is another node v in B such that F(v) is not in B. For other
blocks B, B will not be a part of 7 if and only if there are distinct nodes u and v
in B such that F(u)¢ B and F(v) ¢ B.

Suppose a block B contains distinct nodes vy, v,, -, v,, with m > 1 and
F(@)¢ B(orv; =r)fori=1,2,---, m. Anew partition P’ can be defined, splitting
Binto mblocks B,, B,, - - -, B,, as follows: Include in B; the node v; and all nodes

v in B for which the entire path from v, to v lies in B. Note that each block B;
will be a part of 1. The cost of P’ is the same as the cost of P since the P-path
length M is the same as the P’-path length M’ for each node ve V.

This process may be repeated for all blocks that are not parts of 1. Q.E.D.

In the proof of Lemma 1 it appears that requiring blocks to be parts of t
results in many partially full blocks. Lemma 2 shows that least cost partitions
can be found where the only partially full blocks have no descendant blocks.

LEMMA 2. Let t be a weighted binary tree. There is a least cost n-partition
P of 7 into blocks that are parts of ©. Furthermore, for all blocks B with a node v
such that F(v) € B but v ¢ B, there are n nodes in B.

Proof. Let P be a least cost n-partition of T with blocks that are parts of .
Let B be a block of P with fewer than n nodes. Let v be a node such that F(v) e B
but v ¢ B. Let v be in block C. A new n-partition P’ can be formed changing B to
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B =B U {v} and Cto C' = C — {v}. Note that Cost (P') £ Cost (P). If C’ is not
a part of 7, a new n-partition P” can be formed using the block splitting process
described in the proof of Lemma 1, so that

Cost (P") = Cost (P') < Cost (P).

This process can be repeated so long as blocks violating the condition of the
lemma exist. Since P is itself a tree structure (with blocks taken as nodes, etc.)
and the process of obtaining P’ from P increases the size of parent blocks, eventually
the only partially full blocks will have no descendant blocks. Q.E.D.

From these lemmas it can be seen that the problem of finding a least cost
n-partition of a weighted binary tree t can be reduced to the problem of finding
the best part B of 7 including the root and then repeating this on the subtrees
with roots that are sons of members of B but not in B. A nondeterministic process
forming the block with the root may be described as follows

(i) Include the root in the block.

(i1) If there are no nodes remaining, stop.

(i1i) If there are n nodes in the block, stop. Otherwise, include some son of
some member of the block.

(iv) repeat step (ii).

Example 1 shows that the heuristic process of including in step (iii) the son
which is the root of the highest weight subtree does not always yield a least cost
n-partition.

Example 1.
V={1,23,4,567},
r=1,

W) =Ww(2)=w@3) =0,
W)= W)= W) = W() =1,
N=17,

n=3,

(a) P, = {BI’BZ’BB’BA-’BS}’
Bl = {172’3}’
B, = {4‘}, B; = {5}, B, = {6}, Bs = {7},
Cost=1-W(I)+ 1-WQ)+ 1 -W@3) +2- W) + 2- W(5)
+2-W(6) + 2 W(T)
= 8.

(b) PZ = {BI’BZ’B3}9
Bl = {1a294},
BZ={5},

B3 = {376,7}9
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Cost=1-W()+1-W2)+2-W3)+ 1 -W@4)+ 2-W(5)
+2-W(6)+2-W(7T)
=1T.

3. The algorithm. The algorithm may now be stated. A two pass process is
envisioned. During pass one each internal node v is labeled (bottom up) with
numbers tag (v, j), where 0 < tag(v,j) <j— 1 and j=1,2,---, n. Each tag(v,j)
is the number of nodes from the subtree at L(v) to be included with v in attaining
a least cost n-j-partition of the subtree at v.

In order to calculate tag (v, j) at any node, auxiliary information must be used.

Let W'(v) = W(v) for v a leaf,

= W'(L(v)) + W'(R(v)) + W(v) for v a nonleaf.

Forj=1,2,---,n:

If s(v) £ j, then C(v, j) = W'(v), and if v is a leaf, tag(v, j) = 0, otherwise
tag (v, j) = s(L(v)).

If s(v) > j, then

Cw, ) = Min [C(LE), ) + CRE), j = i = ] + W)

and tag (v, j) is any i which achieves this C(v, j).

For j =0, C(v,0) = C(v,n) + W'(v).

During pass two the tags are used to determine the blocks. To determine
the block B containing the root, proceed as follows. If s(r) < n, then B consists of
all the nodes. Otherwise, B is defined according to the following process.

The root r is included in B and b(r) = n.

If v is a node and F(v) has been included in B, then v will be included in B
and have value b(v) as follows:

Case 1. Ifvis a left son of F(v) and tag (F(v), b(F(v))) # 0, then v is included in
B and b(v) = tag (F(v), b(F(v))).

Case 2. If v is a right son of F(v) and tag (F(v), b(F(v))) # b(F(v)) — 1, then
v is included in B and b(v) = b(F(v)) — tag (F(v), b(F(v))) — 1.

Once the block B is defined, this process is repeated recursively on each
of the subtrees with roots v¢ B where F(v)e B. In this way, an n-partition is
defined.

To see that the n-partition so defined is a least cost n-partition, consider the
definition of the tags. The value b(v) at node v indicates that a part of size b(v)
is to be used at v. Now tag (v, b(v)) is the number of nodes from the subtree at
L(v) to be used in the least cost n-partition of the subtree at v with the added
condition that there are only b(v) nodes in the block containing ». Thus L(v) should
be included in the same block with v if tag (v, b(v)) # 0. Similarly for R(v), but to
make up a part of size b(v), b(v) — tag (v, b(v)) — 1 nodes come from the subtree
at R(v).

Example 2. It will be instructive to work out an example. Let t be as in
Example | and n = 3.

First, since 4 is a leaf,

C4,1)=C4,2)=C@4,3)=1, C4,0)=2.
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Similarly,
Therefore,
tag(4,1) = tag (4,2) = tag(4,3) = 0,
and
tag (5, j) = tag (6, j) = tag(7, j) = tag (4, )), j=1,2,3.
Next,

C2,1)=C@4,0) + C(5,0) =4 andtag(2,1) =0,
C4,0)+ C(5,1)=3
C@é4,1)+ C(5,0)=3
(Whenever two values of tag (v, j) are possible, the smaller has been chosen.)
C2,3)=W(2)=2 sotag(2,3)=1,
C(2,0) = C(2,3) + W'(2) = 4.

C2,2) = min{ } =3 sotag(2,2) =0,

Similarly,
C@3,j)=C2,)), j=0,--,3.

tag (3, j) = tag (2, )), j=1,2,3.

For the root,
C(1,1)=CR,0)+ C(3,0) =8 sotag(l,1)=0,
C2,0)+ C3,1)=38
c2,1)+ C3,0)=38
C2,0)+ C(3,2) =17
C(1,3) = min{ C2,1) + C(3,1) =8 ;=7 sotag(l,3) =0,
C2,2)+ C3,00=17

C(1,0)=C(1,3) + wW'(1) = 11.

C(1,2)=min{ }:8 sotag(1,2) =0,

In pass two:

b(1) = 3 and tag (1, 3) = 0 so 2 is not included.

3 —tag(1,3) — 1 = 2 # 05so 3 is included.

b(3) = 2 and tag (3, 2) = 0 so0 6 is not included.

2 —tag(3,2) — 1 =1 s 0so 7 is included.

b(7) = 1.
The block with 1 is {1, 3,7} and the process is repeated on the trees at 2 and 6.
Since b(2) = 3 and s(2) = 3, the block with 2 is {2,4, 5}. Finally, b(6) = 3 and
s(6) = 1, so the block with 6 is {6}.

4. Concluding remarks. The operating time for the algorithm is proportional
to N - n?. The operation min!{Z} (C(L(v),i) + C(R(),j—i—1)),j=1,---,n,is
done at each node and contributes the factor of n’.

No examples have been found where the heuristic process (including with the
father, the son with the highest weight subtree) gives a partition of more than 30 9,
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of the least cost. Example 3 shows that some partitions with full internal blocks
are quite poor with respect to optimum.

Example 3.
Letv = {]’2""a4'm,4'm+ 1}’
r=1,

| {1’2’...’m
B m4+2m+3,---,2-m+ 1§’
Li)=i+1,i=1,---,m,
Li)=i4+mi=m+2---,2-m+ 1,
Riy=i+m+1,i=1,---,m,
Ri)=i4+2-mi=m+2---,2-m+ 1,
W(v) = 1 for leaves,
= 0, otherwise.
n=4
(@) Let P = {B,B,,---, B, B, } where
B,.,={m+ 1},
Cost(P)=2-14--- +2-i4+ -+ +2-m+(m+1)
=(m+ 1)
~ m? for large m.
(b) Let P = {B}, B, -, By, Cy, -+, Cp, Ci1}, Where

Bi= (4G~ 1)+ 1,4 (—1)+2,4(G—1)+3,4-(—1)+4),
i = 1,"‘,"’1/4,

C; = {R(), L(R(@), RR@)}, i =1, , m,
Covr = {m + 1},

(a) m = 4, Cost = 25 (b) m = 4, Cost = 18
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Cost (P) =82+ 83+ -+ + 8- (m/d + 1) + (m/d + 1)
—4-[(m/4 + 1)-(m/d +2) = 2] + m/4 + 1

m2/4  for large m.

Q
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PARALLELISM IN COMPARISON PROBLEMS*
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Abstract. The worst-case time complexity of algorithms for multiprocessor computers with
binary comparisons as the basic operations is investigated. It is shown that for the problems of finding
the maximum, sorting, and merging a pair of sorted lists, if n, the size of the input set, is not less than
k, the number of processors, speedups of at least O(k/log log k) can be achieved with respect to com-
parison operations. The algorithm for finding the maximum is shown to be optimal for all values of k
and n.

Key words. parallel algorithms, comparison problems, sorting merging, tournaments, complexity

Introduction. We investigate the worst-case time complexity of parallel
binary-comparison algorithms for the classical problems of merging, sorting, and
finding the maximum. We do this for a model that in several senses can be regarded
as embodying the intrinsic difficulty of solving these problems on a multiprocessor
computer. Any lower bound on the time complexity of a task for this model will
necessarily also be a bound for any other model of parallelism that has binary
comparisons as the basic operations. Furthermore the best constructive upper
bounds will correspond to the fastest algorithms for independent processor
machines whenever the time taken to perform a comparison dominates all the
overheads.

For each problem the input consists of a set of elements on which there is
a linear ordering. The ordering relationship between any pair of elements can be
discovered by performing a comparison operation on them. In our model there
are k processors available, and therefore k comparisons can be performed simul-
taneously. The processors are synchronized so that within each time interval
each of them completes a comparison. At the end of the interval the algorithm
decides, by inspecting the ordering relationships that have already been estab-
lished, which k (not necessarily disjoint) pairs of elements are to be compared
during the next interval, and assigns processors to them. The computation termin-
ates when the relationships that have been discovered are sufficient to specify
the solution to the given problem.

The time complexity of each problem will be expressed as a function of the
number of processors, and of the size of the input set. The function will give the
number of time intervals taken for a worst-case input by the comparison algorithm
that requires the least time in the worst case. Thus we define max, (1) to be this
measure of complexity for the problem of finding the maximum of n elements
on a k processor machine. Sort, (n) is defined analogously for putting n elements
in order, and Merge, (m, n) for merging two sorted lists of length m, n respectively.

The phenomena we exhibit for the three problems share certain qualitative
features. For a given size of input set, the more processors we have available,
the shorter the computation time. However, the price paid for increased speed is
increased total number comparisons. Intuitively, we can say that the larger k is,
the larger the number of comparisons that at each step we have to choose on the

* Received by the editors February 5, 1974.
+ Centre for Computer Studies, University of Leeds, Leeds LS2 9JT, England. This research was
carried out at Carnegie-Mellon University, Pittsburgh, Pennsylvania.
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basis of fixed previous information, and consequently the lower the ‘‘average
quality”” of the choices made. For any given task P, we can conveniently measure
this phenomenon by the “‘speedup factor” P,/P,, where P, is the worst-case time
complexity on P on i processors. The success of parallelization can then be judged
by observing how close this speedup factor is to k.

That there are mathematically degenerate extreme cases has been observed
before. All the problems can be solved in unit time if there are enough processors
for every element to be compared with every other simultaneously. The speedup
then, however, is rather small (~\/E). At the other extreme, as the input set
becomes very large in relation to k, then, as observed by Borodin and Munro [5],
optimal speedups can be approached. Furthermore, such speedups can be attained
by algorithms that use the processors largely independently (as in Corollaries
3,6,7,9 below) and that are therefore efficient even on machines for which inter-
processor communication is relatively expensive.

Here, however, we shall focus especially on the intermediate cases. As the
fastest parallel algorithms previously studied for the case k = n = m are those
that can be realized on sorting networks (Batcher [2], Knuth [6]), it will be of
interest to compare the results for these with our analysis. Thus, to find the
maximum of k elements on k processors can be done, and requires [log, k1 steps
on a network. It is natural to ask whether better utilization of the available pro-
cessors can be made if the network restriction is removed. For merging two lists
of k elements on k processors again O(log, k) time is necessary and can be achieved.
In this case, it has, furthermore, been proved (by R. W. Floyd [6]) that O(k log, k)
comparisons are necessary, and hence that, under the network constraint, near
optimal use of the k processors is being made. The question is whether the log, k
bound represents the intrinsic complexity of the merging problem or is a conse-
quence only of the extra constraints.

Even if the network restriction is relaxed to allow arbitrary disjoint com-
parisons, it is easy to see that the log, k lower bound remains for both problems.
What our results show is that for the more general model, this barrier no longer
exists. We note, however, that the overheads implied by our algorithms may
grow as logk, i.e., faster than the bounds we shall derive. Thus although we may
validly ignore overheads for any fixed value of k, it will not be meaningful to do so
asymptotically.

1. The maximum. We give a worst-case analysis of the problem of finding
the maximum of n elements using k processors. We consider the case of k = n
first, and then show how solutions to all the others can be derived. The theorems
are stated in the form of asymptotic inequalities. However, it will be apparent
that the analysis itself is complete in the sense that given any k and n, a provably
optimal algorithm can be developed using the observations made in the proofs.
Although, for simplicity, we shall not explicitly consider the possibility of two
elements being equal, our arguments apply to that case as well, as long as just
one of the maximal elements is being sought.

THEOREM 1. Fork =n > 1,

max, (n) = loglogn — const.
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Proof. Consider the execution of an arbitrary comparison algorithm for
finding the maximum of n elements. Let C; be the set of all elements that up to time i
have not been shown to be smaller than any other. Call these the candidates at
time i, and denote their number by c;.

To prove the theorem, we show that given k = n and ¢;, the value of ¢, ,
can be bounded from below. The result is then deduced by induction on i.

Suppose that in the next time interval in every comparison between a non-
candidate and a candidate the candidate turns out to be the larger. Then the
results of these comparisons will clearly not contribute to any reduction in the
candidate population at all. Clearly, this will also be true for any comparisons
that involve only noncandidates. Therefore, in this worst case the only comparisons
that do contribute to reducing the number of candidates are those among the
candidates themselves.

To obtain the bound, we show that if n comparisons are made on ¢; elements,
then there must be a sufficiently large subset of these elements in which no pair
has been compared directly. In the worst case, it is possible that the elements in
this subset happen each to be larger than each of the elements outside this subset.
In that case, they will clearly all still be candidates at time i + 1.

The inductive step can be reduced to a graph theoretic formulation if we
identify elements with nodes and comparisons with arcs in the obvious way.
We call a subset of the nodes of a graph stable if no pair from it is connected by
an arc. We can then express the relationship we require as follows:

¢;+1 = min {max {h|G contains a stable set of size h}|
G is a graph with ¢; nodes and k arcs}.

As a corollary to Turan’s theorem, it can be shown [3], that

¢

Civy 2 kT o
i

By solving this inequality, we get that, if ¢, = n = k, then for some constant,
¢; will exceed unity as long as
i < loglogn — const.

The result follows. [
COROLLARY 1. If 4 £ 2n £ k £ n(n — 1)/2, then

max, (n) 2 loglogn — loglog(k/n) — const.
Proof. Solving the same inequality as above, i.e.,

¢

2k + ¢;

Civg Z

with ¢q = n gives the claimed solution. [

As we shall now indicate, not only are the known bounds on stability achievable,
but the extremal graphs are such that comparison algorithms based on them do
reduce the candidate population at an optimal rate.
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THEOREM 2. Fork =n > 1,
max, (n) < loglogn + const.

Proof. 1t is known [3], [7] that any graph with p nodes that has no stable set
larger than x has at least as many arcs as the graph G, . G, , is defined to be the
graph with p nodes that consists of x disjoint cliques of which p — x(q — 1) have
g nodes and the remaining xq — p have q — 1 nodes, where ¢ = [p/x]. It is
easily shown that such a graph has (¢ — 1)(2p — xq)/2 nodes altogether.

In our parallel algorithm we shall at time i perform comparisons as dictated
by some such graph with p = ¢,. Clearly, ¢, ; will equal x, since to each clique there
will correspond exactly one candidate at time i + 1. To minimize ¢;, ,; we shall
have to use from among the graphs

{G, (x=1,2,---; G, has fewer than k arcs}
the one with the smallest index x. We therefore have that
¢y = min {x|([c;/x1 = 1)-2¢; — x- [¢i/x)/2 £ k}.
This relation gives the inequality

e
1=k .const.’
Solving for ¢, = n = k gives that for some constant, ¢; = | for some i < loglogn
+ const. The result follows.

From the considerations in the proof of Theorem 1, it is immediate that if
G, . is chosen at each step so as to minimize x, the implied algorithm is indeed
optimal. [

COROLLARY 2. For4 <2n < k < n(n — 1)/2,

4

max, (n) < loglogn — log log (k/n) + const. 0

The remaining case, that of k < n, can be dealt with by the following observa-
tions. Clearly with just k comparisons we can reduce ¢; by at most k at each step.
However, as long as ¢; = 2k, we can achieve this optimal reduction by having k
disjoint pairs from ¢; compared. Furthermore, once c; is less than 2k, the algorithm
of the previous theorem can take over. We therefore conclude the following.

COROLLARY 3. For1 < k < n,

n/k + loglog k — const. < max, (n) < n/k + loglogk + const. il

For each case we have arrived at upper and lower bounds that differ only
by additive constants. Furthermore, the method of deriving a provably optimal
algorithm for any given values of k and n is implicit in our analysis. We conclude
by mentioning that for the special case of k = n, we can state the exact result
explicitly as follows.

COROLLARY 4. The sequence s;,s,--- with the property that s,
= max {y|lmax, (y) = i} is defined by

;=13 ands;y = 2s; + 1)s;.

For some real number K, s, = |K?'/2].
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Proof. By induction on i. The given solution of the recurrence follows from
the analysis of [1]. 0O

2. Merging. We now give an algorithm for merging that is considerably
faster than any corresponding algorithm previously known.

THEOREM 3. Fork = |\/mn]and | < n £ m,
Merge, (n,m) £ 2loglogn + const.

Proof. We proceed inductively, by showing how, given LM | processors,
we can, in two time intervals, reduce the problem of merging two lists of length
n, m, respectively, to one of merging a number of pairs of lists, the shorter of each
of which has length less than J/n. The pairs of lists are so created that we can
distribute the L\/m—nj processors amongst them at the next stage in such a way
as to ensure that for each pair there will be enough processors allocated to satisfy
the inductive assumption.

Consider the following algorithm for the sorted lists X = (x,, x,, -+, X,),
Y= (YUJ’z,‘" > ym)

(a) Mark the elements of X that are subscripted by i- [\/; 1 and those of
Y subscripted by i - [ﬂ lfori=1,2,---.There are at most [\/r_z | and Lﬂ] of
these, respectively. The sublists between successive marked elements and after
the last marked element in each list we call segments.

(b) Compare each marked element of X with each marked element of Y.
This requires no more than L\/%J comparisons and can be done in unit time.

(c) The comparisons of (b) will decide for each marked element the segment
of the other list into which it needs to be inserted. Now compare each marked
element of X with every element of the segment of Y that has thus been found for it.

This requires at most
LW/l (1/m] = 1) < |/nm]

comparisons altogether and can also be done in unit time.

On the completion of (a), (b) and (c) we have identified where each of the
marked elements of X belongs in Y. Thus there remain to be merged the disjoint
pairs of sublists (X,, Y;), (X,, Y,), --- where each X, is a segment of X and,
therefore, of length |X;| < L\/;J. Furthermore, Y |X,| < nand ) |Y] < m since
the sublists are disjoint. But by Cauchy’s inequality,

Y JOX 1Y) £ JEIX Y Y.

It follows that B
Y WOX- YD) = S IX 1Y) £ 1/mn).

There are therefore enough processors altogether that we can assign
W (X, - 1Y]) ] to merge (X, Y;) for each i simultaneously.

We have therefore established that the inductive process of successively
splitting a pair of lists into a set of pairs of sublists can continue with the given
number of processors. Furthermore, the length of the shorter component of each
sublist pair is inductively bounded by the square root of the shorter component
of the list pair. Thus at time 2i, each pair of lists produced has a component of
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length no more than 4, where

)“i = L\/ li—lJa

and A, = n. Solving A, £ \/A,_, gives A, < n'/?. The merging process clearly
terminates locally whenever a pair of sublists with a null component is produced.
Thus merging must be complete before 4; = 0. This gives that

Merge, (n, m) < 2[loglogn + const.]

The additive constant can be shown to be less than unity if logarithms to the
base 2 are taken. [
COROLLARY 5. For k = |r/nm|wherel <n <mandr = 2,

Merge, (n,m) < 2(loglogn — loglogr) + const.

Proof. We use the same algorithm as above, except that at step (a) the objects
marked are those subscripted by i-[\/(n/r)] in X and by i-[\/(m/r)] in Y for
i=1,2,---.Itis easily verified that steps (b) and (c) then each require no more
than k comparisons, and can thus be done in unit time. Now 4; < /(4. /1),

from which the result follows. [
COROLLARY 6. For 1 <k Z<n <m,

Merge, (n, m) < (n + m)/k + log (mn log k/k) + const.

Proof. Mark k — 1 elements in each list so as to induce k segments of about
uniform size (i.e., n/k and m/k) in each one. Merge the two lists of marked elements
as in the above theorem. Insert each of the 2(k — 1) marked elements into the
segment to which it belongs in the other list. This can be done in time log (mn/k).
This leaves 2k pairs of disjoint sublists to be merged, in which no pair contains
more than (n + m)/k elements. It only remains to schedule how this merging is
to be done on the k processors in time (n + m)/k (as opposed to time 2(n + m)/k).

The first observation is that the problem of merging a given pair of lists by
the standard sequential algorithm (Knuth [6, p. 160]) can be split arbitrarily
into two independent subproblems with no loss of efficiency. If the two lists have
x elements altogether, then for any y we can divide the task into processes that
take y and x — y — 1 steps, respectively. The two processes simply execute the
first y and x — y — | steps, respectively, of the standard merging algorithm,
but start from different ends of the lists.

With this freedom to break up the merging of a pair arbitrarily, we can
schedule the whole task optimally as follows. We symbolically assign the ith
processor jointly to the ith segments of the two lists. These segments have
(m + n)/k elements between them. To any sublist pair which has say z elements
in common with this pair of segments, we assign z steps of the ith processor.
Then clearly, we are assigning no more than (m + n)/k steps altogether to each
processor. Furthermore, since, by construction, each sublist is totally contained
in some segment, each sublist pair will be assigned to at most two processors.
With this scheduling, we can therefore carry out the remainder of the computation
optimally. [

This last corollary is an improvement on one described in [5] (and attributed
to Kirkpatrick) for the case k « n = m. Asymptotically, a speedup of k is clearly
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achieved, since it is known [6] that the merging of two lists of length n requires
2n — 1 comparisons in the worst case.

The method suggested in [5] is essentially that described in the first paragraph
of the proof above, with the suggestion that the number of elements initially
marked in each list be not k — 1 but some function of n, such as log n. Even with
naive scheduling (i.e., whenever a processor becomes free supply it with an
unmerged sublist pair) a speedup of k can be achieved asymptotically in this way.
Although this is less efficient than our algorithm, the idea can be used to show that
even in the general case of n < m, optimal speedup is achievable in various
asymptotic senses, such as the following.

COROLLARY 7. If m = an where o = 1, then

Merge, (n, m)/Merge, (n,m) -k asn— co.

Proof. Execute the first paragraph of the proof of Corollary 6 but with
log n elements marked in each list. This requires o(n) comparisons and time.
Clearly the total number of comparisons required to merge the sublist pairs
produced is no more than Merge, (n, m). Even with the naive scheduling indicated
above, if optimal sequential merging algorithms are used for the sublist pairs,
the total time taken is no more than Merge, (n, m)/k + o(n).Since Merge,(n, m) > n
the result follows. [

Note that the asymptotic behavior of Merge, (n, m) itself is at present
unknown [6].

3. Sorting. The well-known information theoretic argument gives that the
sorting of n elements requires, in the worst case, nlogn — O(n) comparisons.
This immediately gives the following lower bound for sorting on n processors:

Sort, (n) = logn — const.

We now derive a corresponding upper bound.
THEOREM 4.

Sort,, (n) < 2lognloglogn + O(log n).

Proof. We show that the binary-merge sorting algorithm requires only this
time if merging is done fast, as in Theorem 3.

We first consider the case n = 2/ for some j. We assume inductively that
after the ith stage, we have 2/~ ! disjoint sorted lists each of length 2. By assigning
2 processors to each such pair and using the fast merging algorithm, we clearly
arrive at the inductive assumption of the following stage after time 2 log i + const.
But sorting of the whole list will be complete when i = j. The total time needed is
therefore no more than

logn
(2logi + const.) < 2lognloglogn + O(log n).
=1

3

In the general case, when n is not a power of two, there may be a fragmentary
sorted list left over at each stage. However, the above argument applies in that
case as well. [
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COROLLARY 8. Ford <2n <k < n(n — 1)/2,

Sort,(n) < 2(log n — log (k/n))(log log n — loglog (k/n) + const.).

Proof. With k processors we can split the input into sets of size [k/n] and
sort each such set completely in one step. We then need log n — log (k/n) stages
of merging in the manner of Corollary 5. [J

COROLLARY 9. For1 < k < n,

Sort, (n) < (nlogn)/k + 2logk - log (nlog k/k).

Proof. As in [5], we split the input into k equal sets and sort each of these
sequentially in time (n/k)log (n/k). We then successively merge pairs of these,
in log k stages, using the algorithm of Corollary 6. At each stage, there will clearly
be twice as many processors available per merge as at the previous one, and if we
always use these, then the time taken for each stage will be about n/k. [0

4. Conclusion. We have shown that for the most basic model of parallelism
for comparison problems, algorithms for merging, sorting and finding the
maximum exist that are much more efficient than any previously known. We
suggest our model and analysis as part of the theoretical background against
which parallelism for these problems can be studied and in appropriate instances
exploited. In practice, to derive good algorithms suitable for a specific multi-
processor machine, additional considerations have also to be taken into account.
In particular, the tradeoffs between optimizing the sequencing of the comparisons
(which is what our analysis attempts), and minimizing the overheads (e.g.,
inter-processor communication), have to be weighed.

Of the many further questions implied, theoretically the most tantalizing is
perhaps that of parallelism in the problem of finding the median. Since this can
be done in linear time sequentially [4], but cannot be solved in less than time
~loglog n on n processors (by implication, Theorem 1), it follows that for the
case k = n, O(k/log log k) is an upper bound on the attainable speedup. Since we
have shown that for merging, sorting, and finding the maximum, a speedup of
that order is attainable, any substantial lowering of this upper bound for the
median, which we conjecture to be possible, would put this problem in a class of
its own. It would confirm that near optimal sequential algorithms for the median
problem need to be ““more carefully sequenced’’ than those for any of the others,
and would go some way to explaining why they have proved more difficult to find.
By examining parallelism, we may in this way gain deeper insights into specific
computational problems than is offered by sequential analyses alone.
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THE RENEWAL MODEL FOR PROGRAM BEHAVIOR*

H. OPDERBECK anp W. W. CHU*t

Abstract. A model for program behavior, the renewal model, is introduced; its properties
are discussed, and its ability to model the behavior of real programs is investigated. Using this
renewal model, several theorems are derived which describe the performance of the working set
replacement algorithm.* Then the renewal model is used to evaluate the performance of a re-
placement algorithm for two-level directly addressable memory hierarchies.

Key words. models of program behavior, renewal model, working set algorithm, two-level directly
addressable memory hierarchies

1. Introduction. The development of virtual memory systems is one of the
most important advances in computer architecture over the last decade. Virtual
memory systems have successfully shifted the allocation of main memory from
the programmer to the system. While the programmer is relieved from this burden,
the system now has to decide what parts of a program must be present in main
memory during a given interval of execution. These decisions must be made with
respect to the behavior of the executing programs.

Virtual memory is usually divided into blocks of contiguous locations to
allow an efficient mapping of the logical addresses into the physical address space.
If these blocks are of equal size, the system is called a paging system and the blocks
are called pages. Main memory is equipartitioned into page frames of the same
size, and any page can be put into any available page frame. The occurrence of
a reference to a page that is currently not in main memory is called a page fault.
A page fault results in the interruption of the program and the transfer of the
referenced page from secondary storage.

Since the main memory has only a limited capacity, pages already in main
memory must continually be removed to make room for pages entering from
secondary memory. The decisions as to when and what pages are to be removed
from main memory are critical for the efficient operation of the system. The
replacement algorithm is that part of the system which makes these decisions.
The objective of a replacement algorithm is twofold. Firstly, it is to keep those
pages in main memory that are currently being used. This is necessary to keep
the page fault frequency as low as possible. Secondly, the replacement algorithm
is to free page frames as soon as there is a low probability that they will be referenced
in the near future. This is a requirement for the efficient utilization of main memory
by all processes. If the second level memory is directly addressable by the CPU,
the objective of the replacement algorithm is to guarantee an efficient use of the
high-speed (first level) memory.

If a program’s page references were randomly distributed over all pages
according to a uniform distribution, it would not matter what page is chosen
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for replacement. The page fault frequency would only depend on the number of
allocated page frames. However, programs tend to reference pages unequally;
they tend to cluster references to certain pages in short time intervals. This property
is exhibited to varying degrees by many practical programs and commonly known
as locality. The properties of locality are [10]:

1. A program distributes its references nonuniformly over its pages, some

pages being favored over others.

2. The density of references to a given page tends to change slowly in time.

3. Two reference string segments are highly correlated when the interval

between them is small, and tend to become uncorrelated as the interval
between them becomes large.

The cause for the occurrence of locality in practical programs can be found in
the behavior and style of programmers. Programmers tend to organize their code
into modules; they frequently use loops in their control structures. It is also
common practice to group data into content-related blocks. The modularity of
code and data layout is the primary reason for the clustering of references in
space and time.

For the purpose of studying memory management, we will use the following
abstraction of the notion of a process. A process is a sequence of references (either
fetches or stores) to a set of information, called a program. When talking about
processes in execution, we must distinguish between real time and virtual time.
Virtual time_is the time seen by an active process, as if there were no page wait
interruptions. By definition, a process generates one information reference per
unit virtual time. Real time is a succession of virtual time intervals and page wait
intervals. A virtual time unit is the time between two successive page references in
a process, and usually the memory cycle time of the computer in which the process
operates. As a matter of convenience, we let the time for 1,000 references to the
first level memory be equal to 1 msec.

Let N = {1,2,---, n} be the set of pages in the logical address space of an
n-page program. The dynamic behavior of the program for given input data can
be modeled in machine-independent terms by its reference string w, which is a
sequence

w=r1r2"‘r',

each r, being in N. r, = i implies that page i was referenced at the rth reference;
thus ¢t measures the virtual processing time, which is discrete.

The performance of a replacement algorithm depends largely on the behavior
of the running programs which, for our purposes, will be described by their
reference strings. These reference strings can be obtained in two ways. Firstly,
a program is interpretively executed and its reference string is recorded. Secondly,
the reference string is generated by a model of program behavior. In the first case,
simulation techniques are usually used to evaluate the performance of various
replacement algorithms. This method has been used successfully in the past [1],
[2], [3], [12]. However, only short reference strings (compared with the length
of real programs) are usually processed, since these simulations are rather expen-
sive. This is one of the reasons why the modeling of program behavior has recently
found increasing interest [9], [10], [16]. In this case, the reference string is only
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described in terms of its statistical properties. These properties are then used to
evaluate the performance of replacement algorithms, thereby considerably
decreasing the overall effort in terms of cost and time. The analytical study is,
of course, only as good as the underlying model. Therefore, it is necessary to
develop models of program behavior which allow us to model the behavior of
real programs with reasonable accuracy (depending on the kind of application).

In this paper, we shall first review several available program models. Then
we will describe the renewal model for program behavior, derive its properties, and
investigate its ability to model the behavior of real programs. Using this renewal
model for program behavior, several theorems are derived which describe the
performance of the working set replacement algorithm [6]. The renewal model
is also used to evaluate the performance of a replacement algorithm for two-level
directly addressable memory hierarchies.

2. Models for program behavior. The random reference model (RRM) [7]
is a program behavior model which assumes that each page is equally likely to
be referenced at any time. In this case, the time between successive references to
the same page, called the interreference interval, is geometrically distributed.
The probability that any given page is referenced is 1/n, where n = |N| is the
number of pages which comprise program and data. The independent reference
model (IRM) is a generalization of the RRM. In this model, the page references
FisFy, oo, Iy, - - -are assumed to be independent trials under some fixed probability
distribution. In other words, the probability of referencing page i at the kth
reference is given by Pr[r, = i] = f5,. Note that consecutive page references are
taken according to these probabilities without regard to the previous references.
The interreference intervals are again geometrically distributed. The average
interreference interval for the ith page is m; = 1/f;. The RRM is the special case
of an IRM where f§; = 1/n for all i.

The page fault frequency of the LRU and the working set algorithm was
derived for the IRM [4], [8]. Also, page reference strings generated by the IRM
were compared with reference strings of real programs [17]. The results show that
the IRM is a poor approximation. The observed page fault frequency of the
working set algorithm differed from the theoretical value for the IRM in many
cases by more than one order of magnitude.

The locality model of program behavior [9] was defined as (L,, t,),(L,, t,),
-+, (L, ty), - -+, where L; is the ith locality and ¢; the holding time in L;. The
L; are members of a specified set of localities associated with the program. A
specialization of this model is the so-called very simple locality model (VSLM).
This model assumes a fixed size locality, i.e., the localities L; are all of the same
size x, where 1 £ x < n. At any given time t, the probability of referencing a page
in the locality L; is 1 — A, and the probability of referencing a page not in L,
and therefore making a transition to another locality is A.

Experimental results [17] show that the VSLM more closely approximates
the behavior of programs than does the IRM. However, the VSLM does not
do as well as the simple LRU stack model which will be discussed next.

The simple LRU stack model (SLRUM) is based on the memory contention
stack generated by the LRU algorithm [14]. To create the SLRUM, we assign
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to each position of the stack a fixed probability. We will denote these probabilities
qi>92, " » qx Where k is the largest integer such that g, > 0 and g; = 0 for all
Jj > k. All the g;’s are independent of each other. The g; are termed stack distance
probabilities, with j being the distance from the top of the stack. At any time,
stack position j will be chosen with probability g;; if it is chosen, the page in
that position becomes the current reference and is brought to the top of the stack.
The pages at stack positions 1 through j — 1 are pushed down one position.
In general, there is a nonzero probability g, which denotes the probability of
referencing a page that has not been accessed before; if such a page is chosen,
it is put on top of the stack, and all previously referenced pages are pushed down
one position. Since g, is generally not equal to zero, there is a finite probability
of referencing a page which is not in the LRU stack even after a very long execution
time. Because of this behavior, the stack is steadily growing in size. However,
all pages with a stack distance larger than k will never be accessed again, because
q; =0 for j > k. Whenever q,, > 0, there are some pages which are “passing
through the set of all those pages to which references may be directed, i.e., the
top k pages of the LRU stack. The rate at which these pages enter the stack at
the top is equal to the rate at which they drop below stack distance k, thereby
becoming inaccessible. This kind of behavior is frequently exhibited by pages
used in input/output operations. In this case, the probability of referencing a
new page which contains input data is larger than zero even after a long virtual
execution time. But once all the data items in the input page have been read,
this page will never be accessed again. A similar observation can be made for
pages used in output operations.

3. Renewal model. As mentioned before, the interreference intervals for the
IRM are geometrically distributed. This corresponds to an exponential distribution
on a continuous time scale. Using a continuous time scale, we can describe the
referencing of pages as a Poisson arrival process. The arrival of a customer corre-
sponds to the referencing of a page, interarrival times correspond to interreference
intervals. The Poisson arrival process consists of the superposition of n independent
Poisson processes, one for each page. The arrival rate for page i corresponds to
the reference probability f; of the IRM. We therefore have again

This represents a complete alternative description of the IRM on a continuous
time scale. It is the special case of a renewal model where the interreference
intervals are exponentially distributed. If we generalize this latter assumption
and replace the exponential distribution by a general cumulative distribution F(t),
we obtain the renewal model for program behavior. In this model, we assume that
the page interreference intervals are statistically independent. Note that under
this general assumption, only the referencing of individual pages constitutes a
renewal process. The process, which is formed by superposing (or pooling) the
nindividual processes, is generally not a renewal process. The n individual processes
are assumed to be independent.
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Figure 1 shows an example of a renewal process for a program which consists
of five pages. The horizontal axis represents virtual processing time. The page
reference string is formed by projecting the page references of each page on a
common time axis.
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FiG. 1. Example of a reference string generated by the renewal model

DEFINITION OF THE RENEWAL MODEL. R = (n, V) is a renewal model for
program behavior iff

1. nis a positive integer;

2. Visalist of n cumulative distribution functions Fi(x),i = 1,2, ---, n,where

m; = [%[1 — F(x)] dx existsand ) }_, 1/m; = 1.
Here m; is the average interreference interval of page i D7_ 1/m;=1is a
normalizing condition. If this condition holds, we have, on the average, one page
reference per unit time.

Let us now consider what type of cumulative distribution functions Fy(¢)
may be used for the representation of interreference intervals. For the continuous
time IRM, the probability of referencing some page i during the small time interval
At is constant and equal to f§;- At. Let us call §; the immediate reference density
(ird). For exponentially distributed interreference intervals, the ird §; is independent
of the current backward distance of page i, that is, the time interval between the
last reference to page i and the current time. Intuitively, this appears to be rather
a questionable assumption since it contradicts the principle of locality. The
principle of locality implies that the larger the current backward distance of page i,
the smaller its reference probability. Thus the ird f; should not be a constant
but a decreasing function of the backward distance. This explains why the IRM
is not a good model of program behavior.

In renewal theory, the ird is known as the age-specific failure rate. Renewal
processes for which S(t) is a decreasing function of the backward distance ¢ are
called processes with negative aging [5]. The ird f(t) uniquely determines the
probability density function (pdf) f,(t) and the cumulative distribution F(t):

Jit) = Bio)- exp{ —f; Bi(x) dX},

F)=1- exp{— f B dx}.
0
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4. Application of the renewal model to the working set algorithm. For renewal
models, the page interreference intervals are assumed to be statistically independent.
Further, the reference probability of each page is independent of the reference
probability of any other page. The sequence of references for each page is modeled
separately. Therefore renewal models can be applied most successfully to replace-
ment algorithms for which the replacement decision depends solely on the
behavior of individual pages. The working set replacement algorithm is an
example of such a replacement algorithm. In this case, pages are always replaced
when they have not been referenced during the last T msec. This decision is clearly
independent of the reference distribution of all the other pages.

We are now going to derive the average page fault frequency and the average
working set size for the working set algorithm. The average page fault frequency
can be calculated very easily because it is directly related to the distribution
function Fj(x) of each page. The following three lemmas are used for the calculation
of the average working set size. These lemmas will also be used later for the
evaluation of two-level directly addressable memories.

THEOREM 1. The average page fault frequency, Q(t), of the working set
algorithm with window size t for the renewal model is

n
01) = Z ﬂ

=1 M

Proof. Since page i does not belong to the current working set if its inter-
reference interval is larger than 7, 1 — F;(t) is the probability that the next reference
results in a page fault caused by page i, given that page i is referenced next. Recall
that m, denotes the average interreference interval of page i. Therefore, (1 — Fy(t))/m;
is the average page fault frequency due to page i. By summing up these average
page fault frequencies for all the distinct pages in the program, we obtain Theorem 1.

LEMMA 1.

er-f(x)dx + on [l — F(x)]dx =m — [l — F(7)].
0 T
Proof.

fx~f(x)dx~+-fOO [1 — F(x)]dx

0 T
_—_.F_tF -d oo1—Fd
v Fx) fo ) x+£[ ()] dx

=1-F(t)—1 +I [1 — F(x)]dx = m — t[1 — F(1)].
0
LEMMA 2. The expected time interval a page resides in main memory is
T+ f x-f(x)dx/(1 — F(1)).
0

Proof. The page is replaced at the first instance of time when an interreference
interval larger than 7 occurs. The probability of this event is 1 — F(t). Thus the
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probability that the kth interreference interval is the first one that is larger than t
is [F@I*~'-(1 = F(x)).

Let E{x|t} be the expected length of the interreference interval, given that
it is shorter than 7. The expected time interval a page resides in main memory is

i _ E{x|t} - F(t)
1 (1 - F@] Y (k—=1)-E{xlt}- [FQ)) ' + 1= Etadr - Fly
k=1 1 — F(7)

The probability Pr {y < x|t} that the interreference interval y is less than or equal
to x, given that it is less than or equal to 7, is

F(x)
— i <
Pr{y < x|t} =4 F(7) orX=T
0 for x > t.
Thus "
1 T
2 E{x|t} = F(?)J x - f(x)dx,
0

where f(x) = dF(x)/dx. Substituting (2) into (1) yields Lemma 2.

LEMMA 3. The expected number of references to a page between page faults
(excluding the reference which caused the page transfer) for the working set algorithm
is F(1)/(1 — F(1)).

Proof. The lemma follows directly from the proof of Lemma 2.

Since [1 — F{(t)]/m; is the average page fault frequency due to page i,
m;/[1 — F{(t)] is the average inter-page-fault interval for page faults caused by
page i. At the beginning of such an inter-page-fault interval, page i resides in
main memory. Lemma 2 gives the expected length of this residency in main
memory. The expected fraction of time page i resides in main memory is the ratio
of the expected time page i resides in main memory to the average inter-page-fault
interval of page i and is equal to

(3) —;T{ftx-fi(x) dx + (1 — Fi(r)]}.
ilJo

Using Lemma 1, (3) reduces to

1 [ 1t
1 — 7n7Jl [l — F(x)]dx = ;;l;J‘O [1 — F(x)] dx.

By summing up these time fractions, we obtain the following theorem.

THEOREM 2. The average working set size, s(t), of the working set algorithm
with window size t for the renewal model is

n 1 T
=3 j [1 — F(x)] dx.

Note that lim__, s(t) = 0 and lim__, , s(t) = n.
COROLLARY 1.

L = 000
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Proof. Differentiating s(t) of Theorem 2 yields directly Q(t) of Theorem 1.
Corollary 1 is analogous to Denning and Schwartz’ result [8] for the case of a
discrete time scale.

As mentioned before, we should use a renewal process with negative aging
for the modeling of program behavior if we want to derive a better program model
than the IRM. This implies that the immediate reference density f,(t) must be a
decreasing function of the backward distance t. If we choose

Bit) = “ipf(/)i’t)ai_l,

then () is a decreasing function of t for « < 1, t > 0. Since the ird f(t) uniquely
determines the pdf f(t) and the cumulative distribution F{(t), we obtain

flt) = wplp;- 17 -exp (=)}
and

F() =1 —exp {—(pa)"}.

F(t) is the so-called Weibull distribution [18]. It is easy to verify that the
mean of the Weibull distribution is

4 m;, = ——————" ,
@ Pi

and the coefficient of variation (the ratio of standard deviation to the mean) is

[ ora+ 2/ 112
®) o | v

In order to obtain estimates for the parameters «; and p;, we measured the
mean and the coefficient of variation of the interreference interval distribution for
two sample programs (FORTRAN and FORTCOMP). An estimate for o; was then
derived from the coefficient of variation (equation (5)). This estimate of «; and
the measured mean is then used to determine p; (equation (4)). Tables 1 and 2
give the mean m;, the coefficient of variation ¢;, and the estimates for «; and p;
for FORTRAN and FORTCOMP, respectively. The results in these tables reveal that
different pages have great differences in the average interreference interval m,.
For the ForTCOMP program, for example, the smallest interreference interval is
3.6379 references and the largest interreference interval is 166,630 references.
A similar statement is true for its coefficient of variation. This shows that different
pages may exhibit a completely different behavior. The intuitive explanation for
this observation is, among other things, that pages are used for the storing and
fetching of instructions as well as data.

The page fault frequency for the case in which the interreference interval is
distributed according to a Weibull distribution can be derived from Theorem 1
and is equal to

5 P A= (PN}

i=1 m;
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Likewise, the average working set size for the Weibull distribution can easily be
derived from Theorem 2 and is equal to

n 1 T
— | exp{—(pjt)"} dt.
i;mi . p{—(pit)"}
This integral can be evaluated by numerical integration.

Figures 2 and 3 show the average page fault frequency for the FORTRAN
and the FOrRTCOMP program, respectively. The dashed curves represent the
measurement results. The two solid curves represent the average page fault
frequency for the renewal model with the Weibull distribution and IRM, respec-
tively. The exponential distribution can be viewed as a special case of the Weibull
distribution for which o; = 1 and p; = 1/m;.

Figures 4 and 5 show the results for the average working set size for the
same two sample programs. As can be seen from these figures, the renewal model
represents a better approximation of program behavior than the IRM. The results
for the IRM are similar to those obtained by Spirn and Denning [17].

In the renewal model, we have assumed that page interreference intervals are
statistically independent. We know, however, that in real programs the inter-
reference intervals are somewhat dependent. Comparing the program behavior
derived from the renewal model with the program behavior derived from measure-
ments, the results show that the assumption of independent interreference intervals
in the renewal model gives a fairly good approximation.

TABLE 1
Input parameters for the renewal model (FORTRAN program)
Page
Number m; i & Pi

1 7.2601 87.598 0.2077 12.085

2 11.601 60.762 02177 5.2498

3 68.537 43.704 0.2279 0.63832

4 158.78 31.026 0.2398 0.19592

5 46.714 20.631 0.2565 0.44153

6 148.94 28.481 0.2431 0.19146

7 322.69 21.901 0.2538 0.06799

8 1336.5 11.539 0.2861 0.0086463

9 1052.3 20.082 0.2576 0.019123
11 3.3813 | 239.34 0.1854 | 70438
12 19.189 99.796 0.2045 5.1890
13 146.11 61.684 02173 0.42261
14 42.199 31533 0.1802 7.4553
15 45.403 303.92 0.1809 6.6665
18 60.942 250.63 0.1844 4.1168
19 20.669 45218 0.2268 2.1895
20 100.49 21.873 0.2540 0.21731
21 4.5785 45.907 0.2263 10.039
22 35.642 24942 0.2483 0.70178
23 4544.0 28.834 0.2426 0.006358
25 26308.0 12.371 0.2822 0.0004698
26 41654.0 10.086 0.2943 0.0002426
32 2202.0 47.107 0.2254 0.02147
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TABLE 2
Input parameters for the renewal model (FORTCOMP program)

Page
Number m; ¢ 2 12
2 1741.8 12.878 0.2137 0.04025
3 |166630.0 1.4573 0.7020 7.576E-6
4 31243.0 2.0555 0.5320 5.745E-5
S 14.113 124.34 0.1228 | 3887.45
6 74.6 53.605 0.1457 51.366
8 8.1907 12.625 0.2151 8.1422
9 8.8770 10.449 0.2296 4.6809
10 3.6379 41.857 0.1541 503.77
11 5.6674 | 34.610 0.1612 186.56
12 52.571 36.731 0.1590 23.694
13 90.315 21.083 0.1838 2.8669
14 298.27 15.949 0.1996 0.40926
15 54.591 36.331 0.1593 22.306
16 321.27 26.127 0.1734 1.4548
17 9.7798 | 43.766 0.1526 212.21
18 27.492 40.187 0.1555 59.515
20 278.49 16.401 0.1979 0.47184
21 31.394 6.9421 0.2687 0.50709

5. Application to a two-level directly addressable memory hierarchy. In the
case where only the first level of the memory hierarchy is directly addressable by
the CPU, an entire page must be transferred whenever an information item is
referenced which is not in the first level. Because of the locality of page references
this is in many cases an efficient policy. However, as Tables 1 and 2 show, there are
usually some pages which are referenced rather infrequently. For these infrequently
used pages, it would be more efficient to transfer the referenced information item
directly to the CPU, leaving the corresponding page in the second level memory.
Memory hierarchies that use this strategy are called two-level directly addressable
paged memories. The IBM 360/67 installation at Carnegie-Mellon University is
an example of a computer system with this type of memory hierarchy [11], [13],
[20]. As the costs of high-speed large memories such as bulk core storage and
semiconductor memory decrease, systems with two-level directly addressable
memories become increasingly attractive. Experimental performance [19] and
some theoretical properties [15] of these memory systems have been reported
recently.

To demonstrate the utility of the renewal model, we are now going to apply it
to the evaluation of a two-level directly addressable memory hierarchy. In the case
where only the first level of the memory hierarchy is directly addressable, a
demand paging algorithm has to decide when to remove a page from the first level
memory and what page or pages are to be removed. The same decisions must also
be made in a two-level directly addressable memory hierarchy. In this later case,
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however, we now have a choice as to whether or not to promote a page to the
first level. We therefore must establish a second decision rule which tells when to
promote a page.

There is a variety of promotion and replacement decision rules. These
decision rules may or may not depend on the reference string. Any combination
of a promotion rule with a replacement rule represents a memory management
algorithm for a two-level directly addressable memory hierarchy. If the promotion
and replacement rules are not applied at the same time, the amount of allocated
first level memory varies in time, and we have a dynamic storage partitioning
scheme. In what follows, we will restrict ourselves to a particular combination of

a promotion and replacement rule which uses the dynamic storage partitioning
scheme.



THE RENEWAL MODEL FOR PROGRAM BEHAVIOR 367

10 I
w
w
Q
2
.
& E
w
o« ]
(=] -
[=]
S —
o
« i
Q.
w
@ -
.} -
p ]
=
[T -
& RENEWAL MODEL
g
[T
© 0.1 |- —
o - -
w - -
g B .
=) - -
2 | -
IRM 7]
I I | | 11 | j | 1
1 2 3 4 5 6 7 8 9 10 N

WORKING SET PARAMETER 7, MSEC

F1G. 3. Average page fault frequency (FORTCOMP program)

If only the first level memory is directly addressable, the choice of a specific
replacement rule with its parameter determines uniquely the average page fault
frequency and the average number of allocated first level memory page frames.
In the case of two-level directly addressable memories, there is not only one
combination of parameters for the promotion and replacement rule, but there is,
in general, a large number of such combinations which all achieve the same
average page fault frequency. We are therefore interested in an answer to the
following two questions:

1. Given that the average number of allocated first level memory page frames

should not be greater than n, how should we select parameters for the
promotion and replacement rule that minimize the total processing time?
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2. Given that the total processing time should not be greater than t, how
should we select parameters for the promotion and replacement rule
that minimize the average number of allocated first level memory page
frames?

We are going to use the “working set rule” as a replacement rule; i.c., a page
is removed from the first level memory whenever it has not been referenced during
the last T msec. As a promotion rule, we will use a rule that was first suggested
by Williams [19]: whenever a page that resides in the second level memory is
referenced, it will be promoted according to some fixed probability p. Although
this promotion rule appears to be very simple, it can be quite effective since it
causes those pages that are referenced more frequently to be promoted to the
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first level memory. With this particular combination of promotion and replacement
rule, the parameters to be optimized are the working set parameter 7 and the
promotion probability p. Let us call this particular combination of promotion and
replacement rule a (p, t)-algorithm.

We define v as the number of references to a page while it resides in the second
level memory; i.e., the number of references between removal and promotion to
the first level memory. v is a random variable which is geometrically distributed.
The mean value of v is

® 1
E{vf=p- 3 v-(1 =py! =

v=1
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Note that we have the same value E{v} for each page because the promotion
probability p is independent of the number of the referenced page. However,
the expected period of time a page stays in the second level memory is different
for different pages. This time interval can be computed as a sum which consists
of two parts. The first part is the expected period of time between the removal
from the first level memory and the first reference to the same page in the second
level memory. The second part is equal to (1/p — 1)-m;, that is, the expected
number of interreference intervals times the average length of an interreference
interval for page i.

Let s denote the expected time interval between the removal from the first
level memory and the first reference to the removed page in the second level
memory. We know that a page which is transferred to the second level memory has
a backward distance equal to 7. The random variable s has therefore the following
cumulative distribution :

Fs + 1) — F(7)

R = =

The mean of the random variable s, E;{s|t}, can be derived as follows:

E{s|t} = 1—_11171—)wa s-fis + 1)ds

1 oo}
=1 Fm F,-(T)J; (s — 1) f(s)ds

o o dll = F(s)]
_——I—Fi(r)(_l)f, (s—1) s -ds

1 B
= 1_—1%(—1)'{[(8 -9l = RO - f [1 — F(s)] ds}.

From Lemma 1, we know that lim,_, _ s-(1 — F{(s)) = 0 for m; < co. Therefore

Efslt) = (f‘t[l — ) ds) / (1 = F().

Thus the expected period of time a page stays in the second level memory is

©) Uw [ — F(s) ds)/(l _Fo) + (% - 1) .

We now make use of Lemma 2 to calculate the expected fraction of time
a page stays in the first level memory. Summing these fractions over all pages,
we obtain the following theorem.

THEOREM 3. The average number of allocated first level memory page frames
for the (p, T)-algorithm is

_Zl { (%L [1 = F(s)] ds)/(p +[1 = ]l - p])}.

For p = 1, we obtain the same result which was previously derived for the
working set algorithm (Theorem 2).
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THEOREM 4. The expected fraction a of references to the first level memory for
the (p, t)-algorithm is

. - F.
~, where o, = p- k()

U8
3|o

i=1

Proof. As mentioned above, the expected number of references to a page in
the second level memory is 1/p. Lemma 3 gives the same information for the first
level memory. From this we derive the expected fraction of references to each
page. The sum of these fractions weighted by the average reference frequency 1/m;
gives Theorem 4.

Let T, denote the real processing time for a program operated under a
(p, 7)-algorithm (the processing time including the access times to single informa-
tion items in the first level memory and the second level memory and the page
transfer times for transferring from the second level to the first level memory).
Further, let T; be the fastest execution time which can be achieved if the whole
program is loaded into the first level memory. Tj is equal to the total number of
page references. The ratio 6 = T,/T; is called the expansion factor. The expansion
factor 6 is a measure for the delay which is introduced by the use of a slower
secondary memory. We will use § as a performance measure for the evaluation of
the (p, 7)-algorithm.

The expansion factor é depends on the following variables: (i) the promotion
probability p, (ii) the working set parameter 7, (iii) the speed ratio R of the memory
hierarchy and (iv) the page transfer time T,. T, includes the processing time which
is spent to transfer the modified pages back from main memory to secondary
storage. For convenience we shall use the access time of the first level memory
as a time unit for T,. In order to compute J, we need to know the expected number
of page transfers for page i, which is given by p(1 — ¢,)T;,/m;. Recall that o; is
the fraction of references to the first level memory for page i. Let us assume that
a page which is promoted to the first level will be referenced by the CPU only
after it has been promoted. Then the real processing time due to references to
the first level memory is

n

Q > 2o, + pll — o))

i=1"%

The real processing time due to references to the second level memory is

®) R

- p);

i=1

and the real processing time due to page transfers is

© Z p(l — o).

Adding (7), (8) and (9) and dividing by T, we obtain the following theorem.
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THEOREM 5. The expansion factor § for a two-level directly addressable memory
hierarchy with speed ratio R and page transfer time T, and operated under a (p, t)-
algorithm is

5= % Lo+ (1 = 0)(pT, + R(L = p) + p)].
i=1 "4

To demonstrate the use of the renewal model for the evaluation of two-level
directly addressable memory hierarchies, the average number of first level memory
pages (Fig. 6) and the expansion factor (Fig. 7) were evaluated for different values
of the working set parameter t and the promotion probability p. In these figures,
the FOrTCOMP program was used as a sample program (see Table 2). Further,
we chose R = 10 and T, = 5,120 units.

I I T |

AVERAGE NUMBER OF ALLOCATED
FIRST LEVEL MEMORY PAGE FRAMES

1 1
1 1.5 2 3 4 6 8 10 15 20 30 40 60 80 100
WORKING SET PARAMETER 7, MSEC

F1G. 6. Average number of first level memory page frames for the (p, t)-algorithm

The average number of allocated first level memory page frames is an increasing
function of both the working set parameter t and the promotion probability p.
No such general statement can be made with respect to the expansion factor d.
This is because a greater promotion probability increases the number of references
to the first level memory and may therefore speed up the computation. However,
it also increases the number of page promotions, thereby slowing down the
computation. This explains why two of the curves of Fig. 7 cross each other.

Figures 6 and 7 taken together allow us now to answer the two questions
which had been posed in the beginning of this section. For instance, the dashed
line of Fig. 7 connects all those points for which the average size of the allocated
first level memory space is equal to five page frames. The minimum of this curve
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represents the optimal combination of parameters for the promotion and replace-
ment rule that minimizes the total processing time, given that the average number
of allocated first level memory page frames is not greater than 5. In this case,
the optimal combination is approximately © = 10 msec, and p = 10™*.

These figures represent only an example for the application of the renewal
model and highlight the technique that can be used for the optimization of two-
level directly addressable memories. The optimization of a two-level directly
addressable memory with such parameters as promotion and replacement rule,
page size, speed ratio R, etc., is beyond the scope of this paper.

Much more theoretical and experimental work has to be done to evaluate
the performance of these promotion and replacement rules. In particular, the
following questions should be investigated : how can the promotion probability
be implemented (possibly by promoting a page after every pth page reference to
the second level memory)? What other promotion and replacement rules are
available? What is the effect of different speed ratios R? It appears that the renewal
model is a valuable tool for the investigation of these problems. Also, it is quite
possible that the use of a different distribution function for the page interreference
intervals may produce closer approximations of the behavior of real programs.

6. Conclusion. One of the difficulties of modeling resource allocation in
modern computer systems has been the proper representation of memory
allocation. The primary reason for this difficulty can be found in the varying
memory requirements of the running programs. Many efforts have been made to

40 %—
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F1G. 7. Expansion factor for the (p, t)-algorithm
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describe this complex process in terms of a model of program behavior. However,
no universal model that can describe all kinds of program behavior satisfactorily
has yet been developed, and it is not clear whether this can be done. Like all the
other models of program behavior that have been used in the past, the renewal
model is limited in its applicability. However, in certain cases it can be a very
useful tool to study the performance of memory allocation algorithms. This was
shown for the working set algorithm and the (p, 7)-algorithm. Such studies allow
us to gain insight into the performance characteristics of these algorithms. This,
in turn, may significantly contribute to the improvement of overall system
performance.

Acknowledgment. The authors wish to thank the referees for their constructive
comments.
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ON FINDING AND UPDATING SPANNING TREES AND
SHORTEST PATHS*
P. M. SPIRAt anD A. PAN}

Abstract. We consider one origin shortest path and minimum spanning tree computations in
weighted graphs. We give a lower bound on the number of analytic functions of the input computed by a
tree program which solves either of these problems equal to half the number of worst-case comparisons
which well-known algorithms attain. We consider the work necessary to update spanning tree and
shortest path solutions when the graph is altered after the computation has terminated. Optimal or
near-optimal algorithms are attained for the cases considered. The most notable result is that a spanning
tree solution can be updated in O(n) when a new node is added to an n-node graph whose minimum
spanning tree is known.

Key words. spanning trees, shortest paths, lower bounds on computation, graph computations

1. Synopsis of results. Dijkstra [2] has given an algorithm to find all shortest
paths from a single origin in a directed graph with positive arc weights and Prim [1]
has given an algorithm tc find a minimal spanning tree in an undirected graph.
We discuss the optimality of these algorithms in the sequel and show that no
program whose unit operation is the evaluation and testing for positivity of an
analytic function of the weights can better these algorithms by more than a factor of
two. Wethen consider the problem of updating previousshortest path and minimum
spanning tree solutions when parameters of the graph are changed. We consider
what must be done when nodes are added or deleted and when weights on arcs are
increased or decreased. We obtain lower bounds and optimal or near optimal
algorithms for these problems in terms of how many analytic functions of the
weights must be considered.

2. Definitions and preliminaries. Let G be an n-node with d;; the distance from
node i to node j so that G is undirected if d;; = d;; for alliand j.

DEFINITION 2.1. An analytic tree program T is one defined by a rooted tree.
Each internal node and the root are labeled by analytic functions, and each leaf
is labeled by an answer—the output of the program. Computation begins at the
root. At each node the analytic function is evaluated and the next node visited is
the left or right successor of the present node. Computation terminates when a
terminal node is reached. The depth of T, d (T), is the length of the longest branch.

DEFINITION 2.2. Let [, - - -, I, be linear maps from R? to R, where R is the real
numbers, and let C < R? be a convex set. Let L™ = {xe R*:l(x) = 0,1 < m}.
A complete analytic proof of L* on C is a matrix
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where each pij:R" — R is analytic and such that xe L* < 3i,1 £ i < k, with
pifx) = 0,1 < j < k. We call k the width of 2.

The reason for defining a complete proof is that any lower bound on the width
of a complete proof for L* is a lower bound on the depth of a tree program. In
fact, we have the following lemma.

LEMMA 2.3, Let l,, - -+, l,, be linear maps from R to R. Let C < R*. Let k be the
minimum width of any analytic proof of L™ on C. Let T be a program which, given
any point x € C, determines whether or not xe L*. Then d(T) > k.

Proof. The proof is direct from the definition of complete analytic proof.
Q.ED.

We shall use in all our lower bound proofs the following theorem.

THEOREM 2.4 (Rabin). Let I, - - -, I, be linear forms from R to R, withm < d.
Let C = R? contain a point for any given of the 3™ possible +, 0, — sign conditions
of the l;. Then any complete analytic proof of L* on C has width at least m.

This theorem says that under the given hypotheses, the easiest thing to do to
verify that a point x e Cisin L* is to compute [,(x), - - -, [,(x) and see if they are all
nonnegative.

3. Spanning trees. Prim’s [1] well-known procedure finds the minimum
spanning tree in an undirected graph. There are two types of comparisons em-
ployed. The first type finds the closest unconnected node to the set of nodes already
connected. This closest node becomes a connected node. The second type compares
for each unconnected node the distance to it via the last connected node and the
distance to it which was minimal before the last node was connected. If the al-
gorithm is properly programmed by introducing a tree of depth [log, (n — k)1 for
the arcs from the kth node brought in, then it will take between 3(n — 1) (n — 2)
and (n — 1)-(n — 2) comparisons, depending upon the number of new arcs
brought into consideration in the second type of comparison. We show that any
analytic tree program will have depth at least 4(n — 1)-(n — 2) for this problem.
In fact, more strongly, we have the next theorem.

THEOREM 3.1. Let T be an analytic tree program which, given a complete un-
directed weighted graph and n — 1 arcs, determines whether or not these arcs form
a minimum spanning tree. Then d(T) = 4(n — 1)- (n — 2).

Proof. Let D be the set of n — 1 arcs. Let d = max {d,;:the arc from node i to
node j is in D}. Then the arcs of D form a minimum spanning tree if and only if
they form a tree and d;; > d for each i and j such that the arc from i to j is not
in D. But this is a set of 3(n — 1) (n — 2) inequalities which satisfy Rabin’s hy-
pothesis. Q.E.D.

We now discuss updating minimum spanning tree solutions when graph
parameters are changed. First we consider adding a new node to the graph.

THEOREM 3.2. Let an n-node weighted undirected graph G be given, together with
n — 1 arcs known to be a minimum spanning tree. Let an (n + 1)-st node be added to
G, together with at least two arcs connecting it to the original n nodes. Then any
analytic tree program to compute the minimum spanning tree of the new graph has
depth at least n.

Proof. Consider the case in which there are two arcs from the new node which,
together with the given minimum spanning tree, form a cycle of length n + 1.
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Then the new minimum spanning tree will contain each of these arcs except that
arc with the maximum weight. Q.E.D.

The reader can easily construct an O(n log n) algorithm to update the minimum
spanning tree if he or she notes the fact that the only eligible arcs are the n — 1 arcs
now in the tree and the at most n new arcs connected to the new node. In fact,
there is an O(n) algorithm which we now present. Also, the algorithm uses storage
proportional to n.

THEOREM 3.3. There is an algorithm to update the minimum spanning tree of
an n-node graph to which a new node has been added which uses O(n) comparisons
and O(n) storage.

Proof. We give the algorithm. The input to the algorithm is the set of arcs in
the old tree and the set of arcs to the new node. All arcs appear with their weights.

ALGORITHM.

1. Find minimum weight arc incident upon each node.

2. Find the connected components of the set of arcs found in step 1.

3. Find the minimum arc between each pair of trees found in step 2 such that

there is at least one such arc.

4. Collapse each tree found in step 2 to a new node, and go to step 1 if there is

more than one such node.

Step 1 requires at most 4n comparisons. Step 2 is linear in n if we use Tarjan’s
[4] connected components algorithm. Step 3 can be done by processing each edge
not found in step 1 once and uses linear storage. To see this, note that there can be
no more than one arc between any two trees unless one of them contains the newly
added node, or there would have been a cycle in the original spanning tree. So we
only need to process arcs that go to the component containing the new node and
hence use linear storage. In the process we will throw out all nonminimal con-
necting arcs, so that step 4 is trivial. When we return to step 1, we have the original
problem on at most half as many nodes. Hence for a constant ¢, we have a recursion
for the work, F(n), given by

F(n) < F(n/2) + cn,

so that F(n) < 2cn. Q.E.D.

We note that Johnson and Simon [5] have independently discovered an
entirely different O(n) algorithm for this problem.

The rest of the results on updating spanning trees are now stated as Theorem
34.

THEOREM 3.4. Let G be an n-node undirected weighted graph whose minimum
spanning tree is specified. Then:

(i) If the value of a tree arc is increased any analytic tree program to update
the minimum spanning tree has depth at least n/4 for n even and (n?> — 4)/4 for n
odd. Furthermore there is an algorithm using this many comparisons in the worst
case.

(ii) If the value of a nontree arc is decreased in weight, then an algorithm
using n — 1 comparisons in the worst case will yield the new minimum spanning
tree and no analytic tree program with depth less thann — 1 can solve this problem.

(iii) If a node is deleted from the graph together with all of its arcs, then an
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analytic tree program to update the solution has depth at least {(n — 2)-(n — 3)
(although it will usually be easier than this).

Proof. (i) Consider all arcs running between the two subtrees formed by
deleting the arc whose weight has increased. Then the new tree will be the union of
the subtrees and the connecting arc of minimum weight. If the subtrees have i and
n — inodes, there are n(n — i) such arcs. Hence the result follows.

(i) The arc of decreased weight is in the new tree if and only if it is no longer
the maximum weight arc in the cycle it forms when added to the old minimum
spanning tree.

(iii) The worst case occurs when the deleted node was a root of degree n — 1
of the old tree. Then no old information is useful. Q.E.D.

4. Shortest paths. In this section we discuss finding and updating shortest
paths from a single origin in positively weighted directed graphs (digraphs).
Dijkstra’s [2] procedure for finding a shortest path from a root to every other node
in an n-node graph requires between 4(n — 1)-(n — 2) and (n — 1)- (n — 2) com-
parisons. Similar considerations apply as in the spanning tree problem. Also,
similarly to Theorem 3.1, we have Theorem 4.1.

THEOREM 4.1. Let T be an analytic tree program which verifies that a tree rooted
at node 1 specifies a shortest path from node 1 to each other node in a positively
weighted digraph. Then d(T) = 3(n — 1)-(n — 2).

Proof. Let D;; be the shortest distance from node 1 to node j in the given tree
foreach 1 < j < n. Assume with noloss of generality that D,, < D,3 < --- £ D,,.
Then for each 1 £ i £ j < nsuch thatd;;is not in the proposed shortest path tree,
we must verify that d;; > D;; — D;; and this set of 3(n — 1) - (n — 2) inequalities
cannot be proven by an analytic proof of width lessthan(n — 1)-(n — 2). Q.E.D.

In contrast to the case of spanning trees, when a new node is added, it requires
an O(n?) algorithm to update the solution. In fact, the updating problems we con-
sidered for shortest paths all require O(n?) steps.

THEOREM 4.2. Let G be an n-node positively weighted digraph for which a
shortest path tree from node 1 to each other node is specified. Then:

(i) If a new node is added, any analytic tree program to update the solution
will have depth at least (n — 1)-(n — 2).

(i) If a node is deleted, any analytic tree program for updating the set of
paths will have depth at least 4(n — 2)-(n — 3).

(iii) If the weight of some arc in a path is increased, any updating program will
have depth at least ¥(n — 2)-(n — 3).

(iv) If the weight of some arc in a path is decreased, the minimum depth of an
updating program is at least X(n — 2)- (n — 3).

(v) If the weight of an arc not in the shortest path tree is decreased, then any
analytic tree program to update the solution has depth at least (n — 2)-(n — 3).

Proof. (i) Consider the case in which

d;j=1, 1=j=n,

1
d <;, all otheriand jwithl <i# j<n+1,

ij

dipey =min{d;;:1 Si# j<n+ 1},
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Then the old tree had a direct arc from node 1 to each other node, but the new tree
will not use any of these arcs. The new solution will have a direct path only from
node 1 to node n + 1, and an entirely new solution for the rest of G which will
entail finding a shortest path from node n + 1 to each other node.

(ii) Consider the case

di, =1,
d2j=1a 3JZjEn,
d;; > 2, all otheriand j.

Then if node 2 is deleted, an entirely new problem must be solved on nodes
L3, ---,n

(iii) Take
di, =1,
d2j=1a 3gjsn,
di; > 2, i#2, j#2,
diy > Y dy.
j#2

Then the original solution is to go from node 1 to node 2 and thence directly to
each other node. Now let d,, increase to be the maximum of all weights, and we
must solve a new problem from node 1 to nodes 3 through n.

(iv) Let

d;=1, 1 <j=n,

d

1
ij < -, allotheriand j,
n
and now let d, , decrease to be the minimum weight arc. So we must solve a shortest
path problem from node 2 to each other node.
(v) Let

di, =1,

dy; =1, 2<j,

di; > 2, j#2,

d <%, all other i and j.

ij
Now let d, 5 decrease to 1/n. Then we must solve a new problem from node 3 to
nodes 2,4, ---,n. Q.E.D.

5. Further considerations. In this concluding section we make several further
remarks about shortest paths and spanning trees. Firstly, there is an algorithm for
shortest paths or for the spanning tree problem which uses an average of in?
+ O(nlog? n) comparisons. To see this, let G be a graph in which the weights are.
chosen independently from any probability distribution which has zero probability
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of yielding negative values. Then Spira’s [6] algorithm for the all shortest path
problem can be adapted to either of the above problems to yield an algorithm
which uses 3n? + O(n log? n) comparisons on the average. Secondly, we have dis-
cussed updating where only the answer to the problem considered is retained. It
seems likely that if intermediate information in obtaining the original solution is
kept, improvements will be possible. We have not investigated this. Thirdly, we
have not considered sparse graphs. A major open problem is whether there are
O(E) algorithms for these computations in the case where E, the number of edges
actually present, is small.
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ON THE NUMBER OF MULTIPLICATIONS/DIVISIONS
EVALUATING A POLYNOMIAL WITH AUXILIARY FUNCTIONS*

L. REVAHt

Abstract. The number of multiplications/divisions (we use the notation m/d) necessary to evaluate
an nth degree polynomial with auxiliary functions are studied. Motzkin proved, that in general,
[(n + 1)/2]1 m/d are required when operations on coefficients of the polynomial are not counted and
presented an algorithm which requires [(n + 2)/2] m/d.

The main purpose of this work is to treat the question, *‘Is the minimum number of m/d [(n + 1)/2]
or [(n +2)/217” We obtain the following results:

(a) for n < 9, the minimum number is [(n + 2)/217,

(b) for n = 9, we prove by exhibiting an algorithm that almost all polynomials of degree n can be
evaluated with [(n + 1)/2] multiplications over a complex field.

Key words. algebraically closed field, algorithm, auxiliary functions, lower bounds, polynomials,
preconditioning

1. Introduction. We are interested in establishing the number of arithmetical
operations required to evaluate the nth-degree polynomial P,(x) = Z?:O u;x".
One can evaluate x%, x>, ---, x", then multiply a; by x; (1 < i < n), and finally
add these products and a,. This method requires 2n — 1 m/d and n additions/
subtractions (we use the notation a/s).

When a polynomial of degree nis computed at one point by Horner’s method
based on the following identity:

n
P(x) =Y ux' = (- (Upx + ty_)x + -+ )x + U
or i=0
Pn(x) = Pn—l(x)x + an
then n m/d and n a/s are involved. Horner’s method turns out to be optimal
from the point of view of operation count for computing a polynomial at one
point (Pan [2]).

When the same polynomial is to be evaluated at several points, we can manipu-
late in some way the coefficients of the polynomial once and for all and then use
these ‘“‘adapted’™ (we shall say preconditioned) coefficients in all subsequent
evaluations.

A scheme with preconditioning is a sequence of steps:

(1) pi = Rio R}, i=1,2,---,r,
in which:

(a) o is one of these operations: addition, subtraction, multiplication,
division;

(b) R;, R is either x, p; (j < i) or a function o; = fi(ug,u;, -, u,);

(©) pxsog, 0, o, o) = Px) = Y7 upx'

The number of m/d in the scheme is the number of times o is either multiplica-
tion or division. «; is called a parameter or an auxiliary function.

* Received by the editors February 12, 1974.
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P;is called a chainstep if either none of the R}, R/ is a parameter orif p; = a: R}
and R is not a parameter. Otherwise p; is said to be a parametric step.

Motzkin proved that every scheme with preconditioning which computes
a general nth-degree polynomial at a general point requires at least [(n + 1)/2]
m/d and at least n a/s, if operations on coefficients are not counted.

Motzkin [1] indicated a scheme for evaluating an nth-degree polynomial with
[(n + 2)/27 multiplications and n + 1 a/s (for simplicity, we do not follow the
indexing of (1), but instead, indicate the degree of a polynomial obtained at each
multiplication step):

P2 = x(x + ay),
Ps = (py + X + 0)(py + a3) + oy,
(2) p23+2=p25(p2+0(28+1)+0125+2, s=2a3a"'ak_ 1a
U,Dax for even n = 2k,
Pa(x) =
u,pux + uy forodd n=2k + 1.

(See also [5, pp. 7-10].) Other known methods do not achieve the lower bound of
[(n + 1)/27 for the number of m/d, which fact gave rise to the question, “Is the
minimum number [(n + 1)/27 or [(n + 2)/21?” Since [(n + 2)/27 turns out to be
f(n + 1)/27 when n is even, we deal only with polynomials of odd degree. (This
question was raised in Knuth [3, §4.6.4, Prob. 40]. Rabin and Winograd [4]
gave a scheme for the case n = 13 using 7 multiplications.)

First we shall establish the necessary conditions for schemes evaluating
all nth-degree polynomials with [(n + 1)/27 m/d. Then we shall prove that for
1 < n <9, the lower bound on the number of m/d is [(n + 2)/2].

In the last section we shall prove that for n = 9 the lower bound is [(n + 1)/2]
by constructing four schemes over a complex field corresponding to four cases
of odd n:

I.n=4k — 1,k = 3;

2. n=4k — 3,k > 3 odd;

3. n=4k — 3,k > 2 even;

4. n=09.

2. Necessary conditions for an algorithm to compute any nth-degree poly-
nomial with [(n 4+ 1)/2] m/d. We cite the following result.

Lemma 1 (Pan [2, p. 113], Belaga [5, p. 11]). The number k of parameters
involved in a scheme (1) computing an n-th-degree polynomial satisfies the inequality
kzn+ 1.

With no loss of generality, we can assume that the scheme (1) with t m/d is
of the form: (we write x for m/d)

(3) g=T"x TP, i=1-,1,

ey = P,,(x) =¢q, * Tis)’
where T (1 £ j <1, 1 << 3)is some sum of g, (s < j), x and parameters a.
Then it is easy to prove the following lemma.
LemMa 2 (Knuth [3, §4.6.4, Prob. 30, p. 443]). For any scheme of the form (1)
with t, chain and t, parametric m/d, it is possible to construct a scheme of the form
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(3) which evaluates the same polynomial as the preceding one with at most 2t, + t,
parameters.

From these two lemmas we deduce the following corollary.

COROLLARY 1. If a scheme (3) evaluates any n-th-degree polynomial with
[(n + 1)/21 m/d when n is odd, n = 3, then all m/d must be chain operations.

Proof. Indeed, it is possible to construct a scheme (3) with ¢, + t, = (n + 1)/2
m/d and at most 2t, + t, parameters (Lemma?2). But2¢, + ¢, = n + 1 (Lemma 1).
Thereforet, = 0. 0

DEFINITION 1. We call the operation p; = R}~ R} a nonreducing operation if
either one of the following conditions holds:

() ifois +, R; = P and R} = Q, then
degree (P) > degree (Q);
(ii) if o is +, R} = P/Q and R} = P'/Q’, then
degree (PQ’ + P'Q) = max (degree (PQ’), degree (P'Q)),

where P, P, Q and Q' are some polynomials in x.

A scheme is called a nonreducing scheme if it contains only nonreducing
operations. Otherwise the scheme is said to be reducing.

THEOREM 1. If a nonreducing scheme does not contain any parametric m/d,
then the leading coefficients of polynomials in numerator and denominator obtained
at each step p; are rational numbers. Therefore every nonreducing scheme without
parametric m/d evaluates only polynomials with rational leading coefficient.

Proof. We prove this theorem by use of induction on the number of m/d in
the scheme (3). 0O

This leads to the following theorem.

THEOREM 2. The necessary conditions for a scheme to evaluate any n-th-degree
polynomial when n is odd, n > 1, with [(n + 1)/2]1 m/d are:

(i) the scheme must not contain parametric m/d;

(ii) the scheme has to be a reducing one.

The point is that in other methods, the monic polynomial p, of degree n
was obtained first, and then, in order to compute the general polynomial P,(x)
= Y"_, ux', the monic polynomial p,(x) had to be multiplied by a parameter u,,.
We avoid this loss of multiplication.

In fact, we will try to ob