
SIAM J. COMPUT.
Vol. 4, No. 1, March 1975

ON SIMPLE GOEDEL NUMBERINGS
AND TRANSLATIONS*

J. HARTMANIS AND T. P. BAKER’f

Abstract. In this paper we consider classes of Goedel numberings, viewed as simple models for
programming languages, into which all other Goedel numberings can be translated by computationally
simple mappings. Several such classes of Goedel numberings are defined and their properties are
investigated. For example, one such class studied is the class of Goedel numberings into which all
other Goedel numberings can be translated by finite automata mappings. We also compare these
classes of Goedel numberings to the class of optimal Goedel numberings and show that translation
into optimal Goedel numberings can be computationally arbitrarily complex, thus indicating that
from a computer science point of view, optimal Goedel numberings have undesirable properties.

Key words. Goedel numberings, translations, complexity of translations, optimal Goedel
numberings

1. Introduction. It is well known [1 that all (acceptable) Goedel numberings
of the partial recursive functions are recursively isomorphic and thus, from an
abstract recursive function theory point of view, they can all be considered equiv-
alent. On the other hand, from a computational complexity point of view, this is
definitely not the case, since translations between Goedel numberings can be
computationally arbitrarily complex. In particular, if we view Goedel numberings
as simple models for programming languages, we are interested in those Goedel
numberings into which all other Goedel numberings can be translated easily.

In this paper we study the classification of Goedel numberings by the
computational complexity of translating all other Goedel numberings into them.
The central concept of this study is the "complexity class" of Goedel numberings,
which is defined (for any computational complexity measure) by giving a recursive
bound and then considering all Goedel numberings into which any other Goedel
numbering can be translated by a mapping whose computational complexity does
not exceed the given bound.

We show that there exist Goedel numberings into which all other numberings
can be translated by finite automata mappings, and refer to these as regular
Goedel numberings. It is easily shown that for regular Goedel numberings, the
s,m-function and the function giving the fixed point, guaranteed by the recursion
theorem [2], can also be chosen to be finite automata mappings. As a matter of fact,
the computational complexity of translations into a Goedel numbering are
directly related to the computational complexity of the S-function of the
numbering.

We show that there exist infinitely many different complexity classes ofGoedel
numberings and investigate some properties of these classes. For example, using
the operator gap theorem [3], we prove that there exist, in any complexity measure,
infinitely many recursive bounds such that all the Goedel numberings in the
complexity class defined by the bound are also isomorphic to each other under

* Received by the editors August 21, 1973.

" Department of Computer Science, Cornell University, Ithaca, New York 14850.

2, J. HARTMANIS AND T. P. BAKER

isomorphisms whose complexity is bounded by t. On the other hand, we have left
as an open problem whether all the regular Goedel numberings are isomorphic
under finite automata mappings.

We show that for every Goedel numbering q5 (and any computational
complexity measure [4) we can effectively give a recursive bound t(n) such that
for any other Goedel numbering ,, we can choose a translation of into 05 whose
computational complexity is bounded by t(n). We also consider the problem of
recursively bounding the length of translated Goedel numbering indices to the
indices which are translated. Here we again show that there exists, for every
Goedel numbering b, a recursive function f such that for any other Goedel
numbering there exists a translation into b which is bounded by f.

Finally, to relate the classification ofGoedel numberings by the computational
complexity of translations from all other Goedel numberings, we consider the
previously studied optimal Goedel numberings [5. A Goedel numbering q5 is
optimal if for any other Goedel numbering there exists a constant c and a transla-
tion r of into qS, such that a(i) _<_ c. i. Though these optimal numberings have
some nice mathematical properties, we show that, from a computer science point
of view, they have undesirable properties, since the translations into or between
optimal Goedel numberings can be computationally arbitrarily complex and that,
similarly, their S l-functions and the functions satisfying the recursion theorem
must be computationally arbitrarily complex.

2. Complexity classes of Goedei numberings. Let R and Pk denote the
recursive and partial recursive functions of k variables, respectively. For all g in

Pk + 1, let gi 2X[g(i,).
A (an acceptable) Goedel numbering, GN, is a recursive enumeration of the

partial recursive functions which satisfies the universal machine theorem and the
S, theorem [1], [2].

Thus a GN of Pk is a function b in Pk / such that for all g in Pk / there exists
a in R satisfying

g(i, Xl, x)., .’., Xk) gi(x1, x2, xk) bt(i)(x1, x2,

In this paper we are primarily concerned with GN’s for P1- Since we are
interested in those GN’s into which all others can be easily translated, we will
define complexity classes of GN’s in terms of the computational complexity of
translations from other GN’s.

Note that in actual translations from one programming language into
another, the translations are mapping sequences over finite alphabets into other
sequences over a finite alphabet. Thus we will view an index in a Goedel number-
ing as the binary sequence representing and express some of our results in terms
of operations on sequences. It should be noted that the whole treatment can easily
be transcribed to the convention that we are indexing algorithms by the set Z /,
and thus avoid some of the technical difficulties of mixing integers and their binary
representations.

DEFINITION. For any GN q51 of P(4)(i, x) qSi(x)) and every O in P2, a
translation of into q51 is a recursive function a such that

O(i, x) q51(a(i), x))c(i)(x).
We will denote translations by writing a: O bl.

ON SIMPLE GOEDEL NUMBERINGS AND TRANSLATIONS 3

DEFINITION. Let C be any class of recursive functions. Then

GNC {q511q5 is a GN and (V in P2)(o" in C)Ea:g, 4)’]}.
Thus GNC consists of those GN’s into which all other GN’s can be translated

by functions from C. Usually we will let C be some well-known class of functions
of bounded computational complexity.

For example, let GNReg denote the class of all GN’s into which all other
GN’s can be translated by finite automata mappings (i.e., deterministic gsm
mappings [6]). We refer to these as regular GN’s.

Similarly, let C- Prfx and C Pstfx denote, respectively, the class of
functions which prefix and postfix a fixed string to the representation of i. That
is, a, is in Prfx iff there exists w such that for all i, or(i) wi. We refer to GNPrfx and
GNPstfx as prefix and postfix GN’s, respectively.

The class GNLBA consists of all those GN’s into which other GN’s can be
translated by deterministic linearly bounded automata mappings [6].

It should be observed that several programming languages and many natural
GN’s belong to GNReg and GNPrfx. Intuitively speaking, every GN or formal
programming language in which we can "freely" program is in GNPrfx, since for
any other GN if, we just have to use a prefix w with the meaning: "This is a descrip-
tion of GN if; what follows is a description of an index i; please compute ffi."
Thus or(i) wi will be the desired translation of ff into

Next we prove formally that postfix GN’s exists. The postfix GN exhibited
is the same as used by Schnorr [53 to show that there exist optimal GN’s.

A GN q5 is said to be optimal iff, for every GN if, there exists a positive constant
c and a translation cr of ff into q5 such that for all i, or(i) __< c-i. We denote the class
of optimal GN’s by GNOpt.

THEOREM 1. There exist postfix GN’s, and proper containment exists between
the following classes ofGN’s as indicated:

GNPstfx GNReg = GNLBA GNOpt.

Proof. Let (/)2 be any GN of P2 and let g(i n) i2"+ _[_ 2" 1. The pairing
function g is a bijection, and if we interpret it as mapping sequences into sequences,
where is the binary representation of the ith integer and 1" represents the sequence
of n ones, we get g(i, n) i0(1"). Thus 2i[g(n, i) is a postfix function for every n,
and therefore qSo,,i)(x), given by

q2[i, n, x] b[g(n, i), x] qbon,i)(X),

is a postfix GN.
It is seen from the definitions that

GNPsfx

GNReg

_
GNLBA

GNOpt.

To show that the containments are proper requires more work, but the proof that

GNPsfx GNReg GNLBA

follows by a reasonably straightforward construction, which we do not give here.

4 J. HARTMANIS AND T. P. BAKER

The proof that GNLBA c GNOpt follows from two observations"
1. From the definition of GNLBA, we know that any other GN can be

translated into any q5 in GNLBA by a deterministic linearly bounded automaton
[6]. Thus these translations are all in the complexity class of L(n) n tape-bounded
Turing machine computations [4].

2. The proof of Theorem 10 ({}3) shows that for every recursive L(n) there
exists a GN q5 which cannot be translated into a in GNOpt by any L(n) tape-
bounded Turing machine.

Thus GNLBA c GNOpt, which completes the proof.
In [5] it was shown that q5 is in GNOpt iff q5 admitted an S-function which is

linearly size bounded in the second variable, i.e., for every n there exists a c such that
for all i, 2i[S](n, i)] < c. i. A simila.r proof shows our next result.

THEOREM 2. A GN q5 is in GNPrfx, GNPstfx, GNReg and GNLBA iff q5
admits an Sl-function which is, in the second variable, a prefix, postfix, gsm or linearly
bounded automaton mapping, respectively.

Proof. We give the proof for a GN q5 in GNReg.
Let b be a GN of P1, qS,2 a GN of P2 and S such that for all n, i, x,

dp2,(i, x)

and assume that for any fixed n, Sl(n, i) is a gsm mapping. Then for any other GN
of P1, there exists an no such that the numbering is given by Oi(x) 2)no(1, X).

But then

.o,,(x) .o(, x)

and we see that a 2i[S{(no, i)] is the desired gsm translation.
Conversely, if GN b is in GNReg and b is the GN of Theorem 1, then there

exists a gsm mapping a such that

pao,qfn,i)(X) ofn,i)(X) b2(i, n, x).

Since g (defined in Theorem 1) is a postfix translation for any fixed n, a g(n, i) is a
gsm mapping. Thus 4 admits Sl(n, i) a g(n, i) as an S]-function which is a gsm
mapping in the second variable. The other cases follow by an identical argument.

Next we show that those GN’s into which all others can be easily translated
have easily computable recursion theorem fixed points.

We recall that by the recursion theorem [2], for every GN q5 of P1 there exists
a recursive function n such that for all z,

TIeORZ 3. If qb is in GNPrfx, GNPstfx, GNReg or GNLBA, then there exists
a prefix, postfix, gsm or lba mapping n, respectively, such that for every z,

49n(z) 4,=[n(z)l"

Proof The proof follows the standard proof of the recursion theorem [2].
Define

(u, x) qS+u(,)(x if qS,(u) converges else divergent.

ON SIMPLE GOEDEL NUMBERINGS AND TRANSLATIONS 5

Let g be a recursive function (translation) such that O(u, x) cko(,)(x). Thus for
4, total, we have

u(z, x) +
Define

g(x) if q5 g(x) converges else divergent

and let h be the recursive function (translation) such that/t(z, x) h(z)(X). Thus for
b total, we have qSh(z) b g. By combining these equalities, we get for all z
such that q5 is total,

(Dooh(z))dph(z)[h(z) DpztOoh(z)]

Thus by setting g h(z) n(z), we get that

b4z[n(z)] Pn(z)"
Furthermore, since g and h are translations, we can choose them to be prefix,
postfix, regular, or lba mappings, respectively, and therefore n g h will be a
mapping of the same type, as was to be shown.

Schnorr has shown that the optimal GN’s are all isomorphic under linearly
size bounded mappings. Thus, in a mathematical sense, they form a natural class
of GN’s.

For the prefix and postfix GN’s, we know that they cannot be isomorphic
under prefix and postfix mappings, since these mappings are (but for the trivial
case) proper into mappings. On the other hand, our next result shows that they are
isomorphic under gsm mappings. Thus they form classes of GN’s which are very
similar in a computational sense.

THEOREM 4. Let and . be in GNPrfx or GNPstfx. Then there exists a permu-
tation rc such that rc and re-1 are gsm mappings, and

dp d#() and

Proof We give the proof for GNPrfx. Let w and v be the prefix sequences
which translate q5 into and into qS, respectively. Then

1(1 + 0)* {(wv)kz]k 0, 1, 2,... and z w(0 / 1)*}

U {w(vw)kzlk 0, 1, 2,.-. and z v(0 + 1)*}

{v(wvfzlk 0, 1, 2, and z

U {(vw)zlk 0, 1, 2,... and z v(0 + 1)*}.

Define

[(wv)z] v(wv)z

[w(w)z] (w)z

fork=O, 1,2,...andzCw(O+ 1)*,

for k 0, 1, 2,.-. and z q v(0 + 1)*.

Wesee that rcisa permutation ofthe set 1(0 + 1)*, and since qSi qSw and qSj
we see that for j (wv)’z, j 4vj b(j)and for j w(vwfz, dp(w)kz w,w)kz,
and therefore bj 4(,w)kz bj). Finally we note that a finite automaton can

6 J. HARTMANIS AND T. P. BAKER

perform the permutation re. The arguments for re-1 can be carried out similarly,
which completes the proof.

It should be noted that in the previous proof, the finite automaton computing
rt either prefixed the sequence v or removed the sequence w. A restricted regular
mapping is a finite automaton mapping which can only prefix a fixed string or
remove a fixed string from the input sequence. We call the GN’s into which all
other GN’s can be mapped by such mappings restricted regular GN’s. We conjec-
ture that the restricted regular GN’s are all isomorphic under restricted regular
mappings. Unfortunately, so far we have not been able to prove this conjecture.

We also conjecture that regular GN’s are not isomorphic under finite
automata isomorphisms. Again, we have not been able to prove this simple
sounding conjecture.

We can prove though that the complexity of the isomorphisms between
GN’s in GNReg or GNLBA, respectively, are of bounded computational
complexity, and in the next sections we will see that this is not true for GNOpt.

To do this, we will prove a more general result which holds in all computational
complexity measures. For this purpose we recall [4] that a computational complexity
measure is given for a GN b by assigning to every algorithm b a step counting
function Oi such that:

1. for all and n dpi(n is defined iff i(n) is defined;
2. it is recursively decidable for all i, m, n whether i(n) m.
For a computational complexity measure, denoted by (4,) or just , we

define for every recursive function a complexity class

C*, {flf is a recursive function, for some f 4i and ooi(n <= t(n) a.e.}.

Note that the complexity classes are not changed if we change the GN on which
the computational complexity measure is defined. Thus quite often we will not
explicitly mention on what GN the measure is defined.

Let GNC denote all the GN’s into which all other GN’s can be mapped by
mappings in complexity class C.

THOIEM 5. For every computational complexity measure , there exist
infinitely many different classes of GN’s GNC.

Proof. By a straightforward diagonal argument, we can construct for every
recursive and GN b another GN , such that b cannot be translated into
by any function in C.

THOIZM 6. For any computational complexity measure and in R a, there
exists a t’ in R such that the isomorphisms between GN’s in GNCcan be chosen
from C*t.

Proof. We only outline the proof. Let q5 and be two GN’s and qS a and

4 P be two translations of q5 into q5 and q5 into b, respectively. Then we know
from the proof of the isomorphism theorem for Goedel numberings [1] that the
index of the isomorphism 6 yielded by the theorem (i.e., a 1-1 translation of
onto b) is given by a recursive function g ofthe indices of bi and bj, that is, 6
It is easily seen that there exists another recursive function h such that the computa-
tional complexity (I)0(,j) of the isomorphism 6 40(,j)is bounded by

(Do(i,j)(X) (/)h(i,j)(X) a.e.

ON SIMPLE GOEDEL NUMBERINGS AND TRANSLATIONS 7

Furthermore, h can be so chosen that

implies that

i(x) and j(x) =< k(x) a.e.

@o(i,j)(x) <= dp(,)(x) a.e.

From this it follows that for any two GN’s q5 and in GNCk, there exists
an isomorphism 6 between q5 and such that di is in C as was to be shown.

Recall that a recursive operator (say, in one variable) on the partial recursive
functions is given by a recursive function f’N - N such that b b implies that

It is easily seen from the previous proof or from [1] that the isomorphism
is yielded by a recursive operator from the two translations cr qb and p bj

between the GN’s q5 and b. The operator is defined by the recursive function g.
Similarly, the recursive function h, yielding the complexity bound

oi,2)(x) <= qbn(i,2)(x) <- 4)hk,)(x) a.e.,

can be viewed as a recursive operator. Thus we see that the computational
complexity of the isomorphism di is bounded by a recursive operator in the
complexity of the two translations.

When we combine this observation with the operator gap theorem [3] we get
a result obtained jointly with K. Mehlhorn.

COROLLAIV 7. For any computational complexity measure q, there exist
arbitrarily large in R such that any two GN’s in GNCt* are isomorphic under a
permutation in C*

Proof. Let be the recursive operator yielded by the isomorphism theorem.
Then there exists a recursive operator which bounds the complexity of the resulting
isomorphism in terms of the complexity of the two into mappings; denote it by ".
Then from the operator gap theorem [3], we know that there exists arbitrarily
large recursive such that

Ct,X, C,[t

Thus all GN’s in GNC are isomorphic under mappings in C*t, as was to be shown.
It should be stated again that it would be very interesting to find some natural

complexity classes of Goedel numberings, say GNC, such that all the GN’s in
GNC are isomorphic under permutations in C. For example, we conjecture that
GNLBA is closed under lba isomorphisms.

We describe one reasonably natural class of Goedel numberings which is
closed under isomorphisms of the same type.

Let GNPTIME denote the class ofGN’s into which all others can be translated
by deterministic Turing machines whose computation times are bounded by a
polynomial function of the input (index) (i.e., the index, not the length of the
representation of the index !)

The following result is due to R. Constable.

8 J. HARTMANIS AND T. P. BAKER

THEOREM 8. Any two GN’s/n GNPTIME are isomorphic under a polynomial-
time bounded Turing machine computable mapping.

Proof The proof is by a lengthy and careful estimation of run times in the
proof of the isomorphism theorem [1].

A somewhat more natural (and better known) class of GN’s would be the
class into which all other GN’s can be translated by Turing machines whose
computation times are bounded by a polynomial in the length of the input (index).
Unfortunately, the previous proof does not extend to this class of Goedel number-
ings. We conjecture that the answer is positive.

We conclude this section by showing that for any GN b we can give a
recursive function which bounds the complexity of translations from all other
GN’s into b 1. Furthermore, there exists for every fixed GN (])1 a recursive function
and a translation from every other GN into (])1 such that bounds the length

of the translated index to the length of the index.
THEOREM 9. Let be any computational complexity measure and dp a fixed

GN. Then we can recursively obtain from an index of dp indices for two recursive

functions s and such that for any GN b there exists a translation a: d? --->)1 SUCh
that a is in C and]a(i)l =< 11(i)1 a.e.

Proof. Let be a prefix GN and let ao be a translation mapping , into b 1.
Then for any GN b there exists a sequence w such that a(i) wi is a translation
of 4) into p. But then ao a(i) ao(wi is a translation of into 4)x. To obtain the
functions s and l, let Eo(Wi be the step-counting function of the computation
ao(Wi in the complexity measure and define

s(i) max {Eo(wi)},

and similarly,

l(i) max {]ao(wi)l}.

Clearly, for every b there exists a translation a’b ql such that a is in C and
la(i)l -<_]/(i)l a.e., as was to be shown.

3. Complexity of optimal Goedei numberings. In this section we show that the
computational complexity of translations into optimal Goedel numberings
cannot be recursively bounded. Actually we will show that for any GN b, there
exist optimal GN’s such that the translations from b into these optimal GN’s
must be arbitrarily complex. Similarly, we will show that for optimal GN’s the
computational complexity of the S-function and the function n of the recursion
theorem cannot be recursively bounded.

THEOREM 10. For any computational complexity measure (qS,) and recursive

function t, there exists an optimal GN #t into which d2 cannot be translated b.v any
a in Ct

Proof. Let Z be an optimal GN. We will obtain p from Z by a recursive
permutation which will not move any index upward by more than one place.
Therefore p will also be an optimal GN. The construction of is obtained by
diagonalizing over all possible t-bounded a.

We know that for sufficiently large recursive T, the complexity class C can be
recursively enumerated [43. Thus we can assume that ()k,’ (])k2’)k3’ is an

ON SIMPLE GOEDEL NUMBERINGS AND TRANSLATIONS 9

enumeration of the functions in C’r, or choose a larger complexity bound T with
an enumerable complexity class.

Let qSjl, q5h, b3,... be a recursive sequence of constant functions such that
4(x) k.

We now define the stages in the computation of @.
Stage 1. Let 1 ZI"
Stage i. By the ith stage, let 1, 2,’", N, be defined. We define ,,

Ni < J <= Ni+ a, as follows: compute bk,(j dovetailed for j N + 1, Ni + 2, ...,
until

(a) c/),,(.j) > N and qSj(1)converges, or
(b) O,,(Jl) <= N for more than N distinct values of (where Jl is from the

enumeration of 4j,, 4j,"").
This computation is eventually halted by (a) or (b). In case (a), let n

Let q be the first p greater than n for which Zp(1) qj(1) gotten by dovetailing the
computation of Zp(1) for p j + 1, j + 2, Let N+ q. We want
so we define Op Zp for p < n, , Zq, and 0p Zp-1 for n < p =< q, (e.g.,
see Fig. 1.)

N n q Ni

FIG.

In case (b),let Ni+ Ni + and ON,+ ZNi+ and proceed to Stage + 1.
If qS, translates b into , then we would have

bp
for all p. This is not the case if the computation was halted by (a), because of the
definition of. In case (b), at least two different Jl,J, exist such that b,(jl b,(j=),
but then

/4k,(J) O4,(J,,) and 4,
an inconsistency. Thus we see that no b from C* can translate q5 into the optimal
GN O, as was to be shown.

Next we show that optimal GN’s require computationally arbitrarily complex
Sl-functions.

THEOREM 1. For every computational complexity measure b and recursive

function t, there exists optimal ON 4 such that for no Sl-function is 2i[Sl(n,
for all n.

Proof. Using the previous result we construct two optimal GN’s qb and b such
that cannot be translated into q5 by a mapping in C. Let S be defined for 4.
Then for some no, 42(no, i, x) (i, x), and therefore

q2(n0, i, x)-- 4)sl (no,i)(x) i(x).
But then a 2i[Sl(no, i)] is a translation of into qS, and therefore 2i[Sl(no, i)]
is not in C*t, as was to be shown.

10 J. HARTMANIS AND T. P. BAKER

Similarly, we show that optimal GN’s require arbitrarily complex functions
satisfying the recursion theorem.

THEOREM 12. For any recursive function and complexity measure (dp, 0),
there is an optimal Goedel numbering d/ such that every function dpk satisfying the
recursion theorem condition" for all j,

is of complexity greater than t.

Proof. We define the desired inductively, diagonalizing over all the possible
t-bounded q5k.

Without loss of generality, we may assume that b is an optimal Goedel
numbering. If it is not, we may construct another complexity measure (th’, O) with
the same complexity classes such that qS’ is an optimal Goedel numbering" start
with an optimal Goedel numbering Z (we know there are infinitely many of these);
let bj Zj) for every j, where a is a recursive isomorphism from

Let qSjl, bj_, be a recursive subsequence of consisting of the constant
functions dpj,(x)= 2(x)(i), Ji > + 3. q5 must have such a recursive subsequence
by the S, theorem.

Let

p(n) min {Jjclc > n} and q(n) min {Jjdld > p(n)}.

Note that these are both recursive functions and that they are indices in q5 of
constant functions which compute indices in q5 of other constant functions. For
any n, suppose)p(n)- ,(X)(a), (/)a 2(x)(b), qSq,)= 2(x)(c), and q5 2(x)(d);
then

n < a < b < p(n) < c < d < g(n).

Since for sufficiently large the functions of complexity can be recursively
enumerated, we assume without any loss ofgenerality that bkl, qSk2, is a recursive
enumeration of the functions of complexity t.

will be defined as a recursive permutation of b in which no index is increased
by more than three, so there will be no question about , being an optimal Goedel
numbering. We assume that ’x, ’2,’", ’N, are defined by the ith stage and
proceed to extend the definition to IlNi + 1,’’’, IlNi+ X" Let k k and N Ni.

Compute dpk(.j and 4S,(dpk(j)) for N + 1, N + 2, ..., until one of the following
cases holds. In each case, , is defined for certain critical indices so that for some j,

Case 1. If)k(.Jm)-- Ck(), m > N, and > j,, + 3, let ’.i,
’m bptj,,), ,j, qSj,,, and Ni+ q(Jl). Then

Case 2. If k(Jl) Jl, let ,S, 2(x)(a) qSp(jl), a (/)a and Ni+ q(A).
Then

lljl(qk(jl)) Ja ()a #)P(JI) JJ!

ON SIMPLE GOEDEL NUMBERINGS AND TRANSLATIONS 11

Case 3. If (/)k Jl) l, let 1 --()q(jt)’ [/Jj! 2(x) (a) Cv(J,), k, ,, and
Ni+ q(Jt). Then

Case 4. If qSk(./)-l, -Jl, > N, and m max (it, ckk(jl)), let ifj, OSj,,
(p(m), I]t dpk(j) Dq(m), Ni + q(m). Then

Furthermore, j is defined for all other j (N < j <= Nz+t) to be bj,
or 4j-3, shifting the indices as little as possible;i.e.,

for j N + until N + do
if (ffj not yet defined)
then ffj (I)min liI4 not yet used to define any q&}.

For example, in Case we have Fig. 2.

N

FIG. 2

To see that this computation must halt, suppose Cases 1, 2 and 3 fail for every
> Ni. It follows that Case 4 succeeds for large enough l, since"

4,,,(j,)-=

Pk(Jl) g Jt

Thus for no bk in C* can we have that

(by Case 3)

(by Case 2)

(because (qSk(jt) _<_ N for a.e. 1) Case 1).

as was to be shown.

REFERENCES

Eli H. ROGERS, JR., Goedel numberings of partial recursive functions, J. Symbolic Logic, 18 (1971),
pp. 444-475.

[2], Theory of Recursive Functions and Effective Computability, McGraw-Hill, New York,
1967.

[3] R. L. COYSTABLE, The operator gap, IEEE Conference Record of 1969 Tenth Annual Symposium
on Switching and Automata Theory, 1969, pp. 20-26.

[43 J. HARTMANIS AND J. E. HOPCROFT, An overview of the theory of computational complexity, J.
Assoc. Comput. Math., 18 (1971), pp. 444-475.

[5] C. P. SCHYORR, Optimal enumerations and optimal Goedel numberings, Math. Systems Theory, to

appear.
[6] J. E. HOPCROFT AND J. D. ULLMAN, Formal Languages and Their Relation to Automata, Addison-

Wesley, Reading, Mass., 1969.

SIAM J. COMPUT.
Vol. 4, No. 1, March 1975

REALIZATION WITH FEEDBACK ENCODING. I:
ANALOGUES OF THE CLASSICAL THEORY*

DENNIS P. GELLER"

Abstract. For a finite state machine M to realize a machine M’, we usually precede Mby a memory-
less input encoder to translate inputs intended for M’ into the input alphabet of M. In this paper we
introduce a modification to this paradigm by introducing feedback from the state of the realizing
machine to the input encoder. The resulting form of realization depends in a very strong way on
(graph) structural properties of the two machines. The characterization theorem, giving necessary and
sufficient conditions for one machine to realize another in this way, involves a new class of mappings
between digraphs. We also investigate a corresponding algebraic structure theory.

1. Introduction and definitions. A major concern of classical automata theory
has been the realization of either the state behavior or the input-output behavior
of machines. The main thrust of the research has always been to realize the given
machine by a loop-free network; that is, by a network for which the digraph
obtained by taking the modules as points and the flow lines between them as
directed arcs has no directed cycl6s. In such a network there is no feedback, except
possibly within modules.

As noted by Holland 83, "feedback is a prominent structural feature of most
systems which exhibit complex behavior". Nevertheless many networks can be
modeled by cascades, i.e., feedback-free networks. The modules of the new net-
work are taken to be the strong components of the original network (see, for
example, 13-]). This construction, of course, greatly increases the complexity of the
component modules.

There are advantages both to excluding and including feedback in networks.
On the one hand, there is a large body of techniques available for analyzing feed-
back-free systems and also for deriving feedback-free realizations of a given be-
havior 6, On the other hand, a feedback-free realization can be artifactual: it
often consists of merely masking those parts of the network with feedback, the
strong components, and considering them as "black boxes". We thus have a
trade-off between simplicity of the components and simplicity of the interconnec-
tions. It is certainly to be expected that by restricting in some way the form that
feedback is allowed to take, we can strike a suitable balance between the two
extremes.

Thus one motivation of the study we are about to undertake is the desirability
of defining a restricted form of feedback which will prove tractable in both theory
and application. Another is the following. Suppose that we have some given state
behavior which we want to realize by a sequential machine. If the behavior is so
realizable, then, in fact, techniques exist for doing this in an optimal way. However,
it is often the case that additional restrictions are placed on the realization. For

Received by the editors January 18, 1973, and in final revised form March 7, 1974.
q" Human Sciences and Technology Group, School of Advanced Technology, State University

of New York at Binghamton, Binghamton, New York 13901. This research was supported in part
by the National Institutes of Health under Grant GM-12236 and in part by the National Science
Foundation under Grant GJ-519.

12

REALIZATION WITH FEEDBACK ENCODING 13

example, one might want the realizing machine to be expressible as a cascade of
modules from a well-defined set. This, of course, has been studied by Zeiger [12],
Krohn and Rhodes [9] and others. In general, it turns out that the behavior of the
cascade which is dei’ived properly includes the desired behavior. For another
example, take the fault diagnosis problem. Here we might want a realizing machine,
for example, which, if it fails in some way, allows us to determine the cause or
location of the fault, or perhaps even to correct it. Even the simplest fault diag-
nosis properties cannot, in general, be incorporated into the reduced machine
which realizes the given behavior, and it is usually necessary for the realizing mach-
ine to have more states or inputs (and thus, more state circuitry) than the reduced
machine. A second motivation for the study to follow, therefore, is to develop a
form of realization which will allow us to add additional constraints and at the
same time will not cause the same state set growth as the classical theory.

A machine, or finite-state automaton M, consists of a set Q of states, a set I of
inputs, where both Q and I are finite, and a map 6"Q x I ---, Q. We will often omit
explicit reference to 6, and write instead 6(q, i) qi. Of course, 6 can be extended
to have domain Q x I+, where I + is the set of all nonempty strings from I. We
say that a machine M realizes a machine M’ if there are maps q’Q onto, Q, and
h" I’ onto, I such that for all q Q, x’ I’, 4(q)x’ d(qh(x’)). The map h is called
the input encoder, and b is a homomorphism or SP-homomorphism. If b is one-to-one,
then it is an isomorphism. A machine M simulates a machine M’ if there are maps
b’Q Q’ and h" I’ - I + such that dp(q)x’ d(qh(x’)).

A Mealy machine M (Q, I, (5, 2, Y) consists of a machine (Q, I,) together
with a finite set Y of output symbols and an output function 2"Q x I --. Y. If for
any states q and q2 and any inputs x and x2, qlXl q2x2 implies that 2(q, Xl)

2(q2, x2), then the output is a function of the next state, and we will write
2(q, x) 2(qx); such a machine is a Moore machine. We can extend 2 to have do-
main Q x 7 + in two ways. First, if x=y21eI+, where XleI, then 2(q,x)

2(q,xl). On the other hand, fl’Q x I+ Y+ is the map fl(q,x
2(q, xl)2(qx,xz)... 2(qx X,_l,X,). For a Moore machine, the last ex-

pression is.fl(q, xa... x,)= 2(qx)2(qxx2)... 2(qxlx2... x,). It is common,
instead, to write fl(q, Xl... x,)= 2(q)2(qxl)... 2(qxl... x,)(see [1, p. 79]). We
will be ignoring the output 2(q) of the starting state to facilitate later theoretical
analyses, although one could certainly take advantage of this information in
practice.

If M and M’ are machines with output, then M realizes M’ if there are maps
b’Q onto. Q,, h’I’ onto, I, g’Y Y’ such that b(q)x’ c/)(qh(x’)) and 2’(qS(q), x’)

g(2(q, h(x’))).
Given machines M and M2, let Z be a map Z’Q1 x I I2. The cascade

Ma z M2 with connecting map Z is a machine M with Q Qa x Q2, 1 11,
and (qa, qz)xl --(qlxl, qzZ(ql, xl)); we say that M is the front component and
M2 is the tail component.

The operation of cascading machines is, in general, not associative. On the
other hand, if we write M ozlM2 ozzM3, we can remove the ambiguity by
completely specifying the maps Zi. If we have a cascade M of n machines Mi, we
can write M 1-[Mi N z N2, where, in general, both N and N2 can be speci-
fied as cascades of the M.

14 DENNIS P. GELLER

A digraph D consists of a set V V(D) of points together with a collection
(repetitions permitted) X X(D) of ordered pairs, called arcs, from V x V. If
uv (u, v) is an arc, we write uv D and say that u is adjacent to v, v is adjacent
from u, uv is incidentfrom u and incident to v. A graph G consists of a set V of points
together with a set (repetitions not permitted) X of unordered pairs of points,
called lines. If there is a line between u and v, we denote it by uv or vu. Two digraphs
D and E are isomorphic (D E) if there is a one-to-one correspondence between
their point sets’ which preserves adjacency. Such a correspondence between
V(D) and V(D) is an automorphism of D.

A walk in a digraph is a sequence W (xl, "", x,) of arcs, where x ui_ lui.
We may abbreviate this and write W UoUl...u.. A digraph D is strong, or
strongly connected, if there is a walk W v v,vl such that each point of D
appears at least once as one of the vi.

In much of what follows, we will be dealing with maps between digraphs.
Although it will be convenient to treat these as mappings between the point sets
of the digraphs, we will provide a slightly unconventional definition (see [3]).
The reflexive closure DR of a digraph D is the smallest superdigraph of D which
has a loop at each point. For a point u D let (u) be the set of arcs incident from
u, and let (u) be the set of arcs incident to u. Given digraphs D and E, by a mapping
from D onto E we will mean a mapping qS:X(D) X(ER) which is onto X(E) and
which satisfies: for each u V(D) there is a u’ V(E) such that qb(o(u)) o(u’)
and b((u)) (u’). A consequence of this definition is that b can be considered
as a map from V(D) onto V(E), and it will at times be convenient to do so. A
mapping b’D--, E is said to be walkwise (see [10]) if for every walk (x’l,x’2,
-., x’,) in E there is a walk (Xl, x2, "", x,) in O such that dp(xi) x’i.

A mapping q5 :D --. D’ is an admissible homomorphism, or admissible, if when-
ever qS(u) qS(v) and uw O there is a point such that v O and qS() qS(w).

THEOREM 1. Every admissible homomorphism is walkwise.
Proof Let qS" V(D)--, V(D’) be admissible, let W’= w’l w’, be a walk in

D’, and suppose that w’ w’,_ has a walk preimage ul u,-1. Since
w’,_ lw’, e O’, there are points w,_ ok- I(W’ 1) and w, e qS- l(w’,) such that
w,_ w, e D. But then, by admissibility, since b(u,_ 1) b(w,_ 1), there is a point
u, in D such that qb(u,) b(w,) w’, and u,_ u, e D. Therefore u u, is a walk
in D, and the result follows by induction. 71

If M (Q, I, 6) is a machine, the digraph D(M) ofM has for its points the set
Q and for its arcs the collection of arcs uv such that for some x I, ux v; if there
are n inputs xi such that ux v, then there are n arcs from u to v. Note that this is
not quite the same concept as the state-transition graph or diagram (see [2, p. 72]),
in which the arcs are labeled with input symbols and, when the machine has out-
puts, the output symbols also appear as labels either on the lines (for a Mealy
machine) or on the points (for a Moore machine).

2. Realization with feedback encoding. Let M (Q, L 6) and M’ (Q’, I’,
6’) be machines, and let h: Q 1’4 1 be a map such that for each q Q the map
h(q,.)= hq:I’- I defined by hq(x’)= h(q,x’) is one-to-one and onto, and let
(D:Q ntt" Q" Then M realizes M’ with feedback encoding if for all q Q and all
x’ I’, qS(q)x’ qh(qh(q, x’)).

REALIZATION WITH FEEDBACK ENCODING 15

As in classical realization, the function h encodes inputs for M’ into inputs
for M. In this case, however, the machine exerts a measure of control over the
encoding process by making the encoding dependent on the current state of the
machine. For a simple example, let M and M’ be the machines in Fig. 1. If 4(qi) ri
and h is defined by the table

h a b

ql 0
q2 0

then M realizes M’ with feedback encoding.
We first show the necessity of the one-to-one restriction on the feedback

encoder h.

b a b

a

M M’

FIG.

THEOREM 2. Let M’ (Q’, 1’, 6’) be any machine, and let M (Q, I, 6 be
a machine such that

(i) IQI >_-IQ’I,
(ii) for each qi Q there is an input x such that for all qj Q, qjx qi.

Then there are maps c’Q onto, Q, and h’Q I’ I such that for all q Q
and x’]’,

qS(q)x’ dp(qh(q, x’)).
Proof Let b be any map from Q onto Q’. Then if qS(qi)y’= qS(qj), define

h(qi, y’) to be the reset input xj; there may be many states qj for which b(qj)
(q)y’, and any one of these may be chosen. Then for any q Q and x’ I’,

c/)(q)x’ d/)(qh(q, x’)).
In other words, without the one-to-one and onto restriction, we could model

any machine by a reset machine, whose transition function is independent of its
present state, by, in effect, lumping all the behavior into the h map. While it is often
desirable to transfer some of the complexities of a machine to a combinatorial
circuit in this way, there is a (perhaps ill-defined) point at which it becomes fatuous"
if our purpose is to study the complexities of sequential machines, i.e., machines
with memory, it does us no good to define a canonical form in which all the
complexity resides in a memoryless component.

Often we wish to realize a machine M’ by a submachine of another machine
M. In the present context this can be done by choosing a subset of I and restricting
h so that for each q, hq is a one-to-one map onto].

THEOREM 3. Let M3 realize M2 withfeedback encoding, and let M2 realize M
with feedback encoding. Then M3 realizes M with feedback encoding.

Proof Let the realization of M2 by M3 be defined by q" Q3 - Q2 and g: Q3
x I2 -- I3, and that of M by M2 be defined by qS" Q2 Q and h" Q2 x 11 I..
For any q3 e Q3, let q2 be q(q3) and let q be (q2)" For any x e la,

16 DENNIS P. GELLER

qlXl dp(q2h(q2, x1)). But h(q2, x1) 12, so d/)(q2h(q2, x1) d/)(trff(q3g(q3, h(q2,
Xl)))). Let z be the composition tho q and define f’Q3 11 --+ 13 by f(q3,xl)

g(q3,h(W(q3),Xl)). If we can show that for each q3 Q3 the mapfq’I --+ 13 is
one-to-one and onto, then r andfwill define a realization with feedback encoding
of M by M3.

For each q3 and each x3 e 13, we know that there is an x2 e 12 such that
g(q3,x2) X3 Also, there is an Xl e 11 such that h(trfl(q3),x)= X2 Thus
f(q3,x) g(q3,h(q(q3),x))= x3, and so fq3 is onto. Now, since fq(X)

g(q3,h(U?(q3),x)) and since both g0 and htI(q3) are one-to-one, it follows
immediately that fq is one-to-one.

The outdegree od(u) of a point u in a digraph D is the number of arcs uv in D;
a digraph is outregular if all its points have the same outdegree. The following
lemma is proved in [5].

LEMMA. Let qh’D - D’ be admissible, and suppose that D and D’ are both
outregular ofdegree d. Thenfor any u and v, the number n ofarcsfrom u to - x(qS(v))
is the same as the number n’ of arcsfrom dp(u) to 49(v).

THFOIZM 4. IfM realizes M’ withfeedback encoding, then there is an admissible
homomorphism from D(M) onto D(M’). Conversely, if there is an admissible homo-
morphismfrom D(M) onto D(M’), and if llI II’1, then m realizes M’ withfeedback
encoding.

Proof Let the realization be defined by maps qS"Q --, Q’ and h’Q I’ --, I.
Suppose that qS(u) 4(v) and that uw
such that v D(M) and qS() 4(w). Since uw o(m), there is an input x such
that ux w. Since h," I’--, I is onto, there is an x’ I’ such that h,(x’) x. Then
qS(u)x’ 4(w), so that qS(v)x’ 4(w).

Let vh(x’). Then qS() qS(w), and, since vh,(x’), v is certainly an
arc of D(M). Therefore, b considered as a map from D(M) onto D(M’) will be
admissible once we can verify that it is onto X(D(M)). Since M realizes M’ with
feedback encoding, if there is a single arc u’v’ D(M’), then this arc must have a
preimage arc in D(M). But if there is more than one arc between u’ and v’ in D(M’),
then there are inputs, say x’, ..., x, such that u’x’ u x2 u x v’.
Then for each u e b- l(u’), there are v 1, ..., v, such that uh,(x’i) vi and 4)(vi) v’
for 1, ..., r. Then each arc uv e D(M) is a preimage for one of the arcs be-
tween u’ and v’. While it may be the case that the v are not all distinct, since h, is
one-to-one we are assured that there will be r distinct arcs from u to points in
4-(v’). Thus, b" D(M) D(M’)is admissible.

For the converse, suppose q5 is an admissible map from D(M) onto D(M’) and
that]I1 [I’l. Let u be a state ofM and suppose that 4)(u)x’ w’. Since q5 is a map-
ping from D(M) to D(M’), there must be states fi and in m such that qS(fi) qb(u),
qS() w’, and fi e D(M), But then, by admissibility, there is a w e M such that
4(w) w’ and uw D(M). Thus we define h,(x’) to be that input x which induces
the arc uw. It is clear that once we verify that this assignment can be done so that
h," I’ I is one-to-one and onto, the pair (qS, h) will define a realization with feed-
back encoding. But the one-to-one and onto properties will be satisfied just when
the cardinality of the set of arcs from u’ to w’ is the same as the cardinality of the
set of arcs from u to points in qS- l(w’), and this follows from the lemma. Thus, M
realizes M’ with feedback encoding.

REALIZATION WITH FEEDBACK ENCODING 17

COROLLARY. If M isomorphically realizes M" with feedback encoding, then
D(M) is isomorphic to D(M’).

It is immediate that if M realizes M’, then M realizes M’ with feedback en-
coding. We thus have the following additional corollary.

COROLLARY. If q5 is an SP-homomorphismfrom M to M’ and/fill I’l, then
dp is an admissible homomorphismfrom D(M) to D(M’).

Hedetniemi [7] asked whether the elementary homomorphisms of autono-
mous machines, as defined by Yoeli and Ginzburg [11], are always walkwise.
That this is so follows from Theorem and the preceding corollary.

COROLLARY. Every SP-homomorphism is walkwise.
A number of properties of admissible homomorphisms are presented in [5].

One which is particulary surprising involves the notion of an admissible partition;
an admissible partition of a digraph D is a partition induced on V(D) by some
admissible homomorphism with domain D. Unlike the partitions with substitution
property for automata, each of which is, of course, an admissible partition, the
admissible partitions do not form a lattice. The join of two admissible partitions is
admissible, but the meet may not be. Referring to Fig. 2, z {uv; w1w3; WzW4}
and n2 {uv; waw4; w2w3} are admissible, but their meet rc r2 {fi-f; 2;
3 4} is not.

As in the classical theory, we can study realization of machines by cascades
of other machines, where, of course, the realization will involve feedback encoding.
The results will be seen to be generalizations of the results for realization without
feedback encoding.

Given an ordered n-tuple x (Xl, X2,... Xn5 define projj x to be the jth
element, xj.

THEOREM 5. Ira cascade M z m2 realizes M lsomorphically with feedback
encoding, then there is an admissible homomorphism from D(M) onto D(M1).

Proof Let the realization with feedback encoding be defined by maps qS:Q1
X Q2 Q and h:(Q x Q2) I --, 11, so that for any input x I and any state
(ql, q2) in Q1 x Q2, dp((qx, q2))x d?((q,q2)h((qa, q2),x)). Let p q5 -, and for
a state q e Q, let q(j) be the state projj p(q). Now, define an equivalence relation on
the states of Q by q =_ q’ if and only if q(1) q’(1).

18 DENNIS P. GELLER

Suppose that ql q2 and that for some x I, qlx q3. Let

and
$1 {projl P(qlY)IY e I} {ql(1)h(p(ql), Y)IY e I}

$2 {projl P(qzY)IY I} {q2(1)h(p(q2), Y)IY I}.

Since ql(1) q2(1) by hypothesis, and since {h(p(q.), Y)IY e I} {h(p(q2) y)ly e I},
it follows immediately that

S {ql(1)h(p(ql), Y)} {ql(1)h(p(q2), Y)} S2.

Thus there is some state q4 e Q and an input e I such that q2 q4 and q4(1)
q3(1); i.e., q4 q3" Thus projl p’Q --. Q1 defines an admissible homomorphism

from D(M) onto D(M).
This also follows from the Hartmanis and Stearns results [6], for M induces

an SP-partition on the cascade, and this converts to an admissible partition on M.
COROLLARY. If M’ is a submachine of a cascade M z M2 such that

{projl (q’)lq’ Q’} Q1 and if M’ realizes a machine M isomorphically with feed-
back encoding, where [I’l II11, then there is an admissible homomorphism from
D(M) to D(M1).

THEOgFM 6. Suppose there is an admissible homomorphism from D(M) to
D(M1), where II[- II11. Then there is a machine M2 such that M can be isomor-
phically realized withfeedback encoding by a submachine ofa cascade M z M2.

Proof Suppose that b is an admissible homomorphism from D(M) onto
D(M1). We must exhibit a machine M2 and a connecting map Z such that M z M2
isomorphically realizes M with feedback encoding. Now, the map b induces a
partition z on the states of M; suppose that there are r partition classes P and that
the largest of these contains s states. Number the states in each P as 1, 2, ..., n,
where ng __< s, and form a new partition r’ with s blocks B, where Bg consists exactly
of those states, at most one from each Ps, which were numbered i. Then each
state q e M can be associated with exactly one pair (P, Bj) of blocks such that
q e P CI Bs. Clearly, the blocks Pg are identifiable with the states of M1. We know
from Theorem 4 that there is a map h’Q x 11 --, I which is one-to-one and onto
and which, taken together with 4, defines a realization with feedback encoding of
M by M. We can represent the state of M associated with blocks P and Bj by
qij" Now suppose under some input x, qiSx qkm" Then d/)(qij)hii](x d/)(qkm).

Machine M2 will have the blocks B for its states. Now if qisx qk,, and
x’ h- l(x) we will want (Pi, Ba)x’ (Pix’, BsZ(Pi, x’)) (Pk, BaZ(Pi, x’)) (P,,qij

Bin). We already know that Pix’ P, so we must define M2 and Z in such a way
that BjZ(P, x’) Bm. Let M have r inputs y. If (P, Bj)x’ (P, B,), then in

M we define Bjy Bin; since not every pair (P, Bj) defines a state of M, this may
leave us with don’t-care conditions, which can be assigned arbitrarily. Now we
define Z(P, x’)= y, where Pix’= P. With these definitions, it follows that if

qijX qkm, then (P, Bj)x’ (PiX’, BjZ(Pi, x’)) (Pk, BjYk) (Pk, Bin). If p is the
map which assigns to (P, Bj) the state qij, then for each x I, P((Pi, Bs))x p((P,
Bj)h,)(x)). Thus if g’({Pi} x {Bj}) x I --, 11 is defined by g((Pi, Bj), x) h)(x),
then p and g will define an isomorphic realization with feedback encoding of M
by that submachine of M z ME consisting of the pairs of states (Pi, Bj) for which
P f B :/: el). V1

REALIZATION WITH FEEDBACK ENCODING 19

Combining these results, we have Theorem 7 as follows.
THEOREM 7. A machine M can be isomorphically realized with feedback en-

coding by a submachine M’ of a cascade M z M2, where II’l II1, if and only if
there is an admissible homomorphism from D(M) onto the subdigraph of D(M1)
induced by the states in {projl (q’)lq’ Q’}.

COROLLARY. A machine M can be isomorphically realized with feedback
encoding by a submachine ofa cascade M z M2 ifand only if there is an admissible
homomorphismfrom D(M) onto the digraph of a submachine ofM 1.

Having established Theorem 7, it is natural to investigate what happens if
the feedback to the h map in a realization with feedback encoding by a cascade is
from only one of the components of the cascade. Unfortunately, as we shall see,
there does not seem to be too much to say about such situations. Following
Fleck, et al. 2], if D(M) D(M’) we say that M and M’ are graph-isomorphic.

THZORZM 8. Let M and M be machines. Then M has an SP-homomorphic
image which is graph-isomorphic to M if and only if M can be isomorphically
realized with feedback encoding by a cascade M z m2 in such a way that the
encoding map h has domain Q1 I.

Proof If M is graph-isomorphic to an SP-homomorphic image M of M,
then in any isomorphic realization of M by a cascade M z m2, M can be re-
placed by M together with the appropriate feedback encoder, which of course
is independent of the state of M2

On the other hand, let the realization with feedback encoding be defined by
the maps b’Q1 Q2 Q and h’Q1 I--, 11. Let p projl b-1 be the ad-
missible homomorphism guaranteed by Theorem 5; p’Q Q1. For each state
q, write b-(q) (q(1), q(2)). Now, suppose that P(ql) P(q2), qlx q2 and
q3x q4. Then

qb((ql(1), ql(2)))h(ql(1), x) qS((q2(1), q2(2)))
and

qb((q3(1), q3(2)))h(q3(1), x) b((q4(1), q4(2))),

where q2(1) q(1)h(q(1), x) and q4(1) q3(1)h(q3(1), x). But since P(ql) P(q3),
it follows that p(qlx) p(q3x), so that p induces an SP-partition on M, and hence
an SP-homomorphism 05 to a machine M. When b is reinterpreted as a digraph
mapping, it is identical to p; thus M is graph isomorphic to/1.

We will give two examples to illustrate feedback encoded realizations by
cascades. In each example, there will be an advantage to using realization with
feedback encoding. In one example, there is no cascade realization without feed-
back encoding, while in the other, we present a cascade of a two-state machine and
a three-state machine; without feedback encoding it would be necessary to use a
cascade of a two-state machine with a four-state machine.

Example 1. Let M be the machine

M 0

5
2 6
4 3.
6 2
5
3 4

20 DENNIS P. GELLER

Notice that M has the SP-partition {15; 2346}. Consider the following two
machines and connecting map Z"

ml

ql

0 M

ql q2 rl
q2 ql r2

?’3

0 Z

r rx
r2 r3 q2

?’3 ?’2

0

0 1.
0

Then the cascade M z M2 is

MIoz M2

P1 qlrl

P2 qr2

P3 qlr3

P4 q2r2

P5 q2ra

P6 q2r3

qlrl el
qlr2 Pz
qlr3 P3
q-r3 P6
q2 P5
q2r2 P4

q2rl P
q2r3 P6
qzrz p,.
qlr2 P2
qlr P,
qlr3 P3

Under the maps b’P -+ and h,

m

P1

0

0
0

0
0
0

0

z M2 realizes M with feedback encoding.
Example 2. Let M2 be as in the previous example, and let M1 instead be

isomorphic to M2, with states {qi]i 1, 2, 3}. Under the connecting map

the cascade M Z M2 is"

x ifi - 3,
Z(qi, x)

1-x ifi 3,

Mlz M2

qlrl

q,r2

qlr3

qzrl

q2r2

q2r3

q3rl

q37.2

q3r3

0

qlrl

qr2

q2ri

q2r2

qgr3

q3r2

q3r3

q3ra

Now, with the maps c(qirj) 3(i 1) + j and

h(qir, x)
1-x

q2r2

q2r3

q2rl

q3r2

q3r3

q3rl

qrl

qlr2

qar3

ifjg= 3,

ifj 3,

REALIZATION WITH FEEDBACK ENCODING 21

the following machine M is isomorphically realized with feedback encoding by
M1 z M2"

M 0

5
2 6
4 3
4 8
5 9
7 6
8
9 2
3 7

However, in this case, M has no nontrivial SP-partitions.
It should be clear by this point that whether or not a machine M has an

isomorphic cascade realization with feedback encoding depends on the structure
of D(M). We will now strengthen this impression by giving a large class of families
F of digraphs such that if some cascade has a submachine whose digraph is in F,
then one component of the cascade also has a submachine whose digraph is in F.

Recall the following common notations. If integer n divides integer m, we
write nlm, and if not we write nXm. The greatest common divisor of a set {il, i,}
of integers is denoted (il, ..., i,).

The following simple result from number theory will be useful.
If (il, t, n) g, thenfor any r there is a solUtion to = wjij r (mod n)

if and only if
Now let D be a digraph with n points in which each point has outdegree t, and

suppose that there is an automorphism g of D which is an n-cycle; that is, for any
point v e D, the points v, g(v), gZ(t), gn- (V) are all distinct. Label the points by
choosing v arbitrarily and then setting vj gJ(Vo). Let S {ii, "’, i, lik <-_ ik+ },
where the arcs from Vo are VoV, VoVi2, "", l)ol)it.

LEMMA. (i) For any vj D, the arcsfrom vj are vjvj+il, vjvj+2, ,
(ii) Ifrain, there is a diagraphD’m(D) with rn points which is an admissible homo-

morphic image ofD and whose automorphism group contains an m-cycle.
Proof (i) If VoVik D, then gJ(vo)gJ(vk) e D; that is, vjvj + D. But this accounts

for arcs from vj, and there are only t.
(ii) Define D’m(D to be a digraph whose points are the m sets w {v, Vi+m,

Vi+ 2m, }, where wwj D’,,(D) if and only if there are v e w, va e wj such that
v,va D. The w, as subsets of V(D), are the orbits of the automorphism g"/".
Consider the map dp’D ---, D’m(D), which takes each vj to that set w of which it is an
element. If b(v) b(vj), then some power g* of g"/" maps v to vj. If viu D, then
g*(v)g*(u) vj.g*(u) D, and, since u and g*(u) belong to the same orbit of
dp(u) c(g*(u)). Thus q5 is admissible. V1

By (i), we completely specify the digraph by giving the number ofpoints, n, and
the set S. Thus, we write D D(i, i2,... it, rl). Also, if M is a machine with
D(M) D, then we write D’m(m for D’m(D).

THEOREM 9. IfM with digraph D(M) D(i, i, n) is a submachine ofa
cascade M z M2 and if the g.c.d.(ix, i n)= 1, then there is a machine M’m
with digraph D’m(M such that either (i) mln, rn > 1, and M’ is a submachine ofM, or

22 DENNIS P. GELLER

(ii) m n and M’m is a submachine ofM2

Proof Let M be a submachine of Ma z M2" By Theorem 7, there is an ad-
missible homomorphism 05 from D(M z M2) onto D(M)-- for the purposes of
this proof we will be concerned only with the restriction of q5 to M.

Assume first that Ib(M)l > 1. Note that M has digraph D(i,..., i, n), and
label its states cyclically as q0,"", q,-1. We will first show that unless q5 is an
isomorphism from M, for some (minimal) k > 0, qS(qo) (qk) and, for all < j <= t,

(qi) dp(qe + i)"
Let k be the smallest integer for which there is a state qi such that

b(q +)" by symmetry we can take 0, relabeling cyclically if necessary. Since
qo is adjacent to qfor each element s of the set F {i, ..., i}, it follows from the
admissibility of b that for each s F, 0(q) is equal to the image of some point
adjacent from q. Thus, by the lemma, for each _<_ r =< there is an s F such
that dp(qi) (q+). If, for each such r, s i, then the claim holds. Otherwise,
let =< R <_ be the smallest integer such that sn < n. Then dp(qi,, dp(q+,)
and, since sn n < 0, (k + sn) n < k, a contradiction to the minimality of k"
this verifies the claim.

Since 4)(qo) 0(q) and, for all s F, 0(q) b(q+), it follows by a simple
inductive argument that if wi +... + wi, then b(q) 0(q+), for any
nonnegative integers w. But (i, ..., i, n) by hypothesis, so that for any c
there is a solution to wi =_ c (rood n). It follows that for all c and d, b(q)

0(q+ a).
Finally, for c > b, b(q)= b(q) must imply that c b is a multiple of k.

For otherwise, we can write c b dk + f 0 < f < k, and conclude from the fact
that q(q)= 0(q+u) that b(q+u)= b(q), a contradiction to the minimality of
k since c (b + dk) =f< k.

Clearly k must divide n, for otherwise it follows from the preceding that all
points q.j would have the same image. Thus, D(ck(M)) - D,(M).

We consider now the case in which all points qj of M do have the same image
under b. We can write the states ofM as qj (q*, qj(2)), where q* qS(qo) and the
qj(2) are states of M2 which induce a submachine with digraph isomorphic to
D(M). This digraph is induced in the following way" if x is the input which takes qc
to qn in M, then the input which takes qc(2) to qn(2) in M2 is Z(q*, x). Therefore, in
fact, the states qj(2) induce a submachine of M2 which is isomorphic to M.

COROLLARY. If the machine M’m has D(M’m) D’m(M) D(j, ,j, m),
then (j a, j, m) 1.

Proof The parameter j for M,, is the residue of i modulo m; that is, 0 __< j
_< m 1 and j i (mod m). Now suppose g (j a, ..., j,, m). Then gJm and for
each k, glJ. But since j i (mod m), there is an l >= 0 such that i j + ml,
so that glib. Also, since glm and m]n, gin. Thus g](i,..., i, n). Hence g 1.

We now proceed to consider the complexity of cascade realizations, with
feedback encoding. These results are motivated by Zeigler’s [13] generalization of
the Burks-Wang conjecture. Up to now, we have been concerned only with cas-
cades of two machines, but it is clear that we can generalize our results to more
general iterated cascades.

Consider, for example, Theorem 9. Suppose that M, as defined in the theorem,
is a submachine of a cascade I-I N. Generalized cascade is a binary procedure, so

REALIZATION WITH FEEDBACK ENCODING 23

we can find the major connective and write 1-I Ni L1 zl L2" The theorem
guarantees the existence of a machine M, in either L or L2 Since the parameters
for M, satisfy (Jl, ,Jr, m)= 1, if that component of the cascade L1 z L2
which contains M, is itself a cascade, we can repeat the procedure. Eventually we
will find a submachine M’ with digraph D’r(M) of some component N of the cas-
cade 1-I Ni. This proves the following corollary.

COROLLARY. IfM with digraph D(M) D(i1, ..., t, n) is a submachine of
a generalized cascade 1-I Nj, and if (il,..., t, n) 1, then there is a submachine
M’, with digraph D’,(M) of some component N of the cascade, where r > and rln.

Suppose now that we have a cascade N 1-I Ni, and let machine N
states. We define the size of the cascade, denoted size(N), to be the max {Pi}. Let
S be the collection of all generalized cascades N having size(N) =< a. We will show
that S is not universal for isomorphic realization with feedback encoding, i.e., that
(for any a) there is a machine M which cannot be isomorphically realized with
feedback encoding by any element of S. In fact, we will show a slightly stronger
result. First, however, we note that this statement would not be true without the
restrictions we have placed on the h maps, as shown by the following corollary to
Theorem 2.

COROLLARY. Let M (Qu, Iu, 6t) be any machine. Then there is a cascade
N (QN, IN, tN)--HNi of size 2 and maps P:QM-*QN, h:QN x IM-- IN,
where p is one-to-one, such that for each q QM and x IM, qx p- l(p(q)h(p(q), x)).

The proof of this corollary is somewhat tedious (see [3]). It proceeds by
letting N, be the complete reset machine with 2" states and 2" inputs, and then
showing that N, is a cascade of size 2. Define N’r from N, by replacing each input
by two inputs with the same action. Then for n {log2 IQ;]}, N, is isomorphic to
N’,_ z N and for each r, N’, is isomorphic to N’ z N

We now return our attention to restricted feedback encodings.
THEOREM 10. For any a and any t, there is a t-input machine M which cannot

be isomorphically realized withfeedback encoding by any submachine ofany element

ofS.
Proof Let p be a prime larger than both a and and consider any p-state

machine M with digraph D(i,..., it, P). Such a machine can, in fact, always be
constructed such that 4: 0. IfM is isomorphically realized by a submachine N of
an element l--I Ni of s, then N also has digraph D(i,..., t, p). Then since p is
prime, Theorem 9 assures us that at least one component N of the cascade con-
tains a submachine with digraph D’p(N) - D(N). But this submachine has p >
states so that N has more than a states, and hence size(l-I

COROLLARY. For any a and any t, there is a t-input machine M which cannot
be isomorphically realized by a submachine of any element of S.

In the classical theory of realization, a similar result holds for both homo-
morphic realization and for simulation [13]. We will see in the next section that the
corresponding result does not hold for simulation with feedback encoding. For
homomorphic realizations, we can prove a result slightly more restricted than
Theorem 10.

If a cascade M z M2 contains an n-cycle C,, i.e., a strong, autonomous,
n-state machine, then by the corollary to Theorem 5, M contains an admissible
homomorphic image of C,. It can be shown (see [5]) that any admissible homo-

24 DENNIS P. GELLER

morphic image of C, is some C,, where mln. Thus, for some mln, M contains C,,.
If C, is defined by input x and has states {qo, "", q,-) consider the string
y Z(qo(1), x)Z(q (1), x) Z(% (1), x). It can be shown (next lemma) that the
states, in M2,

q0(2), qo(2)Y, qo(2)y2, qo(2)y"/m-

are all distinct, and that qo(2)y"/m qo(2). The string y thus induces a string cycle
in M2; we call n/m the string period. If p is a prime which divides n, then either plm or
pl(n/m), so one ofM or M2 must have at least p states. Thus, size(M z M2) >= P.
We would like to be able to continue this process and show that if any cascade M
contained C,, and pin, then size(M) > p. If plm and M were a cascade, we could
indeed continue, since M contains a cycle C,. At some point in this "unfolding",
however, we may come across the situation where the machine which is guaranteed
to have at least p states is the tail component of a cascade, and then we have the
problem of decomposing a string cycle of string period t, where pit, into string
cycles, one of whose string periods is a multiple of p. This can always be done.

LEMMA (Zeigler [13]). Let M be a cascade M z M2 which contains a string
cycle ofperiod n. Then there is some kin such that M contains a string cycle ofstring
period k and m2 contains a string cycle of string period n/k.

We are now ready to state a complexity result for homomorphic realization
with feedback encoding.

THEOREM 1. For any r, there is a machine which cannot be homomorphically
realized with feedback encoding by any submachine ofany element ofS.

Proof Let M be Cp, where p > a is a prime. If a submachine N of 1-I N S
homomorphically realizes M, then, by the corollary to Theorem 4, D(N) is an
admissible homomorphic preimage of Cp. By the restrictions on the feedback
encoder, for some n, N is C,p. Applying the lemma as outlined above, we can con-
clude that one of the N has at least p states, contradicting the hypothesis that
p>.

We stated that this result is more restricted than Theorem 10. In fact, since for
autonomous machines the notions of homomorphism and admissible homomor-
phism coincide, it really says nothing new. The distinction between Theorem 10
and 11 is that we have no detailed knowledge about admissible homomorphic
preimages of complex structures, such as the digraphs D(i, ..., i, n) of Theorem
10. Undoubtedly there is some relationship between these digraphs, their admis-
sible homomorphic preimages, and the admissible homomorphic images of these,
but what this might be is unclear at present.

3. Simulation with feedback encoding. In this section we briefly examine the
concept of simulation with feedback encoding. We also introduce two semigroups,
one of which is the S*-semigroup of Fleck et al. 2, and show their relationship to
realization and simulation with feedback encoding. Many of the proofs in this
section are quite similar, and only a few will be given; the rest of the proofs in this
section can be found in I3].

If M (Q, I, 5) and M’= (Q’, I’, 6’) are machines, then M simulates M’
with feedback encoding if there are maps

(]):Q onto, Q, and h:Q x I’ I +

such that for each q e Q and x’ e I’, 4(q)x’ ck(qh(q, x’)).

REALIZATION WITH FEEDBACK ENCODING 25

0

0 aa
ba

b

M M’

FIG, 3

IfM and M’ are the machines in Fig. 3, it is clear from Theorem 4 that M does
not realize M’ with feedback encoding. But the pair of functions (b, h), where
b(qi)- r and h has the following table, do define a simulation with feedback
encoding

h a b

ql 00 0
qz 01
q3 0

Let S and S’ be semigroups with zero, where, without confusion, we will use
the same symbol, 0, for both the zero of S and the zero of S’. A map (I):S S’ is a
zero-free homomorphism if it satisfies:

1. ker ((I)) {0};
2. if ab =/: O, then (a)(b) (I)(ab);
3(i). if (a)b’ :/= O, then there is some b (I)- l(b’) such that ab 4: 0;
3(ii). if a’(b) 4= O, then there is some a -l(a’) such that ab =/= O.
We will see examples of zero-free homomorphisms which are not homomor-

phisms later. For the present, we give some basic properties of zero-free homomor-
phisms.

THEOREM 12. (a) Let S, S2 and S3 be semigroups, and let :S - S2 and
tP S2 - S3 be zero-free homomorphisms. Then

(i) /f(a)(b) O, then ab 0;
(ii) W:S - S3 is a zero-free homomorphism

(iii) /f is one-to-one, then is an isomorphism.
(b) If :Sa Sz is a semigroup homomorphism with

ker () {0},
then is a zero-free homomorphism.

Let M (Q, I,) be a machine. An ordered three-tuple (s, x, t) is a triplefor
M, or simply a triple, if s, Q, x I+, and sx t. A triple is elementary if the
length l(x) 1, i.e., if x I.

Let 5(M) be the set of all triples of M together with a distinguished zero
element 0. We introduce an operation on 5f(M) by the following rules:

(s,x,t)(t2, Y,r)={’xy’r) iftl =t2,

ift :/= t2;

b0 0b 0 for each b e(M).

26 DENNIS P. GELLER

THEOREM 13. For any machine M, 5e(M) is a semigroup.
Proof Clearly, the operation is defined for each pair ofelements in 5,(M). Thus,

we need only show associativity. Let bl, bE, b3 o(M). Since 0 commutes with
every element ofSf(M), if any of the b are 0, then certainly (blb2)b 3 b(bEb3) O.
Suppose that b (q,x,r), bE (r2,Y, S2), b3 (s3,z,t). Ifr r2 and s2 s 3,
then bib2 (q, xy, s2), b2b3 (r2,yz, t), and (bb2)b3 (ql,(xy)z,t) (q,x(yz),
t)--- bl(b2ba). If rl :/: r2 ands -: s2, then blb2 b2b3 O, so (blb2)b 3 b(bEb3)

0. If r r2 and s - s2, then b2b3 0 and bl(b2b3) 0. Now, bb2 (q,
xy, sl), and so (bb2)b3 0. Similarly, if r 4:r2 and s s2, then (blb2)b 3

b(b2b3) 0. Thus 5(M) is a semigroup.
Suppose that M realizes M’ with feedback encoding, where the realization is

defined by maps b and h. Although, for each s Q, h is a map from I’ to I, h can be
extended to a map s from I’ + to I + in the following way. If x’ I’, (x’) h(x’);
ifx,y’I’+ h(x- ’y ’- verify that ifw’z’isah(x)hsh,)(Y’). We must, of course,
different way of writing x’y’, then h(w’z’) h(x y).

LEMMA. (a) For each s Q, h is afunction.
(b) For each s Q, x’ I’ +, dp(s)x’ 4)(sh(x’)).
(c) For each s Q, x I + there is a unique x’ I’ + such that (x’) x.

Proof (a) We proceed by induction. The result is true for strings of length
since h is a function, and true for strings of length 2 since, for such a string, there
is only one decomposition into smaller strings. Suppose it to be true for strings of
length n 1, and let x’ Wtl W’n, where each Wti

_
I’. Choose =< < j =< n 1.

We must show that

.,(w’... w;)h(s(w’.., w;), w;+,.., w’,)
fls(W’ ’-.’wj)h(shs(w wi), wj+ w’,).

Let s h(w’ w’i). By induction, we can write

h,(w,+ w’,)= h,(w’,+ w))hs2(W}+ 1"" W’n),

where s2 Slhs,(W’i+ w}). Also by induction,

h(w’ w)h,(w’,+ w)= hs(w’, w).
Thus

hs(w’ w3h,(w’,+ w;)= h(w’ w))h2(wj+
and the two expressions are equal.

(b) Let seQ and x’ =w w,, where each wi1’. If l(x’)= 1, then the
result holds since h(x’) h(x’). Assume the result holds when n N m 1 and let
n=m. Choose GiGn- 1. Then

4(s)x’ [4(s)w’ w’,w’,+
If s shs(W’l.., w’i), then

(s)x’ (s)w’,+ 1"’"

which, by part (a), is equal to 4(sh(x’)),
(c) This follows immediately from part (a) and the fact that it is true for h by

the properties of a feedback encoder.

REALIZATION WITH FEEDBACK ENCODING

From this point, we will use the symbol h for both h and .. For a state s e Q
and a string x e I + we will write h-l(x) for the unique string x’e I’+ such that
h(x’) x.

TnEOREN 14. IfM realizes M’ withfeedback encoding, then there is a zero-free
homomorphismfrom S(m) onto 5f(m’).

Proof Let the realization be defined by maps b and h. If b (s, x, t) is a triple
of M, define (I)(b) (b(s), h-l(x), b(t)). By the lemma, c(s)h[l(x) dp(sx) qS(t),
so that (I)(b) is a triple for M’. Also, define (I)(0) 0. We will prove that (I) is a zero-
free homomorphism from Yf(M) onto ,(M’). First, we show that (I) is onto. Let
b’ (s’, x’,.t’) be a triple of m’. Choose s b-l(s’), and let x h[l(x’). If sx,
then qb(t)= dp(sx)= 4(s)x’ t’, so (I)((s, x, t))= b’.

Clearly ker ((I))= {0}. Suppose that bl (s,x,t) and b2 (t, y,r), so that

bib2 (s, xy, r) O. Now

(I)(b)(I)(b2) (b(s),

(O(S), h, l(x)h-l(y), (y)).

But h- l(x)ht-l(y) h2 l(xy), so (I)(bl)(I)(b2) (b(s), h l(xy), (/)(t)) (I)(b,b2).
Suppose that O(b)d’:/: O, where b (s, x, t). Then (I)(b)= ((s), x’, 5(t)),

so that for some y’ I’+, r’ e Q’,d’= (dp(t), y’,r’). If d (t, ht(y’), th,(y’)), then
(I)(d) d’ and bd 4: O. Similarly, if d’ao(b) : O, then there is a d such that (l)(d) d’
and db

COROLLARY. If M isomorphically realizes M’ with feedback encoding, then
5(M) - 5(M’).

We can now give the examples mentioned above of zero-free homomorphisms
which are not homomorphisms. Consider the map (I) guaranteed by Theorem 14.
If s and s2 are two states of M for which b(sl) b(s2), then any triples of the
form b (r, x, sl) and b2 (s2, y, t) have product bb2.= O, while

(l)(bl)(I)(b2) (b(r), xy, dp(t)) =/: O.

We will also prove a converse to this theorem. If b (s, x, t) is a triple of
machine M, define i(b) s and f(b) t. A state s of M is reachable if there is a
triple b such that f(b) s.

Let S be a semigroup with zero. For any s e S, define s- {tlst 0} and
sv= {tits : 0}. We can then define equivalence relations =v and =-+/- on S"
s=_tifs+/-= -,ands_=vtifs-c =tv.

LEMMA. For any machine M in which every state is reachable, the relation

+/- on 5e(M) hasfinite index which is equal to + [Q[. Infact, b =_
+/- b 2 ifand only if

f(bl) /(b2), dnd [0]+/- {0}.
LEMMA. For any machine M in which every state is reachable, the relation

--v on 5(M) hasfinite index equal to + IQI; U0T {0}, and b =-v b2 ifand only
i[’i(b,) i(b2).

THEOREM 15. Let M and M’ be machines in which each state is reachable. If
]I]]I’] and there is a zero-free homomorphism 0"5(M) .oto 5(M,), then M
realizes M’ with feedback encoding.

Proof We first show that b
_
b 2 implies that (I)(b) _= (I)(b2). Suppose that

28 DENNIS P. GELLER

b =+/- b 2 and that (bl)d’ va 0, so that d’e (bl)3-. Then there is a d such that
O(d) d’ and bid =/= O. Since b =+/- b2, bzd =/= O. Then (I)(bz)(d) (I)(bz)d’

(I)(bzd) - 0 since ker () {0}. Thus d’ (b2)
SO (I)(bl) +/- (l)(b2) +/-, and hence (bl) --+/- (I)(b2). By a similar argument, b =v b2
implies (b 1) n- (b2).

It then follows from the lemmas that f(bl)= f(b2)implies that f((bl))
f((b2) and i(bl) i(b2)implies that i(dP(bl) i((b2)). Therefore (I) induces

maps cki’Q --’ Q’ and bi" Q ---, Q’ such that ((s, x, t)) (cki(s), x’, cki(t)). Now, sup-
pose that b (r, x, s) and b2 (s, y, t), so that bib2 =/= O. Then O(bl) (dpi(r), x’,
qSy(s)), (b2) (qSi(s), y’, qSy(t)). But we know that O(bl)(b2) -- 0; thus for each
reachable state s, qSi(s) qSy(s). Since every state is reachable, qS qSy b, a map
from Q to Q’. Furthermore, 4 is onto, since (I) is. Let x e I +, x’ e I’, be such that for
some triple b (s, x, t), O(b) (b(s), x’, qS(t)). If we write x yz, where neither y
nor z is empty, then b (s, y, sy)(sy, z,t). Thus O((s, y, sy))Op((sy, z, t))= (b)

(qS(s), x’, qS(t)). But this is an impossible situation" the second components of
op((s, y, sy)) and ((sy, z, t)) are nonempty strings, say y’ and z’, so that x’ y’z’,
a contradiction of the hypothesis that x’ e I’. Thus every preimage of an elementary
triple of M’ is an elementary triple of M.

We now show that if b’ (s’, x’, t’) and (s) s’, then there is a triple b with
i(b) s such that (I)(b) b’. Since s is reachable, there is some triple d (r, y, s).
Now, (I)(d) (4(r), y’, qS(s)), so Op(d)b’ =/= O. Thus, since is a zero-free homomor-
phism, there is a triple b such that db =/= 0 and (I)(b)= b’. But db 0 implies
i(b) f(d) s.

Now let III II’1 n. Choose any s’ e Q’ and any s such that b(s) s’. If the
n elementary triples b with i(b)) s’ are b} (s’, x), t)), then for each b) there is a
triple bj with (bj) b) and i(bj) s. Furthermore, as we have shown, each such bj
is an elementary triple. Also, since II[II’1 n, there are exactly n elementary
triples b with i(b) s. Therefore, for each s e Q and each x’ e I’ there is a unique
x e I such that oO((s, x, sx)) (qb(s), x’, q(sx)); we can then define a map h’Q x I’
-, I by setting h(s, x’) x, where oO((s x, sx)) (dp(s), x’, dp(sx’)). The pair (qb, h)
defines a realization with feedback encoding.

COROLLARY. If M and M’ are machines in which each state is reachable with
1I[1I’1, and if5(M’) - 5,(M), then M isomorphically realizes M’ with feedback
encoding.

We can get a result parallel to Theorem 15 for the case in which one machine
simulates another. Let S and S’ be semigroups with zero; we say that S’ zero-free
divides S if there is a subsemigroup S of S which contains the zero of S such that
there is a zero-flee homomorphism from S onto S’.

THEOREM 16. Let M and M’ be machines such that M simulates M’ with
feedback encoding, where the simulation is defined by maps d? and h. If the extended
map h" Q x I’ + - I + is one-to-onefor each s Q, then 5(M’) zero-free divides 5(M).

Note. A sufficient condition for the extended map to be one-to-one will be
given below.

Let M and M’ be two machines, and h’Q x I’--+ I+; we say that a subset
X’Q c_ Q is closed under h if, for each s Q1, I’, sh,(x’) Q1. If there is also a map

ontoqS"Q1 Q which satisfies qS(q)x’ (qh(q, x’)), then we will say that M’
divides M with feedback encoding; we call Q1 the core of the division.

REALIZATION WITH FEEDBACK ENCODING 29

COROLLARY. If M’ divides M with feedback encoding in such a way that the
map hS" I’ + I + is one-to-one for each s, then 5(M’) zero-free divides (M).

It is the corollary to Theorem 16, rather than the theorem itself, which has a
converse. We need one additional concept from the theory of semigroups. If S is a
semigroup and s, t, e S, then s divides t, written sit, if there is an r such that either
sr or rs t; is prime if there is no s which divides it. Note that for any machine
M, the only primes in 5(M) are the elementary triples.

THEOREM 17. Let M and M’ be machines such that every state ofM’ is reachable
and 9(M’) zero-free divides 9(M). Then M’ divides M withfeedback encoding, and
the extended map hs’I’ + I + is one-to-one for each s.

We have thus shown that the semigroups St(M) reflect quite accurately the
relationship of M to other machines as far as realization or simulation with feed-
back encoding. One important feature of the classical semigroup S(M) ofa machine
is that for every finite semigroup S, there is a machine such that S S(M). A similar
result cannot be possible for the semigroups St(M); for example, it is clearly im-
possible for (M) to ever be a group. We can, however, characterize those in-
finite semgroups 5e such that, for some machine, 5 5(M). To do this, we need
some preliminary definitions.

Let P be a partially ordered set under the relation _<_. If a, b e P, we say that b
covers a if a < b and there is no c P such that a < c < b; the cover of a, coy (a),
is the set of all b which cover a. We will call a partially ordered set P an n-tree if it
has the following properties"

(i) P has a least element;
(ii) for each a P, [cov (a)l n;

(iii) if a :/= b then coy (a) f"l coy (b)
For any semigroup S, we can define a relation =< by defining.a < b if there is

an element c such that ac b, and a =< b if either a b or a < b. This relation may,
but need not, be a partial order, since it is not necessarily antisymmetric.

THEOREM 18. Let be an infinite semigroup. Then there is a machine M with
III n such that 9 og(M) if and only if

(i) has a zero, O;
(ii) the relations =- +/- and =--r have the samefinite index, and [OT [O]z {0}
(iii) if st =/= O, then st

(iv) each block of the equivalence relation =-v, except for [0Iv, is a disjoint
union of n n-trees under the relation <=.

Before proceeding, we mention one interesting auxiliary property of the semi-
groups 5(M). Suppose that the machine M is actually a finite-state acceptor; that
is, there is a starting state qo and a set of final states F e Q, so that we can associate
with M the event E(M)

_
I + of strings x for which qox F.

THEORFM 19. IfM is a finite state acceptor, then there is a right ideal R and a

left ideal L ofS(M) such that
E(M) {proj2 (s)ls e L f) R {0}}.

Proof Let L {slf(s)eF} U {0} and R {sli(s)= q0} U {0}. Then L is
a left ideal since, for any 5(M) and s e L, if ts ,/= O, then f(ts) f(s) F. Simi-
larly, R is a right ideal. Then L f-I R {0} is the set {sli(s) qo andf(s) F}, so
that the second components of the strings of L f-I R {0} are all the walks from
qo to F, i.e., E(M).

30 DENNIS P. GELLER

For any machine M, the 5*-semigroup *(M) has for its elements all finite
sets of triples (we will write 0 for the empty set of triples), where if U {bili 1,
.., n} and V {dj.Ij 1,..., m} are elements of 5e*(M), then UV {bidJi
1,..., n;j 1, ..., m}. We list some of the properties of 5*(M) in the next

theorem [2]; a state s is terminal if for all x I, sx s.
Assertion 1. If M isomorphically realizes M’ with feedback encoding, then

9*(M) 6*(M’).
Assertion 2. If M and M’ are machines in which each state is reachable and

there is at least one nonterminal state and if ,*(M) 9*(M’), then M isomor-
phically realizes M’ with feedback encoding.

These results make it seem reasonable to expect that we can find generaliz-
ations to homomorphic realization or simulation with feedback encoding. Sup-
pose, for example, we had M realizing M’ homomorphically with feedback en-
coding, the realization being defined by maps q5 and h. It would be natural, as would
in fact be done in proving Assertion above to define, for each triple b (s, x, t)
of M,

b*(b) (b(s), h-l(x),
(qS* is just the map O’S(M) 5(M’) of Theorem 14.) We would then define

({b,li 1,..., n})to be {b*(b,)}. Let S {bj} and T {dk}, S, T e 5e*(M),
and suppose ST O. For each pair b; and dk for which bfl :/: O, it will follow that
(b;d) qS(b;)qS*(d), so that d(ST)

_
O(S)(T). But should there be a pair

bj, d such that bjdk 0 but b*(bj)qS*(d) - 0, then O(ST) (S)(T), so that
would not even be a zero-free homomorphism. Such a pair bj, d would certainly
exist unless 1(21- IQ’I.

The preceding discussion, of course, only shows that one particular approach
to the problem is infeasible.

THEOREM 20. Let M and M’ be two machines, where M is strong. If there is a

zero-free homomorphism "*(m) 5’*(m’) and a map p’Q Q’ such that for
each singleton b {(s, x, t)} 5*(M), (b) {(O(s), x’, qS(t))}, then IQI IQ’I.

Proof Suppose not, and let O(ql) b(q2) q’. Since q is reachable, there is
some b {(r,x, ql)}*(M). For y,zI + let b 2 {(ql Y, qlY) (q2 Z, qzZ)}
Since b,b2 : O, (l)(b,)(I)(b2): {(c(r),x’y’, dp(q,y)), (dp(r), x’z’, b(q2z)) (I)(b,b2)

{(qb(r), (xy)’, dp(qay))}. Among other things, this would imply that if qa is reach-
able from q and q is reachable from q2, then qS(q) b(q4). Since M is strong,
every state is reachable from every other, so that qb must be one-to-one.

The hypothesis that M be strong is probably more than is needed to reach the
conclusion of the theorem, but it certainly does show that the *-semigroups are
not especially useful in a study of realization, with or without feedback encoding.
On the other hand, Fleck, et al. made the following conjecture, which we can use
the concept of simulation with feedback encoding to settle.

Conjecture. Let M and M’ be any two strong machines with the same number
of states. Then 7*(M) is isomorphic to a subsemigroup of *(M’), and *(M’) is
isomorphic to a subsemigroup of 5*(M).

We first prove a crucial result, to which we alluded earlier. It gives both the
sufficient condition which we mentioned in connection with Theorem 16 and also
shows that simulation with feedback encoding is an essentially uninteresting con-
cept.

REALIZATION WITH FEEDBACK ENCODING 31

THEOREM 21. Let M be a strong machine with at least two inputs, and let M’
be any machine with IQ’I _-< IQI. Then M’ divides M withfeedback encoding, and the
feedback encoding can be chosen in such a way that the maps hs" I’ + I + are one-
to-one.

Proof Since M is strong, for any s, Q, there is a string wst with l(wt) >=
such that swat t.

Let Q be any subset of Q with cardinality IQ’I, and b’Q onto Q, be any map.
Let 1’ {x’l, ..., x’a} and let r/4:0 be two elements of I. For each s Q, xj I,
let b-(sx) and define h(x) r/JOwq,, where q st/J0. Then qb(sh(x)) ok(s)
x, so that M’ divides M with feedback encoding;if IQI IQ’I, then M simulates M’
with feedback encoding. Each map h is certainly one-to-one on strings. We show
that the extended maps are also one-to-one.

Let j...j,, and k.-. k,,, be two strings from (I’)+, and let hs(.jl...
h(k kin, W. Then, by definition, there are states r, Q such that

w h(.il)h(ja j,,) h(k)h,(k..., k,,,).
But there is a unique positive integer n such that the prefix of w having length
n + is the string r/"f/. This uniquely determinesj k x’,, so that r sx’,.
Then h(j2 j,,) h(k2.., kin,), and we can repeat the above process until we
arrive at m m’ and j, kp, p 1, 2, m. V1

COROLLARY. If M is strong with at least two inputs and M" has [Q’[< [Q[,
then 5*(M’) zero-free divides 5*(M).

COROLLARY. If M is strong and M’ has O’l =< O[, then M" divides M with
feedback encoding.

Proof We need only cover the case in which III= 1. As in the theorem, we
choose any Q c Q with [O[- [Q’[and any map qS’Q ntr-Q’. For s e Q and

x.ie I, let t= 4 (dp(s)x’.i), and define h(xj)= ws,. Then 4)(s)x dp(sh(x)), so
M’ divides M with feedback encoding, l-]

TrEOREM 22. Let M be a strong automaton with n states and at least two
inputs, and let M’ be an automaton with n’ <= n states. Then 5*(M’) is isomorphic to
a subsemigroup ofS*(m).

Proof For the proof of the theorem, see [4].
COROLLARY. Let M and M’ be strong machines, with lQ{ Q’I. Then, unless

M is autonomous but M’ is not, 5t*(M’) is isomorphic to a subsemigroup of5*(M).
The corollary settles the conjecture except for the case where M is autonomous but
M’ is not, and in that case the conjecture is false.

THEOREM 23. IfM is a strong machine with n states and at least 2 inputs, then
5*(M) cannot be isomorphically embedded in 5*(C,).

The proof, in [4], proceeds by showing that for the complete reset machine
R,, 5*(R,) cannot be isomorphically embedded in *(C,). But, by Theorem 22,
5*(R,) is isomorphically embedded in 5*(M).

5. Summary. We have studied various properties of realization with feedback
encoding, and, at this point, we should look back to see what we did and what we
did not do.

Most of the study of the properties of these realizations was motivated by the
classical theory of automata. Thus, for example, admissible homomorphisms play
the same role for realizations with feedback encoding that SP-homomorphisms

32 DENNIS P. GELLER

play for realizations. There are subtle differences between these two classes of
mappings, however. On one hand, as we pointed out in 2 admissible homomor-
phisms do not exhibit all the lattice properties of SP-homomorphisms. Thus, the
full power of the Hartmanis-Stearns techniques [6 cannot be applied to admis-
sible homomorphisms. On the other hand, admissible homomorphisms, being
defined on digraphs rather than on machines, are somewhat easier to manipulate
and study. In this regard, an added advantage is that, as mappings between di-
graphs or graphs, they have interest independent of their applications to machines.

There appears to be little more that can be said about the basic properties of
realizations with feedback encoding. One problem upon which we did not touch
is the meaning of realization with feedback encoding when applied to logical nets.
For example, Zeigler [13] shows that for any integer r, there is a machine M such
that any logical net which isomorphically realizes M has a strong component S
which contains a point whose indegree, in S, is greater than r. While we strongly
suspect that a similar result would hold for isomorphic realization with feedback
encoding, it is not clear how to attack the problem. Zeigler’s proof techniques
depend heavily on behavioral properties, which, of course, are blurred by realiz-
ation with feedback encoding, and so resolution of the problem would probably
depend on a better understanding of the relationship between net structure and
transition graph structure.

The semigroup of a machine is quite important to the theory of realization.
While we studied the 5T-semigroups in great detail in 3, our motivation was to be
able to develop decomposition properties, and we must conclude that this goal is
very likely unattainable. For we showed that zero-free homomorphisms or
divisions between semigroups are both necessary and sufficient for realizations
or divisions with feedback encoding, which makes it difficult to suppose that a
finite algebraic structure with similar properties could be found. And certainly,
even if decomposition properties could be related to the semigroups, there is no
real hope of usefully applying these infinite structures to the problems of finite
automata theory.

In 2 we showed that cascade realizations with feedback encoding can be
more economical, in terms of the sizes of the state sets of the component machines,
than realizations without feedback encoding. Another application, to the problem
of designing realizing machines with distinguishing sequences, is discussed in
[3] and a forthcoming sequel to this paper. Perhaps other applications could have
been developed, but these are sufficient to show the value, and limits, of realization
with feedback encoding. For--and this cannot be stressed too strongly--there are
no clear rules on when to use the techniques we have developed. Even when we can
guarantee the applicability of the techniques to any machine, whether or not they
are of any value will depend quite strongly on the specific problem. We have shown
the potential power of realization with feedback encoding, but in any application
it will be just one of a number of tools which can be tried, and will surely work
better in some cases than in others.

REFERENCES
1] T. Booa’r, Sequential Machines and Automata Theory, John Wiley, New York, 1967.
I2] A. FLECK, S. HEDETNIEMI AND R. OEHMKE, 5-semigroups ofautomata, J. Assoc. Comput. Mach.,

19 (1972), pp. 3-10.

REALIZATION WITH FEEDBACK ENCODING 33

3] D. GEILER, Realization with feedback encoding, Doctoral dissertation, Dept. of Computer and
Communication Sci., Univ. of Michigan, Ann Arbor, 1972.

[4] , Generalization of a theorem of Fleck, Hedetniemi and Oehmke on 5’*-semigroups of
automata, Discrete Math., 8 (1974), pp. 345-349.

I5], Walkwise and admissible mappings between digraphs, Ibid., to appear.
6] J. HARTMANIS AND R. E. STEARNS, Algebraic Structure Theory of Sequential Machines, Prentice-

Hall, Englewood Cliffs, N.J., 1966.
[7] S. HWDETNIMI, Homomorphisms ofgraph and automata, Tech. Rep. 03105-42-T, Dept. of Com-

puter and Communication Sci., Univ. of Michigan, Ann Arbor, 1966.
[8] J. HOLLAND, Cycles in logical nets, Tech. Rep. 2722, 2794-4-7, Logic of Computers Group,

Univ. of Mich., 1959 see also, Cycles in logical nets, J. Franklin Inst., 270 (1960), pp. 202-226.
9] K. KROHy AND J. RHODES, Algebraic theory ofmachines. I: Prime decomposition theoremjbrfinite

semigroups and machines, Trans. Amer. Math. Soc., 116 (1965), pp. 450-464.
I10] R. MCNAUGHTON, The loop complexity ofpure-group events, Information and Control, 11 (1967),

pp. 167-176.
I11] M. YOELI AND A. GINZBURG, On homomorphic images of transition graphs, J. Franklin Inst., 278

(1964), pp. 291-296.
[12] H. P. ZzlGZ, Cascade synthesis offinite state machines, Information and Control, 10 (1967),

pp. 419-433.
[13] B. P. ZZIGZ, On thefeedback complexity ofautomata, Tech. Rep. 08226-6-T, Dept. of Computer

and Communication Sci., Univ. of Michigan, Ann Arbor, 1969; see also, Proofofa conjecture

by A. W. Davis and H. Wang: Some relations between net cycles and state cycles, Information
and Control, 21 (1972), pp. 185-195.

SIAM J. COMPUT.
Vol. 4, No. 1, March 1975

REALIZATION WITH FEEDBACK ENCODING. II"
APPLICATIONS TO DISTINGUISHING SEQUENCES*

DENNIS P. GELLER"

Abstract. We continue the work of a previous paper by developing techniques for realizing (with
feedback encoding) a given machine by one which admits a distinguishing sequence. We allow no
expansion of state set or input set size, and attempt to minimize the number of additional outputs
needed. With feedback encoding, this usually behavioral problem becomes one involving only (graph)
structural properties of the given machine. In particular, we cast the problem of reducing the number of
instances of sets of states merging under an input as one involving coloring a bipartite graph derived
from the machine.

1. Introduction. In this paper, we apply the concepts of [2] to the problem of
realizing a given machine by one with a distinguishing sequence. While the
reader is assumed to be familiar with the results of [2, we will briefly review some
of the more important definitions and notations.

A machine, or finite-state automaton, M, consists of a set Q of states, a set I
of inputs, where both Q and I are finite, a transition function 6"Q I Q, a set
Y of outputs, and a function 2"Q I Y called the output function; M will be
represented by the quintuple (Q, I, 6, Y, 2). We write qx for 6(q,x). If 2 truly
depertds on both Q and I, we ha.ve a Mealy machine. By contrast, if we can associate
output symbols with the states so that 2(q, x) is the output associated with state
qx, we have a Moore machine; in this case we sometimes express 2 as a map from
Qto Y.

If I + is the set of finite strings of input symbols, then we can express 6 as a
map from Q x I + to Q by writing 6(q, xy)=b(b(q,x),y) for any xeI+ and
y e I. We can similarly extend 2 in two different ways. For x I + and y e I, 2(q, xy)

2(qx, y). Alternately, for xl X2, X I, fl(q, XIX2 Xn) 2(q, Xl)R(q, XIX2)
2(q, xlx2 x,). Note that if x XlXE...x, I+, then the length Y(x) of x

is n.
Sometimes we are only concerned with the transition functions of machines,

and then we omit reference to 2 and Y. If M (Q, I, 6) and M’ (Q’, I’, 6’) are
machines, then M realizes M’ with feedback encoding if there are maps b "Q Q’
and h’Q I’ I such that for each q Q, the map h(q,. hq’I’- I defined
by hq(x’) h(q, x’) is one-to-one and onto, satisfying the condition for all q Q
and all x’ I’,

(q)x’ dp(qh(q, x’)).

If the map h, called the input encoder, did not actually depend on Q, then this
would essentially be the same as the usual definition of realization.

A digraph D consists of a set V V(D) of points together with a collection

* Received by the editors January 18, 1973, and in revised form January 2, 1974.

f Human Sciences and Technology Group School of Advanced Technology, State University of
New York at Binghamton, Binghamton, New York 13901. This research was supported in part by the
National Institutes of Health under Grant GM-12236 and in part by the National Science Foundation
under Grant No. GJ-519.

34

REALIZATION WITH FEEDBACK ENCODING. II 35

(repetitions permitted) X X(D) of ordered pairs, called arcs from V E If
uv (u, v) is an arc, we write uv D and say that u is adjacent to v, v is adjacent from
u, uv is incident from u and incident to v.

A walk in a digraph is a sequence W (x, ,.., x,) ofarcs, where x u_ u;
we may abbreviate this and write w UoU... u,. If Uo u, but the other points
are distinct, the result is a cycle C,. A digraph D is strong if there is a walk UoU
U,Uo containing all the points of D.

In any digraph the number of arcs incident to a point u is its indegree, id(u)
and the number of arcs incident from u is its outdegree od(u).

The reflexive closure D of a digraph D is the smallest superdigraph of D
which has a loop at each point. For each point u of D let S(u) be the set of arcs
incident from u and let S(u) be the set of arcs incident to u. Given digraphs D and E
a mapping from D E is a mapping b "X(D) X(ER) which is onto X(E) and
which satisfies"

for each u V(D) there is a u’ V(E) such that ck(S(u)) S(u’) and (S(u))
S(u’).
A mapping b" D D’ is an admissible homomorphism, or simply admissible, if

whenever qb(u) b(v) and uw D, then there is a point such that v e D and
() (w).

If M (Q, I, 6) is a machine, the digraph D(M) of M has V(D(M))--Q
and X(D(M)) {uv[u, v Q and for some x I, ux v};if there are n inputs xi
such that ux v, then there are n arcs from u to v.

The following is Theorem 4 of 2].
THEORFM. If M realizes M’ with feedback encoding, then there is an admissible

homomorphism from D(M) onto D(M’). Conversely, if there is an admissible homo-
morphism from D(M) onto D(M’) and /f [I[---[I’[, hen M realizes M’ with feedback
encoding.

2. Distinguishing sequences. Having presented some of the theoretical pro-
perties of realizations with feedback encoding, we now turn our attention to a
specific applications area. Actually, we have already discussed one application
in [2, where we showed that the use of feedback encoding can lead to more efficient
cascade realizations.

Given a behavior which is to be realized, one often places additional require-
ments on the realizing machine; perhaps the simplest such requirement is that the
machine be reduced. Another requirement is that the machine have a distinguishing
sequence, an input string whose output sequence uniquely identifies the machine’s
starting state. In this chapter we will develop techniques for realizing some machine
M’, with feedback encoding, by a machine M having a distinguishing sequence.
It is important to note that the machine which has the distinguishing sequence is M,
and not M together with the feedback encoder.

In [23 we were concerned only with the realization of state-behaviors, but
here we will instead study the realization of input-output behaviors. We will need
to define the realization with feedback encoding of a machine having outputs in
two ways, one for the Moore case and one for the Mealy.

If M (Q, I, 6, Y, 2) and M’ (Q’, 1’, 6’, Y’, 2’) are Moore machines, then
M realizes M’ with feedback encoding if there are maps b:Q o_a_t.tQ,, h:Q x 1’ 1,

36 DENNIS P. GELLER

a feedback encoder, and g’Y--, Y’, such that

b(q)x’ ck(qhq(x’)) and 2’(b(q))= g(2(q)).

Since in most of what follows the realizations will be isomorphic, the output
decoder, g, may often be just a one-to-one correspondence, and can be omitted if
we assume, without loss of generality that 2’(b(q))= 2(q), giving the alternate
conditions

q(q)x’ dp(qhq(x’)), 2’(qS(q))= 2(q)

Similarly, if M and M’ are Mealy machines, then M realizes M’ with feedback
encoding if there are maps q5 :Q on_Q,, h :Q I’- I, a feedback encoder, and
g:Y Y’, such that

dp(q)x’ dp(qhq(x’)), 2’(b(q), x’) g(2(q, hq(x’)))
or, if we take Y Y’ and g to be the identity map,

dp(q)x’ c(qhq(x’)), 2’(b(q), x’) 2(q, hq(x’)).

Example 1. Let M and M2 be the Mealy machines in Fig. 1. Then M2 realizes

M with feedback encoding, if we define q(r) q and give h the function table

h 0 1
r 0
r2 0
r3 0

O;b

M"
1;a

O’b

M M

[riG.

From Example 1, we can see the relationship between the state transition
graphs of two Mealy machines when one realizes the other isomorphically with
feedback encoding. Not only are the digraphs isomorphic, but the isomorphism
preserves the output labels, so that only the input labels are permuted.

As is well known, the concepts of Mealy and Moore machines are essentially
interchangeable [5, p. 35. This interchangeability carries over to realizing
machines.

THEOREM 1. Let M and M’ be Mealy machines and Ql, 1I’ their Moore equiva-
lents. If M realizes M’ with feedback encoding, then 1I realizes ’ with feedback
encoding.

REALIZATION WITH FEEDBACK ENCODING. II 37

Recall that for a state q and string Xl... x,, q(Xl"’" Xn)-- 2(q, xl))(qx 1,

x2) 2(qxl x,_ 1, x,); of course, in a Moore machine, this reduces to/q(x
x,) 2(qxl)2(qxlx2)... 2(qxl x,). Defining fl in this manner, we are omitting
the output associated with the current state, q, and therefore ignoring a potentially
useful item of information. Since this information is usually available, especially
in actual circuits, it is worthwhile to examine the effects of this omission on the
work to follow. All the constructions which we give will be valid for either definition
of/3, but bounds involving the lengths of input sequences will be larger by 1 than
they would be with the alternate definition of ft. The advantage to the form taken
here, as we shall see, is to make it possible to treat certain behavioral characteristics
of a machine as though they were purely structural.

We say that a string x is a distinguishing sequence for a machine M if for any
states q vs q’, flq(X) 4: flq,(X). Clearly [5], any machine which has a distinguishing
sequence is reduced, but the converse does not hold. In the case that all the symbols
in a distinguishing sequence x are identical, we say that x is a repeated symbol
distinguishing sequence [8].

Before we begin our study in detail, a word is in order about just what it is
that we wish to accomplish. The existence of a distinguishing sequence is properly
a behavioral, rather than a structural, property. Nevertheless, feedback encoding
techniques can, for some machines, produce realizing machines with distinguishing
sequences and yet cause no increase in state size, input set size, or output set size.
We will develop some results which will give techniques, in some cases, for finding
realizing machines with distinguishing sequences. These techniques will not cover
all the possibilities, however. Rather than simply giving techniques, we are more
concerned with trying to demonstrate that feedback encoding techniques can be
an effective tool. The usefulness of these techniques does not lie solely in the theo-
rems which we are presenting.

In a machine M, two states q and q2 are said to merge if, for some input
x I, q x qEX; states q and q2 converge if, under some input x, they merge and
if, also, 2(ql, x) 2(q2, x). If q and q2 converge to q3 under x, we write (q l, q2)x

q3. Note that in a Moore machine, two states converge if and only if they merge.
LEMMA [5]. Ifa reduced machine is convergence-free, then it has a distinguishing

sequence.
The converse is not true; a machine need not be convergence-free to have a

distinguishing sequence. However, if a machine is reduced and k states converge
to a single state, then by state-splitting techniques, and adding additional output
symbols, the convergence can be eliminated; this requires adding on the order of
{k/2} new states and output symbols [8]. Of the two, addition of new states is the
more costly, and the techniques we present will be geared towards producing no
increase in state set size, although some increase in output set size will not always
be avoidable. We will first concentrate on the problem of designing realizing
machines which have repeated symbol distinguishing sequences.

Let (st) (So, sl, "’", sin- 1) be a sequence of symbols, where it is under-
stood that any reference to sj is for j modulo m. For any integer n, we say that
(si) has property P(n) if there is an integer for which sin v sin

Let M (Q, 1}, fi, Y, 2) be a strong autonomous machine with m states,
where qil qi+ 1, and let 2(M) be (2(qo, 1), ’(qm- 1,1)).

38 DENNIS P. GELLER

THEOREM 2. A strong autonomous machine M is reduced if and only if, for all
n 1, 2,.-., [m/2], 2(M) has P(n).

Of course, Theorem 2 just says that 2(M) has no proper subperiods. If
has P(n) for each 1 __< n < [m/2], we say that it has property P; conversely, if
(s) does not have P(n) for some n we say that P fails (for n).

LEMMA. Let (si) (So, S Sm- 1"
(a) /f P fails for n, it fails for the greatest common divisor (n, m).
(b) If P fails for n and nz, it fails for (n, HE).
Proof. (a) Let g (n, m). It will be sufficient to show that So Sg. Since, by

hypothesis, So s s2, we need only show that, for some k, kn g (mod
m). This congruence has a solution when (n, m)lg; but g (n, m), so that So s.

(b) Let g- (n,n2). In this case we look for k and k2 which satisfy nk
+ n2k2 -= g(mod m). Since (n, n, m)lg, there is a solution to the congruence,
and again, So Sg.

THEOREM 3. Let go So. If (So,’", s,,_) does not have P, then (go, s x,

"., Sm-) has P.
Proof. Let n*-min {niP fails for n}. We show that for n < n*, (go,S,

.., s,_) has P(n).
If n* 1, then the s are identical, and hence the new sequence has P. If

n* 2, then m >__ 4. Thus go :/: s2, so P does not fail for n 2. But since So must
have been different from s (as otherwise we would have had n* 1), we still have
s2 so s, so the new sequence also has P(1). in general, we know m >= 2n*.
Now suppose for k < n*, sik 4: sik +k. Then since P fails for n*, sk+,, si 4= s+k

Si+k+,,. Furthermore + n* k (mod m)and k + k + n* k + k (mod m),
since m >= 2n*. Thus if we change So to g0, we can not, for n < n*, cause P(n) to fail
for the sequence (So,Sl,S2, ",, sin-l). But, since go So, go -s,, So, so
the new sequence has P(n*).

Now, let n’ min {niP(n) fails for (st)} and n min {niP(n) fails for (go,
si,.,., s,,_l)}. Then n > n. But we could have started with (go,Si,’",
and changed go to So, giving (st). Thus n < n’. This is impossible, so (go,
sl, ..., s,,_l) has P.

The next result holds for both Moore and Mealy machines; a subdigraph of a
digraph is spanning if it contains all the points of the digraph.

LEMMA. Let M be a machine and suppose that in the labeled digraph con-
sisting of D(M) together with state and output labels, there is a spanning cycle
whose output sequence has property P. Then M can be isomorphically realized
with feedback encoding by a machine M’ with a repeated symbol distinguishing
sequence.

Proof. We choose M’ to have the same labeled digraph as M. Let the states,
in their order along the cycle, be qo, q1,"’, qm-1" We will define an encoding
map h such that at each state q, one input x for which qx q+l is coded as

hq,(xi) l’e I’, and assign the other values of h arbitrarily, preserving set iso-
morphism. Then in M’, the input symbol 1’ will define a strong autonomous
submachine M" of M’, which, by hypothesis will be reduced. But it is known [8]
that a reduced autonomous machine has a (repeated symbol) distinguishing
sequence, y. Since M" has the same state set as M’, y is a repeated symbol dis-
tinguishing sequence for M’.

REALIZATION WITH FEEDBACK ENCODING. II 39

A 2-factor of a digraph is a spanning subdigraph in which each point u has
id (u) od (u) 1 a 2-factor is a union of directed cycles. Suppose that a machine
M has a 2-factor Z Z (3 (_J Z consisting of directed cycles. As in the
preceding lemma, we can define a machine M’ which realizes M isomorphically
with feedback encoding, such that Z is the subdigraph induced by a single input
symbol, x’. We now need only make sure that the autonomous submachine
defined by x’ is reduced. This can be done, in the worst case, by adding new output
symbols, w,..., w,. By Theorem 3, if we change one output label in Z to w,
Z will be reduced. Furthermore, since w 4: w, no state in Z can be equivalent
to a state in Z. Of course, in general we could expect to need fewer than new
output symbols. In the next lemma we list some of the known conditions for a
digraph to have a 2-factor; if D(M)satisfies any of these conditions, then M can
be isomorphically realized with feedback encoding by a machine with a repeated
symbol distinguishing sequence. By 7S in part (a) we mean the set of points adjacent
from S.

LEMMA. (a) A digraph D has a 2-factor if and only if for each set S of points,
Isi-<_ lySI [1].

(b) If a strong digraph D has p points and, for each point v, id (v) + od (v)
>__ p, then D has a spanning cycle [3].

(c) If a strong digraph D has p points and for every pair of points u and v such
that uv q D, od (u) + id (v) >__ p, then D has a spanning cycle [11].

Of course, the fewer the number of cycles in a 2-factor, the fewer the number of
output symbols which will have to be changed. On the other hand, the more cycles
in the 2-factor, the shorter will be the length of the distinguishing sequence. This
trade-off is expressed in the next theorem" by [r > 0] in the theorem we mean
the logical variable which takes the value 1 if r > 0 and 0 otherwise.

THEOREM 4. Let M be a machine with p states and suppose that D(M) has a

2-factor which contains cycles, of which r are 1-cycles (loops). Then M can be
isomorphically realized with feedback encoding by a machine which has a distinguish-
ing sequence. Furthermore, the length L of the distinguishing sequence and the
number N of output symbols which must be changed satisfy

L<__p-2t+r+l, N<=t-[r>O], L+N<=p.

Proof. We have already indicated how the existence of a 2-factor implies the
existence of a realizing machine which has a distinguishing sequence. In the worst
case, we need to change one output symbol on each of the r cycles of length
greater than one, both to reduce the cycle (see Theorem 3) and to make the cycles
inequivalent. In the worst case, this requires adding t- r new output symbols,
although this can undoubtedly be reduced in practice. Each of the r loops is already
reduced, so we need to add or change at most r 1 output symbols to make them
inequivalent. This gives N=<(t-r)+(r- 1)-t- if r>0 and N_<_t if
r 0; hence N =< [r > 0]. The length L of the distinguishing sequence is at
most the length of a distinguishing sequence for the largest cycle, which is one less
than the length of the cycle [5], [10]. For a given and r, the longest cycle is attained
when all but one of the r cycles of length greater than 1 are 2-cycles, using
2(t r 1) of p r states. The remaining cycle then has length p (2(t r)
-2)-r=p-2t+r+2, so that L__<p- 2t+r+ 1. Now, if r> 1, L+N

40 DENNIS P. GELLER

=< t- 1 + p- 2t + r + 1 p- + r, which takes its maximum when all cycles
are 1-cycles, so that r. If r 0, then L + N __< + p- 2t + 1 p- + 1,
which takes a maximum when 1, and the 2-factor is a spanning cycle. Thus
L+N<=p.

The bound L =< p 2t + r + 1 __< p compares quite favorably with the bound
L __< (p 1)pP given in [4], although it is not known if the latter is a best possible
upper bound.

Notice that while the theorem describes a sufficient procedure, it is certainly
not necessary.

The simplest way for a machine to satisfy the conditions of the theorem is for
each of its states to have the same indegree; such a machine is called homogeneous
in [9], where it is shown that any machine whose reduced machine is strong is
behaviorally equivalent to a homogeneous machine. Theorem 4 could then be
applied to the homogeneous machine. Of course, the homogeneous machine has a
much larger state set, but this disadvantage may be offset, as Miller and Winograd
[9] note" "McNaughton and Booth [7], however, found that in the 2-input case
a particularly uniform circuit structure (for the homogeneous machine) resulted
for the state to state circuitry the uniform structure may be quite advantageous
in practice, and can be readily seen to extend to the p-input case."

On the other hand, even if there is no 2-factor, we can use the techniques
outlined above to produce a realizing machine with a distinguishing sequence.

Note first that any machine can be isomorphically realized by a machine
with a repeated symbol distinguishing sequence, by choosing an autonomous
submachine and adding output symbols so as to make it reduced [8]. With feedback
encoding, a similar technique applies, but there is more freedom in choosing the
substructure to reduce, and consequently less output augmentation may be
necessary.

Any autonomous machine, whether or not it is a union of directed cycles,
is a functional digraph’a digraph in which each point has outdegree exactly 1.
Given any functional subdigraph of D(M), we can, with feedback encoding,
make D the digraph of an autonomous submachine M, and then add output
symbols to make M reduced. Thus, for a machine M, we woull choose a functional
subdigraph D which was as "close to" being reduced as possible, and then add
output symbols so as to make it reduced. The technique in doing this is first to
make each cycle ofD reduced, and to make the cycles inequivalent, as we would ifD
were a 2-factor. We then continue, making each component of D reduced. Two
states can be equivalent only if they belong to the same component and there is a
homomorphism which identifies them; homomorphisms of autonomous machines
(as we noted in [2], the notions of SP and admissible homomorphisms coincide for
autonomous machines) have been tudied in detail in [12]. We can therefore state
the following remark.

Remark. Any machine can be isomorphically realized with feedback encoding
by a machine with a repeated symbol distinguishing sequence.

A reduced machine will fail to have a distinguishing sequence only if two
states converge under some input. Using classical techniques, once a convergence
is found to interfere with the existence of a distinguishing sequence, state-splitting
and/or augmentation of outputs must be employed. With feedback encoding,

REALIZATION WITH FEEDBACK ENCODING. II 41

however, it is often possible to eliminate the convergence without adding states
or output symbols. We first state a theorem indicating when this can be done for a
2-input (Moore) machine.

THEOREM 5. Let M be a Moore machine with two inputs x and x2 and exactly
one convergence" (ql, ql)x, q2. Then, if there is no state q such that qx2 q2x,
M can be isomorphically realized with feedback encoding by a convergence-free
machine with the same output function.

Proof. Note first that since M has only one convergence, qlx2 4= qx2. Let
qlx2 q and qlx2 qg (see Fig. 2).

FIG. 2

We can recode inputs at ql, eliminating the convergence, unless there is a
state qo such that qxx qg; similarly, we can recode at q unless there is a q
such that qx q. Suppose that we can recode neither at ql nor at q2 (see
Fig. 3).

FIG. 3

qX2 then we canIf, for example, there is no state q] such that q]xl =,,
recode the inputs at q without causing a new convergence; this, in turn, permits
us to recode the inputs at ql, and hence eliminate the convergence.

Continuing in this manner gives rise to sequences of states

and

such that ifj > 1,

and ifj <_ 1,

q2-- q2 q21 q q’

2 2
qjXl qj- 1, qjx2 qj,

qIx1 q}, q)x2 q)-1"

42 DENNIS P. GELLER

Since M is finite, the process of extending these sequences must have repeti-
tions. Suppose the first repetition is that two of the q coincide. If we are at the stage
of choosing q and find that it is the same as some previously chosen q, then q
must be an x2 image of two distinct states, by virtue of the way qff is chosen, unless
k 1. (As can be seen from Fig. 3, we choose q} as the x2 image of the previously
chosen state with superscript 1. Each point q2 which has been chosen is an x2-
image, except for q2, which was chosen as the x1-image of two distinct states.)
If k 1, this implies that M has two convergences, which is a contradiction. If
k 1, then assume without loss of generality that j > 0 and continue the process
at the "other end" of the sequence. It then becomes impossible for the process
to fail for lack of a new qL,, for this would have to imply that M has a second
convergence.

The process therefore must stop because of an inability to choose a new
qJ (or (or+1 qj-1). But then we can progressively relabel inputs at q), qj_ 1,

at q}, q}/ 1,’" ") until we finally relabel at q (or ql), eliminating the convergence.
At no time have we changed any output label; this proves the theorem.

The technique used in Theorem 5 is applicable to Moore or Mealy machines.
More important, it may be used successfully with machines which have more
convergences than specified in the theorem. One straightforward generalization is
given by the following corollary.

COROLLARY. If M has exactly n convergences (qi, qi2)xi qi, where the xi,
1,..., n are distinct, and if there are n additional inputs x’2 such that there is

no state q for which qxi2 qi, then the co.nvergences can be eliminated.
Proof. For each i, apply the theorem to that submachine of M defined by the

and xtwo inputs xl
The corollary, of course, was phrased to insure that the n applications of the

theorem would not conflict. Certainly, we can expect that the same techniques will
apply to many machines which do not meet the strict condition of the corollary,
by breaking up the convergences one at a time. Unfortunately, the extent to which
the technique can be reappiied depends both on behavioral and structural pro-
perties of the given machine. While useful as a heuristic, this approach to
eliminating convergences cannot easily be expressed in algorithmic form with
clearcut rules for choosing--.given at some stage a convergence (ql, q2, q.)xl
qwhich subconve;gence (qz, qj)x q to break up and which input x2 : xl

to use.
In contrast to this essentially local attack on the problem of eliminating

convergences, we will develop a global procedure for reducing, not the number of
convergences, but rather the number of merges. With Moore machines as we
have defined them, the concepts of "merge" and "converge" are, of course, identi-
cal, but this, as has been pointed out, is not always a useful identification to make.
Thus the global technique we propose may often be inefficient, as it will reduce many
merges which are not convergences. For machines which have a large number of
convergences, however, we can expect the technique to substantially decrease the
number of additional states or outputs which are required for a diagnosable
realization. Unfortunately, since the technique deals with merges and not con-
vergences, exact results on the number of additional states or output symbols
which will be saved are not available. In fact, it is possible to devise examples

REALIZATION WITH FEEDBACK ENCODING. II 43

where the procedure, while reducing the number of merges, increases the number
of convergences. This will become clearer as we get into the actual mechanics of
the procedure.

Let D be a digraph, and number the points ul, "", Up so that id (ul) id (u2)
<_ < id (u,). The indegree sequence of D is the sequence (id (ua), id (u2),
id (up))_ Suppose that D is the digraph of a Mealy machine, D D(M), and let
m have inputs. Let (D) be the quantity ’= max {0,id (ui) t}. For any arc uv,
let (uv) be the input label on the arc. We will say that there are n merges at a state
u if there are n + 1 arcs vxu, vzu, ..., v,+xu such that (vlu)= (v2u)

(v,+ u); note that if all these arcs had the same output label, it would be
necessary to add n new output symbols to eliminate all the convergences. Let E(u)
be the total number of merges at u and E(M) be the total number of merges in M.

LEMMA. For any machine M with inputs, F_,(M) _>_ E(D(M)).
Proof. We will show that for each state u, E(u) >= max{0, id (u) t}. Clearly,

the equation holds for each state u with id (u) t. If the number of different input
labels on arcs leading to state u is rn __< t, where id (u) > t, then E(u) id (u) m.
Thus if id (u) > t, then E(u) id (u) m >__ id (u) t.

THEOREM 6. Any machine M can be isomorphically realized with feedback
encoding by a machine M’ with F_,(M’) E(D(M)).

To prove this theorem, we need to investigate those properties of the assign-
ment function which will guarantee that E(M) E(D(M)). To this end, we intro-
duce some additional notions from graph theory.

A graph G consists of a set V V(G) of points together with a set X X(G)
of unordered pairs of distinct elements from V, called lines; if X is instead a collec-
tion, with repetitions, then G is a multigraph. Concepts like incidence, adjacency
and walks are the same as for digraphs, except that there is no longer any notion
of direction. A component of a graph is a maximal subgraph any two of whose
points lie of some walk. A set of lines is independent if no two are incident to the
same point. A bigraph is a graph G whose point set V can be partitioned into two
sets V and V2 such that all lines of G join points of V with points of V2. A line-
coloring of a graph is an assignment of colors to the lines in such a way that any
two lines which are incident with the same point receive different colors. The
smallest n such that G can be line-colored with n colors is the line-chromatic number
z’(G). Clearly, the line-chromatic number of a graph G is not less than A(G),
the maximum of the degrees of the points of G. For a bigraph, a stronger statement
can be made ([6, p. 171])" for any bigraph G, ’(G) A(G).

Now, let M be a machine with states {v,..., vp}, and form a bigraph G
with points {Uli Vzi]i 1, ..., p}, where vii is adjacent to l)2j if and only if
D(M); these are the only lines in G. Note how the degrees of the points of G are

related to these of the points of D(M)" deg(vi)= od (vi) and deg (v2i) id (vi).
If we "color" each line vv2 of G with the corresponding input symbol (viv),
then if two lines are incident with the same point v, they are colored differently,
since M is a deterministic machine. If lines x and y with (x) (y) are incident to
point v2, there is a merge. As the preceding lemma shows, there must be merges
at states v with id (v) > t, the number of inputs. To prove Theorem 6 we will show
that inputs may be assigned to the arcs of D(M) in such a way that the resulting
machine is complete and deterministic, hence realizing M with feedback encoding,

44 DENNIS P. GELLER

and the only merges occur at v with id (vi) > t. If the line-chromatic number of the
associated bigraph G is z’(G) >= t, we will color the lines of G from a set of colors
{ill, "’", flA()} in such a way that only colors from {ill, "’", fit} are used to color
lines incident With points Vzi with deg (v2) =< t. If we translate each color fl in
{ill, "’", fl,} to the input symbol x and assign input symbols from {xl,-..,
to lines colored from {fit+i,’", fla} in such a way as to give a complete
deterministic machine M’, then there will be no merges at states v with id (vi) =< t.

Furthermore, if id (vj) > t, then since in the coloring of G each color fl, ..., fit
appears once on a line incident with Vzj, the number of merges at vj will be
exactly id (v)- t. Thus we will have E(M’)= E(D(M)). To prove Theorem 6,
it is then necessary only to demonstrate that a coloring of the prescribed type
always exists.

THEOREM 7. Let G be a bigraph in which max {deg ulu V1} n do, and
suppose that the degrees greater than n which are realized in V2 are n < d < d2
< < d A. Then there is a line-coloring of G from {ill,’", fla} such that
all lines colored fld,+, rid,+, are incident to points of degree greater than di,
fori-O,...,r- 1.

To prove the theorem, we first develop a sequence of lemmas.
LFMMA. Let G be a bigraph such that all points of maximum degree are in

V2. Then G can be line-colored from {ill, fla} such that the only lines colored
a are incident with points of maximum degree.

Proof. We suppose the result to be true for bigraphs with q- lines. Let
G have q lines and let all points of maximum degree be in V2 let x uv be incident
with one such point v. If A(G x) < A(G) A, then v was the only point of
maximum degree in G. So any line-coloring of G- x from {fl,-..,
extends to a line-coloring of G in which only x is colored fla.

If A(G x) A(G) A, then we can color G x with A colors so that all
lines colored fla are incident with points of maximum degree; in particular, no line
colored fla is incident with v. If there is no/?a-line at u, then x can be colored fla in G.
Otherwise, there is a/?a-line uvl (where deg v A). Since deg u < A, there is some
color e which does not appear at u. Clearly, however, there is a line v lul colored
Thus we get a sequence (u Uo, v l, u,/)2,) such that each vi has maximum
degree, each ujvj+l is colored fla, and each vjuj is colored e. At each step of this
process we are choosing a new point. If we have just chosen vj, then uj cannot be a
previously chosen uk:uj 4: Uo as e does not appear at u0 and uj cannot be some
other previously chosen uk, for otherwise there would be two lines colored
incident to u. Similarly, if uj has just been chosen, vj+l cannot be a previously
chosen v, or otherwise there would be two lines colored fla at v. Of course, since
G x is a bigraph, no vj can be equal to any u. Then since G x is finite, this
process must terminate when we are unable to choose a new uj or a new vj+
Since deg vj A, the process cannot stop with a vj, so it must stop at some uj
at which there is no//a-line. We have thus defined a component of the subgraph
G xl,a, and can interchange the colors e and fla in this subgraph, preserving
the validity of the coloring. But now fla does not appear at u, so x can be colored
with fla.

LEMMA. In a bigraph G, suppose max {deg ulu V1} n and that there are
at least two degrees greater than or equal to n realized by points of V2, the two

REALIZATION WITH FEEDBACK ENCODING. II 45

largest being n <= A’ < A. Then there is a line-coloring of G from {fla, fla} such
that all lines colored fla’+ 1, "’", flA are incident with points of maximum degree.

Proof. Clearly the result is true whenever n 1. Suppose it to be true for
n 1, and suppose that in G, max {deg ulu V1} n. Note that if A A’ 1,
then the result holds by the previous lemma.

Suppose now that the result is true for A A’ 1, and that in G, A A’
t, where v l, "’, vr are the points of degree A. We remove an independent set

X of r lines, one adjacent to each of v 1,..., vr, to get G"A(G’) A(G)- 1. If,
in G’, max {deg ulu V1} n, then G’ can be colored with A(G)- 1 colors in
the prescribed manner" the only lines colored fla’+l, "’", fla-1 are incident with
the yr. Now, the lines of X can be colored fla.

Otherwise, max {deg ulu V1} n- 1. By induction on n, a line-coloring
of G’ with the desired properties can be achieved, and this coloring uses only
A 1 colors, as above. Again, the lines of X can be colored flA.

LEMMA. Let G be a bigraph in which max {deg u[u V1} n, A(G)= A > n,
and suppose there are no points of degree n + 1,..., A- 1. Then G has a line-
coloring from {ill,’", fla} such that all lines colored ft,+ 1,’", fla are incident
with points of maximum degree.

Proof. We know the result is true, for any n, if A n + 1. Also, the result is
trivially true whenever n t. Suppose that the result holds when max {deg ulu
V1} n- 1, and let G have max {degulu V1} n. Since we know that the

result holds for A n + 1, suppose that it holds for A n + k 1, and let G
have A(G) A n + k. Suppose the points of degree A are v l, "", yr. Remove
an independent set X of lines which covers {Vl,’", vr}, and let G- X G’.
If, in G’, max {deg ulu V1 n, then the resulting graph satisfies the conditions
of the theorem with A n + k 1, so there is a line-coloring where all lines
colored ft,+l, "’", ft,+k-1 are incident with the vi. Then the lines in X can be
colored fl,+k and the result holds.

Otherwise, in G’, max {deg ulu V1} n- 1. Then the result holds for G’
by induction unless there were points of degree n in V2. If so, G’ satisfies the condi-
tions of the previous lemma with A’(G’) n, A(G’) A 1, and so there is a line-
coloring of G’ from {flo, "’", flA- 1} such that all lines colored flA’+ /3,+ 1, "’",

fla-1 are incident with the vi. By coloring the lines of X with fla the result holds.
If V2 had no points of degree n, then by the inductive hypothesis on n, in the line-
coloring of G’ all lines colored ft,, ft,+ 1, "’", flA- are incident with the v. We can
again color the lines of X with/3a, proving the theorem.

Proof of Theorem 7. The result is trivial for n 1. Also, by the last lemma, it
holds whenever r 1, so we can assume it true for bigraphs in which max {deg u[
u V1} =< n- 1 and also for bigraphs in which max {degulu V1} n and
r 1 degrees greater than n are realized in V2. Let G have max {deg ulu V1 } n,
and let degrees n < dl < < dr A be realized in V2. We first prove the result
in the case dr dr-1 1. Suppose we remove an independent set X covering the
points of degree dr to get a graph G’. If the maximum degree of the points in V1 is
reduced to n 1, then G’ has a line-coloring of the desired type; in particular,
all lines colored /r-2, "’",/nr-1 are incident with points of degree dr-1 in G’,
those being the points of degree dr- or dr in G. Then by coloring the lines ofX with
/3a, the desired coloring results. If in G’ the maximum degree of the points in V1 is n,

46 DENNIS P. GELLER

then the inductive hypothesis on r guarantees the desired coloring for G’, and
again we can color the lines of X with fla.

Now suppose the result holds for d,- d,_ t- 1 and suppose that in
G, dr dr- t. Let v ..., vs be the points of degree dr A. We can remove an
independent set of lines X which covers {v 1,’", vs}, giving a graph G’ with
maximum degree A and next largest degree dr-1; note that (A 1)

1. If, in G’, max {deg ulu V1} n, we get a line-coloring of G’ from
", flA-1} with the desired properties by the inductive hypothesis on t. If not,

we get a line-coloring by the inductive hypothesis on n. Either way, we can color
the lines of X with flA.

FIG. 4.

Example 2. Consider the machine M in Fig. 4. There are convergences at
states q3, q, and qs, and M certainly does not have a distinguishing sequence.
The associated bigraph G has A(G)= 3, and so can be line-colored with three
colors. After coloring G in accordance with the theorem, we get the machine in
Fig. 5, which has only two convergences.

As we have noted, the procedure which we have outlined reduces merges rather
than convergences, and, for machines M in which E(D(M)) is small but nonzero,
may actually increase the number of convergences. Nevertheless, there are two
cases in which the procedure can be shown to be of definite advantage. We state
these as corollaries.

COROLLARY. If M has inputs, then M can be isomorphically realized with

feedback encoding by a convergence-free machine if and only if every state q has
id (q) t.

REALIZATION WITH FEEDBACK ENCODING. II 47

a;1

b;l

a;1
a;1

b;O

b;1

b;0 a;1

b;O

FIG. 5.

Such machines, of course, also satisfy Theorem 4; this corollary, therefore,
provides an alternate method of attack.

Any machine M can be isomorphically realized with feedback encoding by a
machine which has at most =,(D(M)) convergences, since every convergence is a
merge. Of special interest is the case when M has more than E(D(M)) convergences.

COROLLARY. If M has more than E(D(M)) convergences, then M can be iso-
morphieally realized with feedback encoding by a machine with fewer convergences.

3. Conclusion. We have covered both special-case and general applications
of the concept of realization with feedback encoding to the distinguishing sequence
problem. In some cases, such as Theorem 4, the results should have real value in
the cases to which they apply. In the more general settings, such as Theorem 6,
the practicality may be less obvious a more effective algorithm than the inductive
proof of Theorem 7 would be desirable, and the theorem focuses on merges rather
than convergences.

In this paper, and in [23 we have tried to show the potential of the notion of
feedback encoding, much of which rises from its transformation of "behavioral"
properties to "structural" ones. At this stage, the concept is probably best looked
upon as a heuristic which might be tried in a particular problem. Work still needs
to be done on estimating the costs incurred by the techniques proposed and on
developing reliable algorithms which will indicate whether a particular problem
is amenable to them.

REFERENCES

Ill C. BERGE, The Theory of Graphs, Methuen, London, 1964.
[2] D. GELLER, Realization with feedback encoding. I: Analogues of the classical theory, this Journal,

4 (1975), pp. 12-33.

48 DENNIS P. GELLER

[3] A. GHOUILA-HOURI, Une condition suffisante d’existence d’un circuit Hamiltonien, C. R. Acad.
Sci. Paris, 251 (1960), pp. 495-497.

[4] A. GILL, Introduction to the Theory of Finite-State Machines, McGraw-Hill, New York, 1962.
[5] F. HENNIE, Finite State Models for Logical Machines, John Wiley, New York, 1968.
[6] D. KONIG, Theorie der Endlichen und Unendlichen Graphen, Chelsea, New York, 1950.
[7] R. MCNAUGHTON AND T. BOOTH, General switching theory, Tech. Documentary Rep. ASD-TDR-

62-599, Moore School of Electrical Engrg., Univ. of Pa., Philadelphia, 1962.
[8a] J. MEYER, Theory and design of reliable spacecraft data systems, Systems Engrg. Lab., Univ. of

Michigan, Ann Arbor, September 1970.
[8b] J. MEYER AND K. YI-I, Diagnosable machine realizations of sequential behavior, Digest of the

1971 International Symposium on Fault-Tolerant Computing, IEEE Computer Society
Publications, 1971.

[9] R. MILLER aND S. WINOGRAD, On the number oftransitions entering the states ofafinite automaton,
IBM Res. Note NC-320, 1963; IRE Trans. Electronic Computers, EC-13 (1964), pp. 463-
464.

[10] E. MOOR, Gedanken experiments on sequential machines, Automata Studies, C. E. Shannon and
J. McCarthy, eds., Princeton University Press, Princeton, N.J., 1956.

[11] D. R. WOODALL, Sufficient conditions for circuits in graphs, Proc. London. Math. Soc. (Sec. 3),
24 (1972), pp. 739-755.

[12] M. YOELI AND A. GINZBURG, On homomorphic images of transition graphs, J. Franklin Inst., 278
(1964), pp. 291-296.

SIAM J. COM’UT.
Vol. 4, No. 1, March 1975

COMPUTATIONAL COMPLEXITY OF INNER PRODUCTS OF
VECTORS (AND THAT OF OTHER BILINEAR FORMS) OVER

A NONCOMMUTATIVE RING (AUXILIARY FUNCTIONS
ALLOWED)*

ROBERT MANDL- AND THOMAS VARI

Abstract. We prove that the minimum number of ring multiplications necessary to compute the
inner product of two n-vectors over a noncommutative ring is n, even if any number of auxiliary
functions (each being a polynomial in the elements of exactly one of the vectors) are allowed "for free".
This is the "noncommutative" analogue of a result of Winograd’s stating that the minimum number of
multiplications needed to compute the inner product over a commutative ring is n, if auxiliary functions
are not allowed, and, respectively, (n/2), if auxiliary functions are allowed. More generally, given a
bilinear form whose matrix is S, the minimum number of multiplications necessary to compute it over
a noncommutative ring is rank(S), whether or not auxiliaries are allowed. The method used is a modifi-
cation of Floyd’s linear algebra approach the inner product x. y (or any other bilinear form) is regarded
as a quadratic form in the 2n indeterminates x l, "", x,, yl,..., Y, (rather than as a bilinear form in
the two separate sets of n indeterminates).

The same method can also be applied to bilinear forms over commutative rings; when the form is
the inner product, the method yields an improved lower bound, thereby closing the difference between
Winograd’s achievable upper bound In/2] and his proven lower bound In/2 J.

Another result of Winograd’s, that the minimum number of binary operations necessary for
computing the inner product is 2n (even if auxiliary functions are allowed), can also be extended to
noncommutative rings.

Key words, fast matrix multiplication, computational complexity, inner product, auxiliary functions

1. Introduction. The interest in the computational complexity of inner
products of vectors over noncommutative rings arose from work on fast matrix
multiplication. It is known that two n n matrices can be multiplied with only
O(t/log27) multiplications of matrix elements (exactly nlg2 7 if n is a power of 2) [4] if
the matrix elements are from a commutative ring, the matrix product can be
obtained in ,1/2n3 ring multiplications ([7]; see also [5]). Although Strassen’s
method, for sufficiently large n, requires fewer multiplications than any other
known method, Winograd’s is better for small values of n (1/2n3< r/1g27 if
log2 n < 1/(3 log2 7) 5.19, i.e., for n =< [_25"19J 36; moreover, it has been
determined from practical tests [1] that Winograd’s method is faster than
Strassen’s for n < 250), and if for even one such value of n some procedure,
similar to Winograd’s but not using commutativity, yielded the matrix product
with fewer multiplications than Strassen’s, then that procedure could be extended
to a general method (faster than Strassen’s) in the same way in which Strassen
parlayed his "2 x 2-using-7" procedure into a general method. For some general

* Received by the editors December 6, 1972. This work was supported in part by Project MAC,
an MIT research program sponsored by the Advanced Research Projects Agency, Department of
Defense, under ONR Contract N00014-70-A-0362-001.

f Project MAC, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139.
York University, Downsview, Ontario, Canada.

49

50 ROBERT MANDL AND THOMAS VARI

remarks and results on the influence of commutativity (or lack of it) on the com-
plexity of algorithms, the reader is referred to Hopcroft and Kerr [3 (especially
p. 30 and p. 35).

It is thus necessary to determine whether the inner product of n-vectors can
be computed, without using commutativity, through fewer than n multiplications.
This question was asked by A. R. Meyer in September 1970, and the present paper
(also written in September 1970, except for the Introduction) answers it in the
negative. Of course, we have to allow auxiliary functions, since otherwise the
minimum number of multiplications is n even if the ring is commutative [6]; for
these rings it is known that the presence of auxiliary functions reduces the minimum
to n/29].

The method used in our proof follows Floyd’s linear algebra approach [2],
but with the following difference:the inner product x.y is regarded not as a
bilinear form in the two sets of indeterminates xl, x2, ..., x, and Yl, Y2, Yn,
but rather as a quadratic form in the 2n indeterminates x l, x2, ..., x,, Y l, Y2,
y,. The algorithms considered involve additions, subtractions, multiplications by
constants, and general multiplications (not by constants); we are counting only
the latter (multiplications by nonconstants). Each operand is an indeterminate or
a constant or an allowable auxiliary function (a polynomial in the components
of x or in the components of y; its value is available "for free") or the result of a
previous operation.

2. Preliminary reductions. The following three theorems effect preliminary
reductions of the form of the algorithm; they correspond to Floyd’s Theorems 1-3
[2], but in the present formulations products are not asumed to be commutative
and auxiliary functions are allowed free. We shall assume that the algorithm steps
situated between each general multiplication and the next following general
multiplication have been consolidated into a "macro-step". Since polynomials
in a vector are not defined, we shall sometimes shorten "polynomial in x 1, "’", x,"
to "polynomial in x".

THEOREM 1. Without loss of generality, we may assume that the expressions
being multiplied have no constant terms.

THEOREM 2. Without loss of generality, we may assume that the expressions
being multiplied have no nonlinear terms.

THEOREM 3. Without loss of generality, we may assume that the general products
are of the form

The proofs are the same as Floyd’s and will not be repeated here.
The inner product is therefore computed according to a formula of the form

(2)

where P and Q are polynomials.

COMPUTATIONAL COMPLEXITY OF INNER PRODUCTS 51

Remark. Without loss of generality, we might assume that for each i,

(a + c). (b + d):/: 0

(because otherwise the resulting quadratic forms would depend on x alone or on y
alone, and could be incorporated in the "free polynomials"). This is not essential
to the argument.

Both "flee polynomials" are homogenous of the second degree (since so are
x.y and (.)(.)), and therefore they may be written in the form

X1

X2

P(x) i 2j PijXiXj (X1 X2"’" Xn) p x’Px,

where P mati (Pi) i PiEi and prime denotes transposition, and

Q(y) qiYiY y’Qy.

3. The main theorem.
THEOREM 4. The minimum number of multiplications required to compute the

inner product of two vectors over a noncommutative ring is n, the dimensionality of
the vectors, even when auxiliary functions (polynomials depending only on x, or
only on y) are allowed "for free".

Proof. Let us define

Mo=PQ=

1911 Pln

P2n

P

qll

q21

qln

q2n

Z (X X2 X

i (ai ai2 ain

Wi (il ci2 Cin

YI Y2

bi

dil di2

bin)’,

din)’,

52 ROBERT MANDL AND THOMAS VARI

Then the ith product can be written as (z’ vi)(w z), or, using the associativity of
matrix multiplication, z’ Mi z, where Mi is the ("external") product viw, a
(2n) (2n) matrix. The identity (2) becomes

(3) z’ U" z=(z’ Mi z)+z’ Mo z,

or

(4) Mo + M + n2 -+- Un.
Thus we see that the inner product of two n-vectors can be computed by at most
n- multiplications if and only if one can find "suitably formed" matrices
Mo, M1, ..., M,_ 2, M,_ such that (4) is satisfied"

U"(4’) Mo + M + + M,_
or, more exactly, iff there exist two n n matrices P, Q and n pairs of 2n-
vectors v, w such that

(5) (P @Q)+ viw =U".

Since for each i, rank (viw) (except in the trivial case Ivil Iwil 0), we neces-
sarily have rank(]-I vwl)_< n- 1. All the n n submatrices of]- M
have therefore null determinants, and in particular this is true of the one in the
upper right corner. Since the addition of M0 does not affect that corner (Mo

P Q), the upper right n n submatrix of -1 M is singular, while for

COMPUTATIONAL COMPLEXITY OF INNER PRODUCTS 53

the similarly placed submatrix of U", we have det (I,) - O. Thus the assumption
that n multiplications are sufficient has led to a contradiction, and the neces-
sity of at least n multiplications is proved.

4. Generalizations.
THEOREM 5. The minimum number of multiplications required to evaluate a

bilinear form i j sijxiyj of full rank over a noncommutative ring is n, the dimen-
sionality of the vectors, even when auxiliary functions (polynomials depending only
on x, or only on y) are allowed "for free". (A bilinear form is offull rank if its nullity
is 0, i.e., if its rank equals the dimensionality of the vectors upon which it operates.)

Proof. The proof is similar to the proof of Theorem 4.
THEOREM 6. The minimum number of multiplications required to evaluate a

bilinear form i SijXiYj over a noncommutative ring is equal to the rank of the
associated matrix S, even when auxiliary functions (polynomials depending only on x,
or only on y) are allowed "for free".

Proof The proof is similar to the proof of Theorem 4.

5. Bilinear forms over a commutative ring. For the case when the evaluation
of bilinear forms is effected without the benefit of auxiliary functions, Floyd’s
Theorem 5 [2] yields the following corollary.

COROLLARY. The minimum number of multiplications required to evaluate a
bilinear form i SijxiYj over a commutative ring (no auxiliary functions allowed)
is max(re(S)), v(S)), where rc(S) and v(S) are, respectively, the positive index of inertia
and the negative index of inertia of S.

Floyd proved this for quadratic forms; if a bilinear form could be evaluated
with fewer multiplications, then so could a quadratic form (by identification),
thus yielding a contradiction and proving the corollary.

We remark that, by our Theorem 6, if the ring is not commutative, the-mini-
mum number of multiplications is not the larger of the two indices of inertia, but
their sum (- rank(S)).

Turning our attention now to the case when the evaluation of the bilinear
forms is effected with the benefit of auxiliary functions, we denote by R the upper
right n x n submatrix of the 2n x 2n matrix M0 + M1 + M2 + ..., and by
L its lower left n x n submatrix. When the ring was not commutative (see Theorem
4) the problem reduced to the existence of vectors vi, wi such that R S and L 0.
In our case, however, a term exiyj could be represented as flxyj + (fl)yjx, and
therefore we are content if we achieve R + L’= S. For a given S, the minimum
number of multiplications necessary to compute the associated form is the mini-
mum, over all n x n matrices X, of the numbers of the form max (rank (X’), rank
(S X)), i.e., it is

minx max (rank (X), rank (S X))

(noticing that rank (X’) rank (X)). This is certainly a lower bound for the number
of multiplications, but it seems to be quite intractable in its general form. We shall
therefore derive another bound, possibly worse but a little more tractable. Let
us restrict ourselves to matrices X of the form matij(efii where the e’s are
0 or 1; this corresponds to the following: when a term oxiy is represented as

54 ROBERT MANDL AND THOMAS VARI

flXiY + (0 fi)yjXi, fl is restricted to the two values a and O. (We are trying to
maximize the number of null entries in the matrices R and L). Thus the new
bound is

min max (rank (matij(eifiij)), rank (matij(giasi)))
(Vi,j)eijB{O, 1}

(means -a), and we conjecture that this new bound is no worse than the
previous one.

Particular case. The form to be evaluated is the inner product; S I. In
this case, we have

rank X rank (matij (eijsij)) trace (matij(eijsij)) trace (matij (elj))

eii the number of l’s in X,

and similarly

rank (S X) the number of l’s in S X.

Noticing that rank (X) + rank (S X) const. n, we shall write the minimax
in the form

min max(n k,k),
k<_n
in’-[ege

which readily evaluates to [n/2]. We have thus rederived Winograd’s result [9] and
at the same time improved it from [n/2J to In Since the achievable bounds [7]
for n even and for n odd both coincide with the new bound, the new bound is
exact, and the abovementioned conjecture passes the test in this particular case.

6. Minimal number of binary operations. We conclude this paper by making
a few remarks on the total number of binary operations (of all kinds) required to
compute the nner product of n-vectors over noncommutative rings. First, Wino-
grad’s result for commutative rings [8], stating that 2n operations arc neces-
sary, holds also for noncoInmutative rings since its proofdid not use commutativity
(except in examples). Second, this lower bound can be improved, in both cases
(commutative/noncommutative rings), to

(2n 1) + (number of auxiliary functions actually used).

In particular, this implies that for the case of commutative rings, where

(min#multipl.)+(min.#add./s.)=(n-1)+ I] [n]-l<2n-1
and the two minima are not achieved simultaneously, any attempt at reducing
the number of multiplications will cause an increase in the number of additions,
which not only offsets the saving in multiplications but actually exceeds that saving,
the excess being equal to the number of auxiliary functions actually used. This is
exemplified by the fact that when we use Winograd’s procedure for reducing the
number of multiplications from n to n/2, the number of additions increases from
n- to n + 1, i.e., by 2 units more than the saving in multiplications, and
exactly 2 auxiliary functions are used by the algorithm.

COMPUTATIONAL COMPLEXITY OF INNER PRODUCTS 55

REFERENCES

[1] R. P. BRENT, Error analysis of algorithms for matrix multiplication and triangular decomposition
using Winograd’s identity, Numer. Math., 16 (1970), pp. 145-156.

[2] R. W. FLOYD, Notes on computational complexity of inner products, matrix-vector products,
matrix products, and sets ofquadratic forms, to appear.

[3] J. E. Ho,cRovr ,rD L. R. KER, On minimizing the number ofmultiplications necessaryfor matrix

multiplication, SIAM J. Appl. Math., 20 (1971), pp. 30-35.
[4] V. STASSEN, Gaussian elimination is not optimal, Numer. Math., 13 (1969), pp. 354-356.
[5] A. WAKSMAN; On Winograd’s algorithm for inner products, IEEE Trans. Computers, 19 (1970),

pp. 360-361.
[6] S. WNOGaD, On the number of multiplications required to compute certain functions, Proc. Nat.

Acad. Sci. USA, 58 (1967), pp. 1840-1842.
[7] --., A new algorithm for inner product, IEEE Trans. Computers, 17 (1968), pp. 693-694.
[8] --., On the algebraic complexity of inner product, IBM Res. Rep. RC-2729, 1969.
[9] --, On the number of multiplications necessary to compute certain functions, Comm. Pure

Appl. Math., 23 (1970), pp. 165-179.

SIAM J. COMPUT.
Vol. 4, No. 1, March 1975

FAITHFUL REPRESENTATION OF A FAMILY OF SETS

BY A SET OF INTERVALS*

KAPALI P. ESWARAN]"

Abstract. Let Q {ql,q2,’", qm} be a family of finite, nonempty sets, and S U q,Q {qi}.
Suppose there exists a one-to-one function f that maps elements of S into points in the real line
such that for each qi Q there is an interval Ii containing images of all elements of q but not images
of any elements not in qi. Then the function f and the set of intervals {11 ,I2, "", Ira} are said to faith-
fully represent Q. Necessary and sufficient conditions and an algorithm for faithful representation of
Q are developed. An important kind of file organization, called the consecutive retrieval file organiza-
tion, is shown to be a direct application of the property of faithful representation.

Key words, faithful representation, linear (total) ordering, consecutive retrieval file organization,
intersection graph, complete graph, covering of a graph, directed semantic graph, Hamiltonian path,
acyclic graph, query inverted file organization

1. Introduction. Consider a family of sets Q {ql, q2,’", qm}, where
q, for __< __< m, is finite and nonempty. Let S U q,O {q} {al, a2, ..’, an}
denote the set of elements belonging to the sets in the family Q. Elements belonging
to the set S q are called foreign with respect to q. Suppose there exists a one-to-
one function f that maps the elements of S into (points in) the real line N such that
for each q Q, there exists an interval I containing images of all elements q
but not images of any foreign elements with respect to q. Then we say that the
family Q is linearly orderable (L.O.) and the function f and the set of intervals
{I,Iz,..., Ira} faithfully represent the sets in Q. Hereafter, Q shall denote a
family of sets {ql,q2,..., qm} and S the set Uq,a {qi} {a,a2,... a,}.
The statement that (f; 11,I2,..., I,,) faithfully represents Q means that the
function f and the intervals 11, I2, "’", Is faithfully represent Q.

Example 1. Let Q {ql, q2, q3}, qx {al, (/2, a3}, q2 {a2, (/3, a5} and
q3 {a4, as}. Let f(al) 1, f(a3) 2, f(a2) 3, f(as)= 4 and f(a4) 5. Let
11 [1, 3], I2 [2, 4] and 13 [4, 5] correspond to q, q2 and q3, respectively.
Then (f; !1, !2, I3) faithfully represents Q. This is shown in Fig. [2

12(q2)-I3(q3)

2 3 4 5

(a) (a3) (a2) (as)

FIG. 1. The preimages of 1, 2, 3, 4 and 5 are given below for each in parenthesis. Intervals with
the corresponding sets are also shown

* Received by the editors September 14, 1973, and in revised form May 5, 1974.
]" Department of Electrical Engineering and Computer Sciences, University of California at

Berkeley, Berkeley, California. Now at International Business Machines Corporation, San Jose,
California 95114. This work was supported by the Naval Electronic Systems Command under Contract
N00039-71-C-0255 while the author was at University of California at Berkeley.

56

FAITHFUL REPRESENTATION OF A FAMILY OF SETS 57

One of the applications of the above model is in the area of information
retrieval. Let us assume that we know the family of queries Q regarding a file F.
We need to arrange the file on a linear storage medium. A storage medium S is
called linear if the storage locations of S can be arranged linearly and the access
time between any two storage locations is an increasing function of the distance
between them. Tapes, tracks of a disk, books in a library shelf and shops in a
street are examples of a linear storage medium. We shall assume that the storage
devices are one-dimensional, i.e., the shops in the street have just the ground
floor, etc.

Suppose that the query family Q is such that there exists a 1-1 function f
which maps the records belonging to the file F into storage locations of a linear
storage medium satisfying: (i) for each query q Q, there exists a sequence S of
consecutive storage locations containing all records pertinent to q, and (ii) S does
not contain any record not pertinent to q. We then say that the family of queries Q
has the consecutive retrieval property (CR property) [1]. A file organization having
this property is called a CR organization. Note that each record is stored only
once. By knowing the first and the last pertinent records ofa query in a CR organiza-
tion, all relevant records of all queries can be retrieved. If the queries in Q are
equally likely, then a CR organization for Q guarantees minimum overall retrieval
time and minimum storage space. We can see that Q has the CR property if Q
can be faithfully represented when we consider each record in the file as an element
a and each query qj as a set of elements.

The paper is in four sections. The results in 2 concern a family of sets where
every pair of sets in the family has at least one common element. Section 3 deals
witt- the conditions under.which the family Q (.J Q2 is faithfully representable,
where Q and Q2 are faithfully representable families having pairwise nondisjoint
sets. Section 4 extends the conditions of 3 to a family of sets which is a union of
more than two such families. Given a family of sets Q, we proceed as follows.
(i) We shall express Q as a union of subfamilies such that the sets in each of the
subfamilies are pairwise nondisjoint. (ii) We will check if each one of these sub-
families are faithfully representable. (iii) We will verify if the union of such faithfully
representable subfamilies is faithfully representable.

The idea fits well under a graph theoretic background. There is a correspond-
ence between a family Q of pairwise nondisjoint sets and a graph representation
of Q called the intersection graph of Q.

2. Intersection graphs and faithfully representable families.
LEMMA 1. If Q is linearly orderable, then Q’

_
Q is linearly orderable.

LEMMA 2. Let Q {ql,q2, "", qm}, S U q,Q {qi} {al,a2, "", a,,} and
g/j {aj} for <__ j <_ n. Then Q is L.O. iff Q is L.O., where Q Q U {g/,}, it{l,
2,..., n}.

By Lemmas and 2, we can assume that as far as faithful representation (linear
ordering) is concerned, no set in Q is a singleton.

The intersection graph of Q is denoted by f(Q) and is defined as follows" for
each set q Q, there exists a corresponding node ?/ in f(Q) and vice versa and
for - j, ?/ is connected with /j iff q f) qj - 95. A graph G is called complete iff
every pair of distinct nodes of G is joined by an edge in G.

58 KAPALI P. ESWARAN

Let {G1, G2, Gp} be a set of subgraphs of a graph G such that every node
and edge of G is in at least one of the subgraphs G l, G2,’", Gp. Then {G,
G, ..., Gp} is said to cover G. All these definitions and the ones that follow are
more or less standard in graph theory (see [2], [3]).

Example 2. Let Q {qx,q2,q3,q4,qs,q6,qv,q8}. Let q {ax,az,a3}
q2 {a2,az,a4,as}, q3 {a.,a3,a4}, q4 {a,as,a6}, q5 {a4,as,a6,bx},
q6 {b,, b}, q7 {aT,aa} and q8 {aT,a9}.

We have S U q,O {q} {a, a, a3 a4, as, a6, a7 a8, b, ha}. Y(Q)is given
in Fig. 2. Let R be the connectivity relation of f(Q), i.e., gh R g/ iff there is an
edge between and in f(Q). Then

Set of nodes of (51

Gx=[f- R]tql,qz,q3,

G2 [{/2,03,04,5},R],

G3 [{g/s, g/6}, R]

and

G4 E{g/v, g/s},

are some of the complete subgraph of f(Q). We also see that G, G2, G3 and
cover f(Q).

2

O1

3 t7

FIG. 2. The intersection graph t)(Q) of Q

LEMMA 3. If f(Q) is complete and Q is faithfully representable, then

I= qeck.
qiQ

Proof. Let Q= {q,q2,’",q,,}, and let {f;I,I2,...,Im} faithfully
represent Q. The proof is by induction on m. The basis of the induction is obvious.

FAITHFUL REPRESENTATION OF A FAMILY OF SETS 59

Assume that the lemma is true for m k- 1. Consider m k. (i) Intervals
I1, I2,..., Ik_ overlap (i.e., there exists an element in S whose image is in 11,
I2,’", Ik-1) since q f) q2 fq q3 qk-1 by induction. (ii) The interval Ik
must overlap with each one of the intervals 11 12, .", Ik_ since qk (q qi V for

1, 2, ..., k 1. (i) and (ii) imply the existence of an element at S such that
a is in 11,I2,..-, Ik" Since (f;11 ,I2,-.., Ik) faithfully represents Q, a is not
foreign to any set in Q, i.e., f’lq,Q qi 4: .

Lemma 3 and the following lemmas lead us to Theorem 1, which gives
necessary and sufficient conditions for a family Q having pairwise nondisjoint
sets to be faithfully representable. We shall draw a correspondence between the
ordering of the elements of the sets of such a family and a Hamiltonian path in a
graph defined on the elements. Let us define that graph.

Define a directed semantic graph IV, R, I]. V is a finite nonempty set of
nodes. R is an irreflexive relation on V such that for all a, aj V, - j, ag R aj iff
there is an edge from a to aj in G. R is the connectivity relation of G. I is a subset of
V. Nodes in I are called direction-changer nodes and are denoted by an * in (3.
Nodes in V-I are non-direction-changer nodes. {ai, aj} denotes the edge
between a and aj, ignoring the direction on the edge. (ai, aj) denotes the directed
edge from node a to node aj. A path in a directed semantic graph (DSG) t is a
sequence of distinct nodes ao, a 1, "’", a, a + 1, "’", ak oft such that for 0 __< < k,
(a, ai+ 1) is an edge of G when in direct mode and (ai+ , a) is an edge of G when in
reverse mode, where the modes are defined as follows. If a path starts with a non-
direction-changer node, then the mode is direct. If it starts with a direction-changer
node, the mode is reverse. Whenever a direction-changer node is reached from a
non-direction-changer node, the mode is switched. (If a direction-changer node is
reached from a direction-changer node, no change of mode occurs.) If P a0,
a, ..., ak is a path of t, then ao is called the starting node of P, ak the end node
of P and a, az, ..., ak_ the intermediate nodes of P. A Hamiltonian path in a
DSG t is a path that passes through all the nodes of .

Example 3. Consider the DSG G in Fig. 3. 2 and 3 are direction-changer
nodes. (1,2,3,4 (2,3,1 are examples of paths in G.
fi4, fi), (fi, fi4, fi3, fiE, 81) are some of the Hamiltonian paths in G.

FIG. 3. The DSG G(Q) of Q

We now define the DSG of a family of sets Q. Let I f’)q,Q qi. Let , be an
irreflexive relation defined on S as follows" a R a iff i4: j and for all qk Q,
ai qk implies aj qk" Note that R is transitive. The DSG of Q is denoted by G(Q)
and is [S’,,, I’]. S’ is the set of nodes of t3(Q) and is {ill, fi2, "’", fii, "", ft,},
where node fi corresponds to element a S and vice versa, fii R fij iff ag R aj.
We can use the same symbol R for a relation between two elements of S and for the

60 KAPALI P. ESWARAN

connectivity relation of G(Q) since there is no confusion. I’ is the set of direction-
changer nodes of G(Q), with p 1’ iff ap 1.

Example 4. Let Q {qlq2, q3}, ql {al, a2, a3}, q2 {a2, a3, a,, as} and
q3 {a2, a3, a4}. Then S {al, a2, a3, a,, as}. For instance, al K a2, al K a3.
Note that a3 is not K-related to al, since q3 contains a3 and not al. G(Q) is shown
in Fig. 3.

LEMMA 4. Let (Q) be the DSG of Q and h be a Hamiltonian path in Cr(Q).
Then there does not exist a subpath h’ of h such that the starting and end nodes of
h’ are direction-changer nodes and the intermediate nodes are non-direction-changer
nodes.

Proof. Let I f"lq,e qi. Assume, to the contrary, that there exists a subpath
h’ of h (fii, fii/ x, "’", fi)- 1, fi)), where fii and are direction-changer nodes and
fig/ 1, fii/ 2, "’", fi)- are not. Since ai, a I and ai/ 1, aj_ (S I), we have
that (fii+ 1, fii) and (fij_ 1,) are edges of G(Q) and (fii, fii+ 1) and (fi, fi_) are not
edges of G(Q) (see Fig. 4).

i j

/
i+ j-1

FIG. 4

In the subpath h’, since there are no direction-changer nodes between
and fij, we should have either (i) edges (fii, i + 1) and (j_ , fij) or (ii) edges (fii+ 1,

and (fij, fij_l). In either case, we have a situation that contradicts the earlier
statement that (fii, fii + 1) and (fij, fij_ 1) are not edges of G(Q).

LEMMA 5. Let h (?t, ?t i, ti+l, ?tj_ 1, ?tj, Yr,) be a Hamiltonian
path of G(Q). If {ai, aj}

_
qp Q, then {ai, ai+ 1, ai+ 2,"" a_ , aj}

_
qp.

Proof. Let I Iqq,Q qi. We have three situations 1-3 below.
1. Both fii and fij are direction-changer nodes. By Lemma 4, all the nodes

between fii and ft./are also direction-changer nodes. Then the elements corres-
ponding to i+ 1, fii+ 2, j-1 belong to I. Hence the lemma.

2. Both fii and fij are not direction-changer nodes. For this situation, we
have the following possible cases.

Case (i). Let h visit all the direction-changer nodes after leading fi. Then
(i’ i+ 1), (i+ 1, i+ 2), (j- 1’ j) are edges of G(Q). Since (l’ m) ::=> if a qk
then a qk, for all q in Q, we have ag, ag+ 1, "’", aj_ 1, ajs %.

Case (ii). Let h visit all the direction-changer nodes before reaching
An argument similar to that in Case (i) leads us to the conclusion that aj, aj_ , .-.,
ai_ , a qp when ai, aj qp.

Case (iii). The direction-changer nodes are between fig and fi in h. Let fig and
fil+ be the starting and end nodes of the subpath of h that consists only of the
direction-changer nodes (by Lemma 4). Then the path h is

(11, li, ll, ll+k, lj, n"
direction changers

FAITHFUL REPRESENTATION OF A FAMILY OF SETS 61

By Case (i), all the elements that correspond to nodes between i and

_
in h

belong to qp, and by Case (ii), all the elements corresponding to nodes between
t+k+l and t in h belong to qp. The direction-changer nodes correspond to the
elements of I which are subsets of all sets in Q. Hence we have the lemma.

3. Either i or t is a direction-changer node. Without loss in generality,
suppose is. Let fi+k be the end node of the subpath of h that consists only of
the direction-changer nodes. By Case (ii) above, {at, at_ 1, ..., a+k+l}_ qp.
We know that {a, a+l, .’., ai+k} I qp. Hence {a, a+l, ..., at_l, at} qp.

The following lemma is the counterpart of Lemma 4 and is easily proved by
contradiction [6].

LEMMA 6. Let f(Q) be complete and suppose Q is faithfully representable.
Let I f’l qieO q and let (f; I, I2,’" Im) faithfully represent Q. Then there does
not exist ab, a, ad such that ab, ad I and a (S- I) and f(a) is between f(ab)
and f(an).

The theorem that follows gives the necessary and sufficient conditions for a
family Q whose intersection graph is complete to be faithfully representable.

THEOREM 1. Let f(Q) be complete. Q is faithfully representable iff there exists
a Hamiltonian path in (Q).

Proof. The sufficiency part of the theorem is easy to prove as follows. Let
h (ill, fi2, "’", ft,) be a Hamiltonian path in (Q). Consider h as an n-tuple.
Define a function fh corresponding to h so that fh maps elements of S {a,
a2, an} onto integers 1, 2,... n as follows" fh(ai) j iff the jth member of h
is fii. For each q e Q, define an interval

Ii min {fh(av)}, max {fh(av)}].
apqi apqi

It can be oberved that I contains the images of all elements in q. To see that li
does not contain images of any element not in q, suppose, to the contrary, that it
does. Then there exist ab, at1, ac2, ..., ak, ..., acj, an belonging to S with ack q
and fh(ac is between fh(ab) and f(ae) and {ab, a}

_
qi. By the definition of f,

this implies that the node fc is between fib and fn in h, which contradicts Lemma 5.
Hence (f; 1, I2,... Ira) faithfully represents Q.

Now we proceed to the necessity part of theorem 1. By Lemma 3, I f’lq,o q
4: . Let I {ap, ap+ 1, ap+l}" Let (fh; I1, I2, Ira) faithfully represent Q.
We can define a total ordering on the elements of S such that ai precedes a in the
total ordering iff fh(a) < fh(at). Without loss of generality, we can assume that fh
is such that

fh(a) < fh(a2)<... <fh(ap)< f(ap+)< < fh(av+) <... < fh(a,,)

images ofelementsl
(by Lemma 6).

All the intervals contain the images of elements belonging to I. Hence, when-
ever an interval I contains fh(a), it has to contain fh(a2), f(a3), ..., f(a+t).
Then, a qi implies {a2, a3,...av,.., ap+z} qi. For if any of the elements of
{a2, a3,... ap_ 1} is foreign to q, we will have a contradiction, i.e., that (fh"
11, I2,... Im) does not faithfully represent Q.

62 KAPALI P. ESWARAN

Thus we have that (1, 2) is an edge of (Q). By considering intervals that
contain fh(a2),fh(a3),’’’, fh(ap-1) and repeating the same argument as above,
we see that (2, 3), (23, 4), "’", (2p_ 1,2p) are among the edges of G(Q).

A similar argument as above shows that
p+l) are also edges of G(Q). Since the relation R is symmetric for I, every pair of
nodes belonging to I’= {p,p+l,..., p+/} is connected and directed both
ways. But the nodes I’ are precisely the direction-changer nodes of G(Q). Hence

(1, 22, "’’, lp_ l, 2p, "’’, lp+l, lp+l+ l, "’’, ln

is a path of 6(Q) which is Hamiltonian. l-]
Example 5. Consider the family Q in Example 4. The DSG of Q is given in

Fig. 3. h (ill, 22, fi3, fi4, 25) is a Hamiltonian path in G(Q). Hence Q is faithfully
representable.

Define fh:fh(al)= as 21 is the first member of h. Similarly, fh(a2)= 2,
fh(a3) 3, fh(a4) 4 and fs(as) 5. Let

11 min (fh(ai)), max (fh(ai))] [fh(al),fh(a3) [1,3].
tliql aiql

Similarly, 12 [2, 5] and 13 [2, 4]. Thus (fh; 11,12,13) faithfully represents Q.

ll(q

I3(q3)

2 3

(al) (a2) (a3)

See Fig. 5.

12(q2)

4 5

FIG. 5. A faithful representation Of Q

3. Union of two linearly orderable families whose intersectiOn graphs are
complete. In the remainder of the paper, let Q and Qz denote two families of
sets. Q1 Q2 need not be empty. C,(Q1) and G(Q2) represent the DSG of QI and
Q2, respectively. S denotes the set LI q,Ol {q} and S2 the set 12 qiQ2 {qi}. S indicates
($1 LI S). We shall first prove some results regarding the elements of $1 S2 in
an ordering that implies a faithful representation of Q U Q2. We shall then intro-
duce some definitions regarding the orderings of elements in S and $2 in graph
theoretic terms. Finally, we shall prove a theorem to check if Q1 [-J Q2 is faithfully
representable when Q, Q2 are faithfully representable and (Q1),(Q2) are
complete.

LEMA 7. Let Q U Q2 be faithfully representable and f(Q), f(Q2) be complete.
Let I S f) S2 and f be a function that defines a linear ordering of the elements
of S such that (Qa U Q2) is faithfully represented. Then there does not exist ap, ai, a
such that ap (S I) and {ai, a} I and f(ap) is between f(ai) and f(aj).

Proof. The proof is by contradiction. Suppose that there exist such ap, a
and aj. Without loss of generality, we shall assume that f(ai) < f(ap) < f(aj).

FAITHFUL REPRESENTATION OF A FAMILY OF SETS 63

By Lemma 1, Q1 and Q2 are linearly orderable. Then by Lemma 3,

11= qi- and 12= qi=/: .
qi-Q1 qic=Q2

As ai, a e S1, there exist sets qc, qd e Q1 such that a qc and aj e qd. 11
__

qc and
I1 cz qd

Case (i). a e I1. Then the interval I corresponding to qe contains f(ai), f(a)
and hencef(ap). Since the linear ordering defined byffaithfully represents Q U Q2,

ap is not foreign to qa.
Case (ii). a e 11 By the same arguments as in Case (i), we have ap qc.
Case (iii). If ai, a I1, then there exists an element at e I1 such that either

f(at) < f(ai) or f(ai) < f(al). In either case, ap q or ap qd since f faithfully
represents (Q1 U Qa).

Thus there exists a qi e Q1 such that ap
_

qi" Hence, a, e $1. By similar argu-
ments, ap S2 This means that ap I, a contradiction. [

LEMMA 8. Let Q1 U Q2 be faithfully representable and f(Q1), f)(Qz) be
complete. Let I $1 $2 =/= , $1 or $2. Let f define a linear ordering of the
elements of S faithfully representing (Q1 U Q2). Let a and ak be such that
f(ac) mina,, f(ai)} and f(ak) maXa,i f(a)}. Then

(i) for all a e ($1 I), either f(ai) < f(a) or f(ai) > f(ak), i.e., there does
not exist ap, aq e (S I) such that f(ap) < f(ac) and f(aq) > f(ak)
(ii) for all aie(S I),f(ai) < f(ac),, for all aje(Sa I),j(aj) > f(ak).
Proof (i) This is proved by contradiction (see [4]) by observing the fact that

Q1 and Q2 are faithfully representable and 11 f)q,o, qi =/= and 12 q,O qi

(ii) . We have f(ai) < f(a) for all a e (S I). Assume, to the contrary,
that there exists an aj e ($2 I) such that f(aj) < f(ak). By Lemma 7, f(aj) < f(ac).
Since aj is foreign to all sets containing elements of $1 I, we have

f(aj) < min f(a,.).
arS1

Tt-.ere exists a set Y/i t Q2 such that /i - {aj} U I2. As g/i f"l (S I) , f(at)
< min,rs f(ar) for all a I2. Now consider the set g/p e Q2 such that g/p {ak}
U I2. The interval corresponding to g/p contains the images of elements of S I
which are foreign to all sets in Q2. This leads to a contradiction.. The same arguments as above direct us to the conclusion that if for all
aj e (S2 I), f(aj) > f(ak) then for all aj ($1 I), f(aj) < f(ac). [-]

Let P-(hl,hz,’",h,h+l,...,hk) be a path in Cr(Q). We say that
each hi in P, for < < k, has both left and right neighbors. The left and right
neighbor of hi are hi- and hi + 1, respectively. 21 has only a right neighbor, namely,
22 and hk has only a left neighbor, which is hk- 1. The left neighbor of hi is said to be
empty and so is the right neighbor of

Two paths P1 and P2 are equal (or nondistinct) iff the starting and end nodes
of P1 are the starting and end nodes of P2, and for all hi e P1 such that hi is not the
starting node of P1, the left neighbor of hi in P1 the left neighbor of hi in P2 and

64 KAPALI P. ESWARAN

for all i P1 such that fig is not the end node of P1, the right neighbor of fig in
P1 the right neighbor of fii in P2.

Let hi and h2 be Hamiltonian paths in (Q1) and ,(Q2), respectively. Let
I S f) $2. We see that h induces a subpath in the set of nodes that correspond
to I in G(Q 1). The starting and end nodes of this subpath are nodes that correspond
to some elements in I, and the subpath contains all the nodes which correspond to
the elements of I. Let h denote this subpath. Similarly h is the subpath induced by
h2 in the set of nodes that correspond to I in (Q2). We say that the Hamiltonian
paths h and h2 are consistent (written h h2) iff exactly one of the following
holds"

(i) S S2 I , or (ii) h h and the left. neighbor of the starting node
of hi is empty in h or h2 and the right neighbor of the end node of hi is empty
in hi or h2.

Example 6. In Example 5, we saw that h (fi, fi2, fi3, fi, fis) is a Hamil-
tonian path in G(Q 1) where Q is given in Example 4.

Let Q2 {qz, q3, q4, qs} where q2, q3, q4 and q5 are given in Example 2.
One can draw (Q2) and observe that h2 (2, 3, fi4, 5, 6,) isa Hamiltonian
path in G(Q2). Let

Then h (2 3 4 5) h. The starting node of h 2 and the end
node of h d. The left neighbor of 2 is empty in h2, and the right neighbor
of s is empty in h. Hence h hz.

THZORZM 2. Let fl(Q) aM (Q2) be complete. If Q U Q2 is faithfully re-
presentable, then there exist Hamiltonian paths h in (Q) and h2 in (Q2) such
that h and h2 are consistent.

Proof. By Lemma and Theorem 1, there exist Hamiltonian paths in (Q)
and in G(Q2).

Case (i). I S Sa . The theorem is true.
Case (ii). I . Let f be a function that defines a linear ordering of the

elements e S faithfully representing Q U Q2. We have the following situations 1-3.
1. I $2, i.e., Sz S and S S. Define f(a) f(a) for all ae S and

f(ai) f(ai) for all ai $2. Clearly, f (f2) defines a linear ordering, say C (2),
of the elements S ($2) faithfully representing Q (Q2). Since fa(a) f(a) for all
a $2, we have that for all al, aa $2, al precedes aa in 2 iff a precedes aa in C.
By Lemma 7, there does not exist an a (S $2) and a, an Sz such that f(a)
is in between f(a) and f(an). Hence, if h and h2 are the Hamiltonian paths in
G(Q) and G(Qz) corresponding to C and C2, respectively (see proof ofTheorem 1),
then h h h. The left (right) neighbor of the starting (end) node of ha is
empty. Thus h h.

2. I S, i.e., S Sz. The proof is similar to that of part above.
3. 1 or S or $2. Let I {a,az,..., aa}. Without loss of generality,

we can let f be such that f(a) < < f(aa). By Lemma 8, we can assume without
any loss in generality that for all ai (S I), f(a) < f(aa) and for all a ($2 1),
f(a,) > f(a).

FAITHFUL REPRESENTATION OF A FAMILY OF SETS 65

Now, define f ,f2 :f(ai) f(a) for all ae S and f2(ai) f(a) for all aie $2.
Clearly, fl and f2 define linear orderings, say (.9 and (92, of the elements belonging
to S and $2, respectively, such that Q and Q2 are faithfully represented. Let h
and hz be the Hamiltonian paths corresponding to (91 and (92 in (Q) and (Q2)
(see the proof of Theorem 1). Then hl (fi, fi2, "’", ilk) h. fi is the starting
node of h and its left neighbor is empty in h2 The right neighbor of ilk, the end
node of hl, is empty in hi. We thus have h

4. Union of linearly orderable families whose intersection graphs are com-
plete. In this section, we consider the union of linearly orderable families having
pairwise nondisjoint sets. Necessary and sufficient conditions for the union to be
linearly orderable is given in terms of a new graph called the partial order graph.
An algorithm for faithful representation is also given.

Let Q {Q t, Q2,"’, Qm} be a set of families of sets with Qi 1"1 Qj not
necessarily empty. For =< =< m, let D(Qi) be complete and let Si denote the set
U q,iQi {qj}. S indicates U i= 1,...,m Si {at, a2, a,}. Let ha, h2, h,, be
pairwise consistent Hamiltonian paths in (-(Qt), ((Q2), "’", t(Q), respectively,
where, for <__ <__ m, (Qi) is the DSG of Qi. Define a directed graph ((Q) [’,
/]. ’ is the set of nodes of t(Q) and is {fit, fi2,’", fig,’", ft,}, where node fi
corresponds to element a and vice versa, fii/ fij iff there exists a Hamiltonian
path h, <_ k __< m, in which fii precedes fij. fi/ fij iff (fi, fij) is an edge of (Q).
G(Q) is called a partial order (P.O.) graph of Q corresponding to Q t, Q2,"" Qm.

An undirected path or simply a path in a directed graph G is a sequence of
distinct nodes fi t, fi2, "’", fi such that for 1, 2, ..., (k 1), {fi, fi + are edges
of G. Note that we ignore the direction of the edges in G. A connected-directed
graph is a directed graph in which there is a path between every pair of distinct
nodes. A component G’ of a directed graph G is a subgraph of G such that G’ is
a connected-directed graph and is not properly contained in any other con-
nected-directed subgraph of G. A directed path in a directed graph G is a sequence
of distinct nodes fit, fi., "’", fi such that for 1 _<_ __< k 1, (fi, fi/ t) are edges
of G. A Hamiltonian path in a directed graph G is a directed path that passes
through all the nodes of G. If P (fit, fi2,"",) is a path in G and (fi, fit)
is also an edge of G, then P is also a directed cycle. We can distinguish by context
whether we mean by P a directed path or a directed cycle. If G does not have any
directed cycles, then G is called acyclic. The length of a cycle is the number of
nodes in the cycle.

THEOREM 3. Let G, G2, G be a set of complete subgraphs of f(Q) that
cover f(Q). Let Qi -Q be such that Gi (Qi) for 1 <=iN m. Q is .faithfully
representable iff there exists a P.O. graph j(Q) corresponding to Q t, Q2, Qm
and any J(Q) acyclic.

Proof. The "only if" part of the theorem" since every subfamily of Q is faith-
fully representable (Lemma 1), there exists a P.O. graph (Q) of Q.

Suppose, to the contrary, that there exists a ((Q) containing directed cycles.
Let C (fi,..., fi,fi+ 1,’’’, k) be a cycle of minimum length in G(Q).
(fii, fij) or (fij, fi) is an edge of ((Q) ill" there exists a Sp, <__ p <_ m, such that
Sp
_

{a, aj}. Since ha, h2,..., hm are pairwise consistent, the length of C must
be at least 3. Furthermore, since C is of minimum length, no set S contains more

66 KAPALI P. ESWARAN

than two elements corresponding to nodes in C. Hence, without loss in generality,
we can assume that ai, ai+ Si for _< =< (k 1) and ak, al Sk.

Since Q is faithfully representable, there exists a function f defining a linear
ordering of the elements of S faithfully representing Q. Considering Q, we observe
that f(al) is not between f(a) and f(a+ 1) for l= 1, 2, ..., i- 1, + 2, ..., k
since a, ai+ 1} Si and a is foreign to all sets in Qi. Considering Qx, Q2,
Qk- nd applying the above argument, we get a contradiction that f(at) is between
and is not between f(ax) and f(ak) for l= 2, 3, ..., k 1. Thus, Q is faithfully
representable implies ((Q)exists and any r(Q) is acyclic.

The "/f" part of the theorem" to prove the sufficiency of the conditions, we
shall show how to construct, for any family Q satisfying the conditions, a function
f and a set of intervals faithfully representing Q.

Let (1(2, "", (p be the components of ((Q). Define function f as follows"
(i) for all 2, 2 ak, _<__ k <= p, f(a) < f(a) iff there exists a directed path from

i to .i, (ii) for all ai , and all aj e (7,1 and k < l, f(ai) < f(afl. Since (Q) is
acyclic, such a function exists. For each qeQ, define li [min,,,,q,f(a,),
max,,q, f(ap)]. Interval I contains the images of all elements of q.

To see that I does not contain images of any foreign elements with respect to

q, suppose, to the contrary, that it does. Then there exist ab, an q;ac,"’, ac
e (q) such that for k <= j, f(a) is between f(a) and f(ae). Without loss
in generality, we can assume that f(ab) < f(a,) < < f(a) < f(aa). Then
(fib, .a,) is an edge of (7,(Q) and fi, is the right neighbor of fi in some Hamiltonian
path h, used to define (Q).

Our qi belongs to at least one complete subgraph, say Gl, that was chosen to
cover f(Q). Let Ql be such that Pi(Ql) Gl, and let hi be the Hamiltonian path
in G(Qt) that was used in the definition of (7,(Q). If fie precedes fib in hl, then (fie,
fib) will be an edge of (Q) and hence fi, fi,, ..., fic, "’", fic, fie will be a directed
cycle of G(Q), which is not possible. Hence let fib precede fie in h,. Since fi, is
foreign to q, by Lemma 6, tic, is not between fib and fie in hi. Thus hl :/= h,.

The right neighbor of fib is not empty in both h and hr. The right neighbor of
fib in h, fi,, which is not the right neighbor of in h. This leads us to the contra-
diction that h and h, are not consistent.

Example 7. Consider the family of sets Q in Example 2. We found that G x,

G2, G3 and G are complete subgraphs that cover f(Q). Thus Qx {ql, q2, q3},
Q2 {q2, q3, q4, qs}, Q3 {qs, q6} and Q4 {q7, q8}. r(Qx) is given in Fig. 3
and discussed in Examples 4 and 5. h (fix, 23,23,24,25) was found to be a
Hamiltonian path in G(Q x). Similarly,

h3 (24, as, 26, 1, b2},
and

h4 (28,27,29)

are Hamiltonian paths in G(Q2) G(Q3) and G(Q4) respectively, hi, h2, h3, h4 are
pairwise consistent. We can thus define a d(Q). ((Q) is given in Fig. 6. For sake of

FAITHFUL REPRESENTATION OF A FAMILY OF SETS 67

FIG. 6. t(Q) of the family of sets Q in Example 2. Note that not all the edges of J(O) are shown

clarity, we have not shown all the edges of the graph. We find (Q) to be acyclic
and thus conclude that Q is faithfully representable.

THEOREM 4. If G1 and G2 are complete subgraphs of f(Q) such that G1 and
G2 cover f(Q), then Q isfaithfully representable iffthere exist consistent Hamiltonian
paths in r(Qx) and (Q.), where Q1 - Q, Q2 - Q and f(Q 1) G l, f(Qz) G2.

Proof. The "only if" part of the theorem is Theorem 2 (see 3). If there exist
consistent Hamiltonian paths in ;(Q) and (Q2), then there exists a ((Q). By
arguments similar to the ones in the proof of Theorem 3, one can show that ((Q)
is always acyclic. Then, by Theorem 3, Q is faithfully representable.

Based on the fact that every pair of Hamiltonian paths used in the definition
of a P.O. graph ((Q) of Q is consistent, we have the following lemma.

LEMMA 9. There exists a directed path between every pair of nodes in each
component of G(Q) (i.e., if ?ti and ?to are two nodes belonging to the same component
in r(Q) then there is a path from ?t to ?t or from ?t to ?ti).

LEMMA 10. Let G be a directed graph ,such that there exists a directed path
between every pair of nodes of G. If G is acyclic, then there exists one and only one
Hamiltonian path in G.

Proof. The proof is by induction on the number of nodes n of G. Assume that
the lemma is true for n k 1. Let G be a graph satisfying the hypothesis of the
lemma and n k. Then there exists one and only one source, s, in G (a source is a
node with at least one outgoing edge and zero incoming edges). Delete from G
the node s and all the edges incident on s, and obtain the graph G. In G, any path
between nodes and j (i,j s) does not pass through s. Hence , satisfies the
hypothesis of the lemma. The number of nodes of is k 1. By induction, there
exists one and only one Hamiltonian path in . Let it be s,..., Sin. (S, S) is
the one and only edge between s and s in G. Then s, s, .-., s,, is a Hamiltonian
path in G and is the only one.

From Lemmas 9 and 10, the following theorem is immediate.
THEOREM 5. There exists one and only one Hamiltonian path in every component

of r(Q) if O(Q) is acylcic. [-]

We now present an algorithm to obtain a function f and a set of intervals
{I, I2, ..., Ira} such that (f; 11 I2, Ira) faithfully represents Q.

(i) Obtain a P.O. graph O(Q) of Q. If there does not exist a ((Q) or if ((Q)
is not acyclic, Q is not faithfully representable.

(ii) Let (, 2,"’, (v be the components of r(Q). Get the Hamiltonian
paths H, H2,... Hp in 11, (2, V"

68 KAPALI P. ESWARAN

(iii) Define functionfas follows" (a) for all ?ti rk, ?tj dr, k < r, f(ai) < f(aj),
and (b) for all ?ti, ?tj , 4: j, <= k <= p, f(ai) < f(aj) iff fi precedes
fij in H.

(iv) for all q Q, define I [minajq f(aj), maxajq, f(aj)].
THEOREM 6. The function and the intervals defined by the above algorithm

imply that the family Q is faithfully representable.
Proof. By theorem 5, H1, H2, ..., Hp exist. The rest of the proof is the same

as the proof of the "only if" part of Theorem 3. l-]

5. Conclusions. We have given necessary and sufficient conditions and an
algorithm for faithful representation of a family of sets. The complexity of the
algorithm is discussed in [6].

We mentioned earlier that the faithful representation corresponds to the
consecutive retreval (CR) file organization. If any record in a file is stored more than
once in a file organization, then that record is called redundant. When a file is
inverted on queries, we get a query inverted file organization (see [5] and [6]).
A CR file organization is then a query inverted file organization with zero re-
dundancy. When a family of queries does not possess the CR property, we may
be interested in finding a query inverted file organization with as small a redundancy
as possible. This is discussed in [5] and [6].

If Q does not have the CR property, we may like to find a file organization with
minimum overall retrieval time possible with the constraint that each record be
stored only once. This is discussed in [6].

Acknowledgments. The author would like to express his sincere thanks to
Professor Lofti A. Zadeh and Dr. Sakti P. Ghosh for their suggestions and help.

REFERENCES

[1] S. P. GHOSI, File organization: The consecutive retrieval property, Comm. ACM, 15 (1972), pp.
8O2-8O8.

[2] F. HAn, R. NO,MAn AYD D. CAXWGI-IX, Structural Models: An Introduction to Theory of
Directed Graphs, John Wiley, New York, 1965.

[3] C. BG, Theory of Graphs and its Applications, John Wiley, New York, 1962.
[4] K. Eswny, A graph theoretic approach to linearly orderable sets, Memo, M369, Electronics Res.

Lab., Univ. of Calif., Berkeley.
[5] S. P. GnosrI, Consecutive storage of relevant records with redundancy, IBM Res. Rep. 933, 1971.
[6] K. Esw, Consecutive retrieval information systems, Ph.D. thesis, Memo. M384, Electronics

Res. Lab., Univ. of Calif., Berkeley, 1973.

SIAM J. COMPUT.
Vol. 4, No. 1, March 1975

A DECISION PROCEDURE FOR THE FIRST ORDER THEORY
OF REAL ADDITION WITH ORDER*

JEANNE FERRANTEt AND CHARLES RACKOFF

Abstract. Consider the first order theory of the real numbers with the function + (plus) and the
predicate < (less than). Let S be the set of true sentences of this theory. We first present an elimination
of quantifiers decision procedure for S, and then analyze it to show that it takes at most time 22% where
c is a constant, to decide sentences of length n.

We next show that a given sentence does not change in truth value when each of the quantifiers
is limited to range over an appropriately chosen finite set of rationals. This fact leads to a new decision
procedure for S which uses at most space 2cn. We also remark that our methods lead to a decision
procedure for Presburger arithmetic which operates within space 22on. These upper bounds should be
compared with the results of Fischer and Rabin [2] that for some constant c, real addition requires
time 2 and Presburger arithmetic requires time 22.

Key words, real addition, decision procedures, quantifier-bounding, elimination of quantifiers,
Presburger arithmetic.

1. Introduction. In this paper we present an efficient decision procedure for
the first order theory of the real numbers with the function + (plus) and the
predicate < (less than). Of course, the decidability of the theory in question is a
consequence of Tarski’s theorem that the real numbers under +,. (times), and < is
decidable [5]; however, Tarski’s procedure is far from efficient for the restricted
theory we are interested in. We propose to exhibit a procedure which is nearly
optimal in its computational efficiency. Fischer and Rabin [2] show that there is
a constant c > 0 such that any nondeterministic Turing machine which decides
real addition (even without order) requires, for almost every n, time 2 to decide
some sentences of length n. We will present a deterministic procedure for the theory
of addition on the ordered set of real numbers which uses at most space 2" and
time 22" (where d and g are constants) to decide sentences of length n. Thus there
appears to be a gap of approximately one exponential between upper and lower
time bounds. But since the upper bound is deterministic and the lower bound is
nondeterministic, this gap should be viewed in the light of a long-standing, un-
proved conjecture of automata theory which states that nondeterministic time
is equal in power to deterministic time 2’.

The procedure we give replaces unbounded quantifiers by quantifiers ranging
over a finite set of rationals; truth of a sentence about the real numbers will thus
be determined by checking finitely many instances of a matrix. In order to prove
the correctness of our procedure, we first present an elimination of quantifiers
procedure with the important feature that it does not require the sentence to be
put in disjunctive normal form at each quantifier elimination.

In 2 we define the language under consideration. In 3 we give our elimination
of quantifiers procedure. Our method utilizes an idea used by Cooper [1 in deciding

* Received by the editors May 15, 1973, and in revised form April 24, 1974. This research was
supported by the National Science Foundation under Grant GJ-34671.

" Project MAC, Massachusetts Institute of Technology, Cambridge, Massachusetts. Now at
Tufts University, Medford, Massachusetts 02155.

: Project MAC, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139.

69

70 JEANNE FERRANTE AND CHARLES RACKOFF

integral addition. In 4 we show--via an analysis of 3that each quantifier in a
formula can be replaced by a suitably bounded quantifier, and then show that
the desired space bound can be achieved. In 5 we remark on further applications
of our methods.

2. Notation. We now define a language 2" ofthe first order predicate calculus"
q has variables Xo, x l, X lo, (i.e., the subscripts are written in binary)"
2" has a constant symbol (written in binary) for every integer i"
2" has rational constant symbols composed of integer constant symbols, that

is, if a and b are nonzero integers, then (a/b) is a rational constant symbol of 2’’
has terms of the form (ax/bl)y + (a2/bE)Y2 + + (a/b,)y, (abbreviated

,’= (ai/bi)Yi) where (ai/b) is a rational constant for =< =< n and where yl, "’", Y
represent distinct variables of . The constant symbol 0 will also be considered
a term of 0.

An atomic formula of 2" is either the string TRUE, the string FALSE, or a
formula of the form t 2 or of the form tl < t2, where tl and 2 are terms;the
formulas and sentences of 2" are built up from the atomic formulas in the usual
Way using the symbols V, :1, V, ~, (,).

Let R be the set of real numbers. We interpret the formulas of 2" as follows"
if (a/b) is a rational constant symbol and x is interpreted as having the value r e R,
then we give (a/b)x the value (a/b). r. We interpret as equality, + as the usual
operation of addition on R, and < as the usual ordering on R. The atom TRUE is
always taken to be true, and FALSE is always taken to be false.

Let S be the set of sentences of 2" true under this interpretation. We will exhibit
a decision procedure for $ (that is, an algorithmic procedure for deciding whether
an arbitrary sentence of 2’ is in S or not) such that if B is a sentence of length n, the
algorithm determines whether or not B S within space 2d", where d is a constant.

A remark should be made here as to why we have defined the terms of 2" as
we have; if we had only allowed integer coefficients in our terms, then the resulting
language would have been no less powerful, yet it would have been more difficult
to arrive at a decision procedure. The reason is that our definition of a term reflects
the fact that R is not only an ordered group (under addition), but it is also divisible
and torsion-free. That R is divisible means that for every r e R and every positive
integer k, there is an s R such that k. s r, i.e.,

s+s+ +s=r.
times

That R is torsion-free means that for every r e R and every positive integer k,
there exists at most one s e R such that k. s r. it is because R is divisible and
torsion-free that it makes sense to talk about division by positive integers, and
hence multiplication by rational constants.

In fact, a close examination of our decision procedure will reveal that the only
fact we use about R is that it is an ordered, divisible, torsion-free Abelian group.
Hence our procedure will work as well on Q, the set of rationals (under the usual
addition and order).

FIRST ORDER THEORY OF REAL ADDITION 71

3. Elimination of quantifiers.
DEFINITION. Let Fl(Xl,,,., x,) and F2(xl,..,, x,) be formulas of

and F2 are equivalent if for every r 1, "", r, R, Fl(r 1, "’", r,) is true, F:(r 1, "", r,)
is true.

The goal of this section is to prove the following theorem.
THEOREM 1. For every formula F(x 1, ..., xn), there exists an equivalent

quantifier.free formula F’(xl,..., xn). In fact, there is an effective procedure for
goingfrom F to F’.

It is clear how Theorem leads to a decision procedure for S. To decide if a
sentence F is true, one need merely find an equivalent quantifier-free sentence F’;
F’ will be a Boolean combination of the atoms TRUE and FALSE, which we
know how to decide.

The proof of Theorem is by induction on the complexity of F(xl, ..., x,),
If F is an atomic formula, then we can take F’ to be F. If F is F V F2, then we
can take F’ to be F’I V F, where F’I and Fz are quantifier-free formulas equivalent,
respectively, to F1 and F2. if F is F1, then we can take F’ to be F’I. The remain-
ing two cases, VxF1 and :ixF, are handled by the following lemma, since the quanti-
fier Vx is equivalent to lx,,,

LEMIIA 1. Let B(x, x 1,..., x,) be a quantifier-free formula. Then there exists
an effective procedure for obtaining another quantifier.free formula, B’(xl,
such that B’(xl, x,) is equivalent to :ixB(x, x 1,,.. x,).

Proof. Let B(x, x,..., x,) be a quantifier-free formula,
Step 1. "Solve for x" in each atomic formula of B to obtain a quantifier-free

formula, D(x, x l, ..., x,), such that every atomic formula of D either does not
involve x or is of the form (i) x < t, (ii) < x, or (iii) x t, where is a term not
involving x.

Step 2. We now make the following definitions:
Given O(x, xx x,), to get O_(x x,) (O(xl .,,, x,)), replace

x < in D by TRUE (FALSE),

< x in D by FALSE (TRUE),

x in D by FALSE (FALSE).

Clearly, for any real numbers r, ..,, r,, if r is a sufficiently small real number,
then D(r, r 1,’.’, r,) and D_ (rl, "., r,) are equivalent. A similar statement can
be made for D for r sufficiently large.

Step 3. We will now eliminate the quantifier from lxD(x, x 1,... x,) using
a method very similar to that used by Cooper in his decision procedure for
Presburger arithmetic]. Let U be the set of all terms (not involving x) such that
< x, x < t, or x is an atomic formula of D.

LEMMA 1.1. qxD(X, Xl, ..., 3n) is equivalent to the quantifier-free formula
B’(x, x,) defined to be

D_ V D V V D((t + v)/2, x l,..,,x,).
t,vU

72 JEANNE FERRANTE AND CHARLES RACKOFF

Proof. Suppose we are given real numbers r l, "’,

(B’- lxD)" Suppose

D-oo V D V V D((t + v)/2, r 1,... rn)
t,veU

is true. If one ofthe disjuncts D((t + v)/2, rx, rn)is true, so is]xD(x, rx, rn).
So suppose one of the first two disjuncts is true, say D_. (The proof for D is
similar.) Then since we can pick r sufficiently small so that D(r, r 1,..., r,) is
equivalent to D-oo, :IxD(x, r x, ..., r) is true.

(:lxD B’)" Suppose :txD(x, r l, "", r) is true. Let l, "., t, be the distinct
real numbers, in increasing order, obtained by substituting r
in the terms in U. Since :i xD(x, r l, "., r,) is true, there is some real number r
such that D(r, r l, "", r) is true. Now r must satisfy a specific order relation with
respect to the numbers 1, "", tin. That is, exactly one of the following must hold"

(a) r <
(b) t,,,<r,
(c) r=tiforsomei, __<i__<m,
(d) t<r<ti+lforsomei, =<i__<m- 1.
If any other real number r’ satisfies the same order relations with respect to

1,..., t,, as r, then D(r’, r1,’", r,) is true. So if (a) holds, D_ must be true;
if (b) holds, D must be true; if (c) holds, D((t + t)/2, rl, "’, r,) must be true; if
(d) holds, D((ti + ti+ 1)/2, rl, "", r,) must be true.

So Lemma 1.1, Lemma and Theorem are proven. The key point of the
proof was in Step 3, where (following Cooper) instead of putting the formula D in
disjunctive normal form as is usually done, we replaced :IxD(x, x 1,..., x,) by
(essentially) a disjunct of formulas of the form D(t, x 1,’", x,) for a term in our
language.

4. Bounds on the procedure. The purpose of this section is to show that the
desired space bound can be attained. In order to do this, we want to compute a
space bound on the elimination of quantifiers procedure given in 3.

It should be noted that we are using as our model of computation the deter-
ministic, one-tape Turing machine; space bounds, or the number of tape squares
used by the Turing machine, are given as a function of n, the length of the sentence
the machine is deciding. As is widely known, this model is not restrictive for bounds
as large as exponential, since it can simulate a multitape or nondeterministic
machine in space at most the square of the space required by the more powerful
model [4]. Of course, we describe our procedure informally, leaving it to the reader
to convince himselfor herselfthat straightforward implementation ofour procedure
on a Turing machine would achieve the claimed bounds on time and space.

Notation. If F is a formula, let I(F) be the length of F and let s(F) be the largest
absolute value of any integral constant appearing in any rational constant in F.
(We assume, for ease of computing the complexity of our procedure, that I(F) >__ 2
and s(F) >__ 2.) By the "length" of an integer, we merely mean its length when written
out in binary.

DEFINITION. Let r be a real number and let k be a positive integer. Then r is
limited by k, written r -< k, if r is rational and if there exist integers a, b such that
r a/b and lal -< k and Ibl _-< k.

FIRST ORDER THEORY OF REAL ADDITION 73

Remark. Let rl, re, "", rk be real numbers limited by the positive integers
wl, we, "", wk respectively. Then rl + re + + r- k. wl’we. "’.w and
r .rer-(Wl.We..... w/. Now let B(x, xl, ..., xk) be a quantifier-free
formula and let B’(x 1, "’", x) be the formula obtained by applying the elimination
of quantifiers procedure of 3 to qxB. Let So s(:ixB) and let lo l(:lxB). We
compute an upper bound on s(B’) in terms of So and an upper bound on l(B’) in
terms of lo.

Step of the procedure, "Solve for x," first involves putting each atomic for-
mula of B which contains x in the form ax t, or < ax or ax < t, where is a
term not containing x. Call the resulting formula C(x, x 1,..., xk). Obtaining C
involves, for each variable in each atomic formula, subtracting one rational coeffi-
cient from another. Hence by the remark above, s(C) <= 2(So)e. Step then entails
dividing through in each atomic formula of C by the coefficient of x (if it is nonzero)
to obtain the formula D(x, x l, ..., x). Clearly, s(D) <= (s(C))e <= 4(So)4.

No new integer constant is created by writing down D and D_.
Step 3 of the procedure involves writing D((t + v)/2, xl,..., xk) for every

pair of terms t, v in D which don’t contain x. Now s(t + v) <= 2. (s(D))e, so we have

(1) s((t + v)/2) =< 4. (s(D))2 =< (So) 14.

So s(B’) <= (S0) 14.
To calculate l(B’), note that l(D oo) and l(D_ oo) are both _< lo. D looks exactly

like B except that the atomic formulas have been changed, so D has no more than
lo terms. Therefore we have to write down no more than l formulas of the form
D((t / v)/2, x 1,..., x). To determine the length of each D((t + v)/2, x 1,..., x),
note that in each of the at most lo atomic formulas, we may have to write two terms,
each term containing k rational coefficients, each numerator and denominator of
each coefficient bounded in size by (So) 14 and in length by 14. length (So). So the
length of each formula O((t + v)/2, x l, .’., x) __< lo. 2. k. 2. (14. length (So))
=< 56(/o)3. So l(B’) <= 2/o + /2o(56(/o)3) <-(lo) 14.

We now compute the amount of space it would take to eliminate quantifiers
in a formula E where l(E) lo, s(E) So, and the number of quantifiers in E is no.
Our analysis is similar to that given by Oppen [3] for Cooper’s procedure for
integral addition. We first put E in prenex normal form, using the standard
algorithm but always choosing variables with the shortest subscripts possible,
obtaining E’. Note that E’ is of length __< lo log (lo)" this is because there are at most

o occurrences of variables, and thus any subscript ofa variable in E will be increased
in length by a factor of at most log (lo). Note that the prenex normal form procedure
does not change the number of quantifiers or the size of constants, so E’ has no
quantifiers and s(E’) s(E).

Clearly, the largest formula obtained in the course of eliminating quantifiers
from E’ is of length at most

(lo log/o) 14" <_ (1o log 10) 14’ 22’

for some constant Co. Also, the largest integer constant (in absolute value) en-
countered is at most

(So)-o.

74 JEANNE FERRANTE AND CHARLES RACKOFF

Notice that if E is a sentence, then the total space used in eliminating quantifiers
from E need be no more than

22Co.1(E)

Since the number of steps involved in each quantifier elimination (and also in the
final step of evaluating a Boolean combination of TRUE and FALSE) is only a
fixed polynomial in the total space used, we see that our procedure operates within
time

for some constant C l.

Our next goal is to derive a new decision procedure for S which will be .approxi-
mately as efficient as the previous one with respect to time but more efficient with
respect to space.

DEFINITION. A quantifier Qx, where Q is V or l, is limited by the positive
integer k (written Qx k) if, instead of ranging over all real numbers, it ranges
over the numbers limited by k.

LEMMA 2. There exists a constant c such that the following is true. Let F(x,
x 1,..., Xk) be a formula containing n quantifiers" let So s(F) and let r, ..., rk
be any real numbers limited by the positive integers w l, ..., Wk, respectively" let Q
be either a universal or existential quantifier. Then QxF(x, r l,..., rk) i- true if
and only if

[Qx (so)ZC’"+k’(w Wk)]F(x, r t,... rk)

is true. (If k O, then we take W l...’. Wk tO equal 1).
Proof. Since Vx is equivalent to :Ix ~, we may assume without loss of genera-

lity that Q is existential. Let F’(x,x,..., Xk) be the quantifier-free formula
equivalent to F obtained by our quantifier elimination procedure. If we solve for
x in F’ and take the average of any two terms that appear, (1) tells us that every
rational coefficient will be limited by (s(F’)) 4.

Assume now that some value of x satisfies F’(x, r,..., rk), where r ----<_ w for
< =< k. Then some value of x satisfying F’(x, r,..., rk) is either equal to the

average of two terms obtained by solving for x in F’(x, r,..., rk) or is bigger
than or smaller than all such averages. It is sufficient, therefore, to show that any
average is limited by

(So)2C’+’(w w)

But by the above paragraph, any such average is equal to k= ar for some

al,..., ak limited by (s(F’)) 4. Since air

_
(s(F’))4.wi, for <_ =< k, we have

,= air -< k. H=I [(s(F’))4w] Since s(F’) =< (So) 4", one can easily calculate that

k

airi- (So)2C’n+l)(W Wk)
i=1

for some constant c.
LEMMA 3. Let c be the constant of Lemma 2, let QlxQ2x2 Q,x,F(Xl,

x,) be a sentence, where F is quantifier-free and where Qi is V or ! for each i, <__

FIRST ORDER THEORY OF REAL ADDITION 75

<= n, and let So s(F). Let w (So)2c" and let Wk+l (s0)ZC"(Wl. Wk) jbr
<__ k < n. Then Qlxl Q,x,F(xl,..., x,) is true if and only if (Qlxl <__ wl)
(Qzx2 -< w2)..-(Q,x, -< w,)F(xx,..., x,)is true.

Proof. The proof is immediate from Lemma 2.
THEORFM 2. There is a constant d, and a decision procedure for S, such that to

decide a sentence B of length n takes at most space 2a". (Note that the procedure
must therefore take time __< 22d’’, for some constant d’, because of a well-known
theorem of automata theory relating time and space.)

Proof. Let B be a sentence of length n, and let So s(B). Put B in prenex
normal form to obtain a sentence B’. Now l(B’) <= n log (n), s(B’) so, and B’ has no
more than n quantifiers, so we can assume B’ looks like Q x Q,x,F(x,..., x,),
where F is quantifier-free and Qi is V or :1 for 1 N __< n.

Define w (s0)2c" and wk+ (s0)Z"(wl. wk) for =< k __< n. Then by
Lemma 3, B’ is equivalent to (Qxl -< Wl)... (Q,x,-< w,)F(x,..., x,). It is
easy to calculate that w ((So)2Cn)2k-t for __< k __< n, so w, __< (So)2’+ t". Since

So -< 2", we have w, =< 2 2c’" for some constant c’. Note that every rational constant
limited by 22’" can be written in space proportional to 2c’" (since integer constants
are written in binary). So B’ can be decided by cycling through the set of rationals
associated with each quantifier appropriately, all the time testing the truth of F
on different n-tuples of rational constants. We let the reader convince himself
or herself that a Turing machine implementing this outlined procedure need use
only 2" tape squares for some constant d.

5. Applications. The idea of deciding truth in a particular theory as outlined
above can be applied to many other theories, thereby obtaining procedures of
considerable computational efficiency. That is, given a particular theory, one gives
an elimination of quantifiers procedure, analyzes it to see how "large" constants
can grow, and then uses this analysis and the original procedure (in a manner
similar to that given above) to limit quantifiers to range over finite sets instead of
an infinite domain.

In particular, we consider the efficient quantifier elimination procedure given
by Cooper [1] for deciding truth in the first order theory of integer addition.
Define the first order language 50’ as follows"

50’ has variables Xo, x l, Xo, (i.e., the subscripts are written in binary)"
for each integer i, 5’ ha a constant symbol (written in binary)"
L" has terms of the form ay + + ay, where ai is an integer constant for

=< _< k and where Y l, Y2, Y are distinct formal variables"
5’ has atomicformulas of the form =< 2 (read "tl is less than or equal to t2"

") where t and 2 are terms and a is a positive integeror altl (read "a divides t
constant, or TRUE, or FALSE.

Sentences and formulas are built up in t,he usual way.
Let S’ be the set of sentences of 50’ which are true of Z, the set of integers,

when the symbols of 50’ are interpreted in the obvious way. Cooper decides S’
by elimination quantifiers, and Oppen [3] has determined bounds for this pro-
cedure.

DFFIYITIOY. An integer n is limited by the positive integer k, written n -< k, if
[nl =< k.

76 JEANNE FERRANTE AND CHARLES RACKOFF

DEFINmON. If F is a formula of ’, then s(F) is the smallest integer >= 2 such
that every integer constant of F is limited by s(F).

THEOREM 3 (Oppen). There exists a constant e such that the following is
true. If F is a formula of &.q’ with n quantifiers, then when Cooper’s procedure is
applied to F, every integer constant encountered is limited by

(s(F))2"

We can now state a lemma.
LEMMA 4. There exists a constant f such that the following is true. Let F(x,

Xl "", Xk) be aformula of’ containing n quantifiers let So s(F) and let n 1, ..., n
be integers limited by the positive integer w. Then :ixF(x, n, ..., nk) is true of Z
if and only if

[:Ix -< (s0)22s’"+k’ w]F(x, nl,..., nk)

is true of Z.
Proof. Use Theorem 3, Cooper’s procedure, and an analysis similar to that

given for real addition.
LEMMA 5. There.exists a constant g such that the following is true. Let B be

the formula Qxl... Q,x,F(x,..., x,), where F is quantifier-free and Qi is V
or :I for each i, <= <= n; let So s(F). Then B is true of Z if and only if

(Q1x1 " (So)22gn+)(Q2x2 " (S0)22gn+2)... (Qnxn -, (So)22gn+")F(x1, Xn)

is true of Z.
Proof. Apply the previous lemma.
We can now state the following theorem.
THEOREM 4. There exists a constant h and a decision procedure for S’ such that

to decide a sentence of length n takes at most 22h" space.
Remark. Theorem 4 should be compared to the following result of Fischer

and Rabin [2].
TI-IEOREM (Fischer and Rabin). There exists a constant j > 0 such that any

nondeterministic Turing machine which decides S’ requires for almost every n time
22" to decide some sentences of length n.

Acknowledgments. We would like to acknowledge some helpful suggestions
by Henry Baker in the early stages of our work and the assistance of Albert Meyer
in the conception and preparation of this paper.

REFERENCES

[1 C. D. COO1,ER, Theorem-proving in arithmetic without multiplication, Machine Intelligence 7,
Meltzer and Michie, ed., John Wiley, 1972, pp. 91-99.

[2] M. FISCHEI AND M. O. RABIN, Super exponential complexity of Presburger arithmetic, Project
MAC Tech. Mem. 43, Mass. Inst. of Tech., Cambridge, 1974.

[3] D. C. O,I,EY, Elementary bounds for Presburger arithmetic, 5th ACM Sympos. on the Theory of
Computing, 1973, pp. 34-37.

[4] W. J. SAVlTCH, Relationships between nondeterministic and deterministic tape complexities, J.
Comput. System Sci., 4 (1970), pp. 177-191.

[5] A. TAsKI, A Decision Methodfor Elementary Algebra and Geometry, 2nd ed., University of Cali-
fornia Press, Berkeley, 1951.

SIAM J. COMPUT.
Vol. 4, No. 1, March 1975

FINDING ALL THE ELEMENTARY
CIRCUITS OF A DIRECTED GRAPH*

DONALD B. JOHNSON

Abstract. An algorithm is presented which finds all the elementary circuits-of a directed graph in
time bounded by O((n + e)(c + 1)) and space bounded by O(n + e), where there are n vertices, e edges
and c elementary circuits in the graph. The algorithm resembles algorithms by Tiernan and Tarjan,
but is faster because it considers each edge at most twice between any one circuit and the next in the
output sequence.

Key words, algorithm, circuit, cycle, enumeration, digraph, graph

1. Introduction. Broadly speaking, there are two enumeration problems on
sets of objects. The one, which we call counting, is determining how many objects
there are in the set. The other, which we call finding, is the construction of every
object in the set exactly once. Indeed, objects may always be counted by finding
them if a method to do so is at hand. But knowing the count is usually of little aid
in finding the objects.

We give an algorithm for finding the elementary circuits of a directed graph
which is faster in the worst case than algorithms previously known. As far as we
know, it is also the fastest method known for the general enumeration problem as
well (see 1, p. 2263). Specific counting problems are, of course, solved. For example,
there are exactly

i=1 n-i+
(n i)!

elementary circuits in a complete directed graph with n vertices. Thus the number
of elementary circuits in a directed graph can grow faster with n than the exponen-
tial 2". So it is clear that our algorithm, which has a time bound of O((n + e)(c + 1))
on any graph with n vertices, e edges and c elementary circuits, is feasible for a
substantially larger class of problems than the best algorithms previously known
[2], [3], which realize a time bound of O(n. e(c + 1)).

A directed graph G (V, E) consists of a nonempty and finite set of vertices
V and a set E of ordered pairs of distinct vertices called edges. There are n vertices
and e edges in G. A path in G is a sequence of vertices Pv, (v v 1, v2, "", vk u)
such that (vi, vi+ 1)e E for _< < k. A circuit is a path in which the first and last
vertices are identical. A path is elementary if no vertex appears twice. A circuit is
elementary if no vertex but the first and last appears twice. Two elementary
circuits are distinct if one is not a cyclic permutation of the other. There are c
distinct elementary circuits in G. Our definitions exclude graphs with loops (edges
of the form (v, v)) and multiple edges between the same vertices. It is obvious that
for any circuit qv, there exists a vertex u such that q is composed of a path
followed by edge (u, v). If qv is elementary, then pu is also elementary.

Received by the editors December 10, 1973, and in final revised form June 10, 1974.
-Computer Science Department, Pennsylvania State University, University Park, Pennsylvania

16802.

77

78 DONALD B. JOHNSON

F is .a subgraph of G induced by W if W
_

1/and F (I/V, {(u, v)lu, v W and
(u, v) El). An induced subgraph F is a (maximal) strong component of G if for all
u, v W there exist paths P,v and pv, and this property holds for no subgraph of G
induced by a vertex set W such that W c W

_
1/.

The literature contains several algorithms which find the elementary circuits
of any direct graph. In the algorithms of Tiernan [4] and of Weinblatt [5], time
exponential in the size of the graph may elapse between the output of one circuit
and the next [2]. Tarjan [2] presents a variation of Tiernan’s algorithm in which at
most O(n. e) time elapses between the output of any two circuits in sequence,
giving a bound of O(n. e(c + 1)) for the running time of the algorithm on an entire
graph in the worst case. Ehrenfeucht, Fosdick, and Osterweil [3] give a similar
algorithm which realizes the same bound.

In the case of Tarjan’s algorithm, the worst-case time bound is realized, for
instance, on the graph shown in Fig. 1. We assume that the algorithm begins with
vertex and, in any search from vertices through k + 1, it visits vertices k + 2
through 2k + before a first visit to vertex 2k + 2. In the course of finding each of
the k elementary circuits which contain vertex 1, the subgraph on vertices 2k + 2
through 3k + 3 will be explored k times, once for each of the vertices k + 2 through
2k + 1. Thus exploration from vertex alone consumes O(k3) time. Since there are
exactly 3k elementary circuits in the entire graph, the running time is at least
O(n.e(c + 1)).

The worst-case time bound for Tarjan’s algorithm is also realized on the
graph in Fig: 2. Assuming a start at vertex 1, the algorithm takes O(k) time to find
the one elementary circuit of the graph. Then the fruitless searches from vertices 2
through k take O(k2) time, which is O(n. e(+ 1)). So we see that there are two
ways in which the time bound is realized in Tarjan’s algorithm. One is through
repeated fruitless searching of a subgraph while seeking circuits with a certain
least vertex; the other is through fruitless searches from many vertices which are
least vertices in no elementary circuit.

The graphs of Figs. and 2 are strongly connected, and their undirected
versions are biconnected. On such graphs, obvious preprocessing techniques, such
as reducing the graph to its strong components (as Weinblatt does [5]) or to com-
ponents which in addition to strong connectivity have biconnected undirected
versions, do not improve the performance of Tarjan’s algorithm. Stronger tech-
niques are needed to get a better asymptotic running time in the worst case.

2k+5

k+2 2k+4,

:

2k+l
FIG. |. A worst-cse cxmH [or Trj’s lgorith

FINDING ELEMENTARY CIRCUITS 79

2 3 k-I k

FIG. 2. A second worst-case example for Tarjan’s algorithm

2. The algorithm. In our algorithm, the time consumed between the output of
two consecutive circuits as well as before the first and after the last circuits never
exceeds the size of the graph, O(n + e). We employ the basic notion of Tiernan’s
algorithm. Elementary circuits are constructed from a root vertex s in the sub-
graph induced by s and vertices "larger than s" in some ordering of the vertices.
Thus the output is grouped according to least vertices of the circuits.

To avoid duplicating circuits, a vertex v is blocked when it is added to some
elementary path beginning in s. It stays blocked as long as every path from v to s
intersects the current elementary path at a vertex other than s. Furthermore, a
vertex does not become a root vertex for constructing elementary paths unless it
is the least vertex in at least one elementary circuit. These two features avoid much
of the fruitless searching of Tiernan’s, Weinblatt’s and Tarjan’s algorithms and of
the algorithm of Ehrenfeucht, Fosdick, and Osterweil.

The algorithm accepts a graph G represented by an adjacency structure AG
composed of an adjacency list AG(v) for each v V. The list A(v) contains u if and
only if edge (v, u) E. The algorithm assumes that vertices are represented by inte-
gers from to n.

The algorithm proceeds by building elementary paths from s. The vertices
of the current elementary path are kept on a stack. A vertex is appended to an ele-
mentary path by a call to the procedure CIRCUIT and is deletbd upon return from
this call. When a vertex v is appended to a path it is blocked by setting blocked
(v) true, so that v cannot be used twice on the same path. Upon return from the
call which blocks v, however, v is not necessarily unblocked. Unblocking is always
delayed sufficiently so that any two unblockings of v are separated by either an
output of a new circuit or a return to the main procedure.

CIRCUIT-FINDING ALGORITHM
begin

integer list array A(n), B(n); logical array blocked (n); integer s;
logical procedure CIRCUIT (integer value v);

begin logical f;
procedure UNBLOCK (integer value u);

begin
blocked (u):= false;
for wB(u) do

begin
delete w from B(u);
if blocked(w) then UNBLOCK(w);

end
end UNBLOCK

f :: false;

8O

end;

DONALD B. JOHNSON

stack v;
blocked(v):- true;

L for wAK(v) do
if w- s then

begin
output circuit composed of stack followed by s;

f :- true;
end

else if--blocked(w) then
if CIRCUIT(w) thenf true;

L2: iffthen UNBLOCK(v)
else for wA:(v) do

if vqB(w) then put v on B(w);
unstack v;
CIRCUIT := f;

end CIRCUIT;
empty stack;
s:=l;
while s < n do

begin
A:= adjacency structure of strong component K with least

vertex in subgraph of G induced by {s, s+ 1, n};
if A - then

begin
s := least vertex in V;
for iVu, do

begin
blocked(i) :-- false;
B(i) :-- ,;

end;
L3: dummy :- CIRCUIT(s);

s:=s+l;
end

else s n;
end

The correctness of the algorithm depends on no vertex remaining blocked
when there is a path from the vertex to s which intersects the stack only at s.
On the other hand, the bound on running time depends on all vertices remaining
blocked as long as possible, consistent with the requirements of correctness. The
following lemma establishes these properties. It will be seen that the B-lists are
used to remember information obtained from searches of portions of the graph
which do not yield an elementary circuit. The procedure UNBLOCK has the
property that if there is a call UNBLOCK(x) and vertex y is on list B(x), then there
will be a call UNBLOCK(y) following which blocked(y) will be false.

LEMMA 1. At L2,for any vertex x 4: s, there is a call UNBLOCK(v) which sets

blocked(x) false if and only if

FINDING ELEMENTARY CIRCUITS 81

(i) there is a path, containing v, from x .to s on which only v and s are on the
stack, and

(ii) there is no path.from x to s on which only s is on the stack.
Proof. Assume, to the contrary, that there is an execution of L2 at which

the lemma first fails and that the lemma fails for no vertex before it fails for
vertex y. Two cases are possible under this assumption.

Case 1. Suppose that the path conditions, (i) and (ii), hold for y at L2, but
blocked(y) is not set false. Because there is an edge (v, z) on the path from y to s,
f is true at L2. This fact is immediate if z s. If z -: s, it follows from our assump-
tion that the lemma holds for z before the return from the call CIRCUIT(z). Thus
there is a call UNBLOCK(v) and, without loss of generality, a path (y
re, "’",/)k =/)) on which only/) is on the stack and only y is not unblocked as a
result of the call UNBLOCK(v) at L2. But when y was last blocked, y was on the
stack. Since y remained blocked when y was removed from the stack, y was put
on list B(/)e). So there was a call UNBLOCK(y), a contradiction.

Case 2. Suppose that there is a call UNBLOCK(/)) at L2 and that blocked(y)
is set false, but that either (i) or (ii) is not satisfied. It cannot be that/) s because
it is clear that the lemma holds when only/) s is on the stack, and s cannot be
stacked more than once. Since f is true there is an edge (/), z) such that either
z s or f was set true when the call CIRCUIT(z) returned. It follows from our
assumption that, when f was set true, there was a path from z to s on which only s
was on the stack. It may be that several calls to CIRCUIT occur after f is set
true and before the current call UNBLOCK(/)). In any event, the current stack
(when the call UNBLOCK(/)) occurs) is identical to the stack when f was set true,
so there is a path (/), z, ..., s) on which only/) and s are on the stack. Since/) is
on the stack, (i) and (ii) would be satisfied if y

So y :/:/), and there is some vertex which is unblocked before y is unblocked
such that y is on B(t). By assumption, there is a path from to s on which only
and s are on the stack. Furthermore, when y was last put on B(t), blocked(t) was
true and y was on the stack. But blocked(t) has to remain true until the current
call UNBLOCK(/)). Otherwise y would have been removed from B(t). Since y
must have been unstacked after y was put on B(t), there was some execution of L2
where the stack was a prefix of the current stack, (i) and (ii) held for t, and blocked(t)
was not set false. But by assumption, the lemma did not fail then for t. From this
contradiction, we find that Case 2 is also impossible.

COROLLARY 1. The algorithm outputs only elementary circuits.

Proof. Certainly only circuits are output. By Lemma 1, a vertex is only un-
blocked if it will be off the stack before any call to CIRCUIT can occur. Thus no
vertex can be repeated on the stack.

LEMMA 2. The algorithm outputs every elementary circuit exactly once.
Proof. No circuit is output more than once since, for any stack (s

..,/)k) with/)k on top, once/) is removed the same stack cannot reoccur.
Let (/)1,/)e, "’",/)l,/)1) be an elementary circuit such that/)1 -</)i, _< =< I.

A first call CIRCUIT(v1) will eventually occur at L3 since there is a strong com-
ponent with least vertex/) 1. Since no vertex is blocked when this first call occurs, it
follows by induction using Lemma that whenever the stack is (s vl,/)e, "’",

for < l, the stack will later be (s vl,/)2,"’,/)i+ 1)" Thus every elementary
circuit is output.

82 DONALD B. JOHNSON

The foregoing results show that the algorithm does indeed find all the elemen-
tary circuits of a directed graph. The bound on running time follows from the
next lemma.

LFMMa 3. At most O(n + e) time can elapse in a call at L3 to CIRCUIT before
either the call returns or a circuit is output.

Proof. First we show that no vertex can be unblocked twice in succession
unless a circuit is output. Then we show that no more than O(n + e) time can elapse
before some vertex is unblocked a second time.

Suppose a circuit is output and then some vertex y is unblocked. By Lemma 1,
as soon as v is unstacked there is a path (y v,/)2, /)k S) on which only s
is on the stack. Let some vertex v, __< < k, be the first vertex on this path to be
put on the stack again. We see by induction on the execution of the algorithm that
eventually the stack will be (s, ..., v, v+, ..., v_) and a new circuit output.
Until the new circuit is output, no vertex on the path will be unstacked. Thus no
vertex can be unblocked more than once before a circuit is output.

Charge a unit of cost to a vertex if it is an argument to a procedure call and
a unit of cost to an edge if consideration of this edge by the for loop at L1 in CIR-
CUIT does not result in a procedure call. The cost of all work in the procedure
CIRCUIT will be bounded by a constant times the number of units charged. For
any vertex x, calls to CIRCUIT and UNBLOCK must alternate. Consequently,
no more than three units can be charged to each vertex before some vertex is
unblocked twice. As to edge charges, let some edge originate in vertex x. A unit
may be charged to this edge only when blocked(x) is true and, once a unit is charged,
x must be unblocked and blocked again before a second unit can be charged to
the same edge. It follows that at most two units can be charged to any edge before
some vertex is unblocked twice. [3

COlOIIAgY 2. The algorithm runs in O((n + e)(c + 1)) time and uses O(n + e)
storage space plus the space usedfor output.

Proof. The time bound follows directly from Lemma 3 and a known algorithm
[6] for finding strong components in O(n + e) time. The space bound is immediate
from the observation that no vertex appears more than once on any B-list.

3. Discussion of running time. We have shown that in the worst case, our
algorithm is asymptotically faster than algorithms previously known. With respect
to Tarjan’s algorithm, a stronger statement can be made. There is a constant
factor which bounds how much slower our algorithm can be compared to his on
any graph, provided the same adjacency structure is used as input to both algo-
rithms. Such a constant, of course, is implementation dependent. Its existence
follows from two facts. First, the time spent by our algorithm in finding the strong
component with least vertex s >= k is of no greater order than the search in Tarjan’s
algorithm for circuits with least vertex k, for =< k =< n. Second, if the calls to
UNBLOCK are ignored, on identical adjacency structures the sequence of edge
explorations generated by our algorithm is embedded in the sequence generated
by Tarjan’s. But for every edge in the sequence, for our algorithm there can occur
at most one call to UNBLOCK. Therefore, since the search time in each algorithm
is related by constant factors to the number of edge explorations, the effort spent
by our algorithm in finding circuits from a given base vertex, s, is bounded by a

FINDING ELEMENTARY CIRCUITS 83

constant factor times the effort expended by Tarjan’s algorithm for the correspond-
ing search on the same adjacency structure for any graph.

Experimental results are shown in Tables and 2. The algorithms were
implemented in ALGOL W [7] and were run on an IBM 370/168 with virtual
address hardware inoperative. The benefit predicted for our algorithm on worst
cases is apparent in the results in Table 1. Table 2 shows superior performance by
our algorithm on complete graphs as well. Although only a constant factor is
involved, this second result is somewhat surprising since on complete graphs, both
algorithms make the same number of edge explorations. The result, however,
appears to be explained by two features of Tarjan’s algorithm. He maintains two
vertex stacks and tests in the innermost loop for elimination of vertices less than s.
If his algorithm were redesigned to correct these problems, "he analysis of the

TABLE
Running times on the family of graphs of Fig.

Number of

vertices

5
10
20
40
60
80

Number of

circuits

(Johnson’s

algorithm)

Running time IBM 370/168,

second

(Tarjan’s

algorithm)

15
30
60
120
180
240

.03

.11

.32
1.17
2.61
4.46

.06

.27
1.67

11.51
36.89
86.66

2
2.5
5.2
9.8

14.1
19.4

Timer resolution 1/60 second. Because running times fluctuate with system load,
all data shown taken from computer Results averages of two times
rounded to the second decimal place.

Number of

vertices

2
3
4
5
6
7
8
9

TABLE 2
Running times on complete directed graphs

Number of

circuits

5
20
84

409
2365
16064

125664

Running time IBM 370/168,

seconds

(Johnson’s

algorithm)

0
0
.02
.02
.07
.35

2.43
20.17

(Tarjan’s

algorithm)

0
0
0
.02
.08
.51

3.63
30.13

1,1

1.5
1.5
1.5

Timer resolution 1/60 second. Because running times fluctuate with system load, all data
shown taken from computer Results averages of two times rounded to the
second decimal place.

84 DONALD B. JOHNSON

preceding paragraph would still hold. In both tests, the space bound of O(n + e)
was confirmed.

4. Conclusions. The algorithm we have shown is faster asymptotically in the
worst case than algorithms previously known. The algorithm appears particularly
suited for general use because of the stronger property, which we have shown in
relation to Tarjan’s algorithm, of being never slower on any graph by more than a
constant factor. In fact, in the tests run, our algorithm was always faster except on
trivially small graphs.

Acknowledgment. Credit is due to the referees for suggesting that, for compara-
tive tests, a family of graphs be found in which the members are strongly con-
nected and whose undirected versions are biconnected, and for a suggestion that
led to an improvement, by a constant factor, in running time.

REFERENCES

[1] F. HARARY AND E. PALMER, Graphical Enumeration, Academic Press, New York, 1973.
[2] R. TARJAN, Enumeration of the elementary circuits of a directed graph, this Journal, 2 (1973), pp.

211-216.
[3] A. EHRENFEUCHT, L. FOSDICK AND L. OSTERWEIL, An algorithm for finding the elementary circuits

ofa directed graph, Tech. Rep. CU-CS-024-23, Dept. of Computer Sci., Univ. of Colorado,
Boulder, 1973.

[4] J. C. TIERNAN, An efficient search algorithm to find the elementary circuits of a graph, Comm.
ACM, 13 (1970), pp. 722-726.

[5] H. WENBLAX, A new search algorithm for finding the simple cycles of a finite directed graph, J.
Assoc. Comput. Mach., 19 (1972), pp. 43-56.

[6] R. TARJAN, Depth-first search and linear graph algorithms, this Journal, (1972), pp. 146-160.
[7]. R. L. Sxa’ES, Algol W reference manual, Tech. Rep. STAN-CS-71-230, Computer Sci. Dept., Stan-

ford Univ., Stanford, Calif., 1971.

SIAM J. COMPUT.
Vol. 4, No. 1, March 1975

STATE-SPLITTING FOR STOCHASTIC MACHINES*

EUGENE S. SANTOS

Abstract. In this paper, a systematic theory of the "state-splitting" technique for the decompo-
sition of stochastic machines is presented, which makes use of a stochastic generalization of the con-

ventional concept of covers or set systems.

1. Introduction. The "state-splitting" technique, which makes use of the
concept of covers or set systems, is one ofthe most powerful techniques in the study
of the decomposition of deterministic machines [4]. Although the possibility of
"state-splitting" had been considered in 2] and an example can be found in [5],
the present paper, to the best of our knowledge, is the first attempt to provide a
systematic theory to this aspect of the decomposition theory of stochastic machines.

The main contents of the present paper are contained in 2-5. In 2, the
basic concepts and notations which are needed in subsequent discussions are
introduced. Following [8], quasi-stochastic systems [7] are used. However, for
simplicity, only quasi-stochastic state-machines (QSSM) are considered. Most of
the concepts and results presented in 2 are the state-machines analogue of that
of [8].

In 3, the properties of regular assignments are further investigated and two
characterizations are derived. In 4, connections of concurrently operating
QSSM’s are examined. However, instead of quasi-series connection, which was
introduced in [1] and adopted in [8], the cascade connection, which was introduced
in [3], is considered. A necessary and sufficient condition for a QSSM to admit
a cascade decomposition of its state-behavior is derived which makes use of the
concept of regular SP-partitions introduced in [8].

In 5, the concept of covers is introduced. Using the results established in
3 and 4, it is shown that if a QSSM has a regular SP-cover, then it admits a
cascade decomposition.

2. Basic concepts and notations. In this section, we shall introduce the basic
concepts and notations which are needed in subsequent discussions. Most of these
concepts are similar to those introduced in 8, and the readers are referred there
for motivations and further details.

Notation. E is a column matrix of appropriate order whose entries are all 1.
DEVINITION. Let K be a real matrix. (i) K is a 1-matrix iff KE E. (ii) K is a

2-matrix iff KE E and all entries of K are nonnegative, i.e., K is a stochastic
matrix. (iii) K is a 3-matrix iff KE E and all entries of K are either 0 or 1.

DEwNxIoy. Let k 1, 2, or 3. A k-QSSM (short for quasi-stochastic state-

machines) is a system M (Uu, {PU(u):u UU}) where Uu is a nonempty finite
set, and for each u Ut, Pt(u) is an n n k-matrix, where n IMI, the order of M.

Received by the editors August 28, 1973, and in revised form April 22, 1974.

" Department of Mathematics, Youngstown State University, Youngstown, Ohio 44503. This
work was supported in part by the University Research Council of Youngstown State University.

85

86 EUGENE S. SANTOS

In the above definition, UM is the input set, IM] is the number of states of M
and PM(U) is the transition matrix when input u is applied.

In what follows, the symbol M, with or without subscripts, will always
represent a 1-QSSM, and k will stand for 1, 2 or 3, unless otherwise stated.

Notation. (i) UM is the free monoid generated by U". (ii) lg(fi) is the length of. (iii) pM(UlU2 U.) pM(ul)PM(u2) pM(u.) for all u 1, U2,’’" U UM.
DEFINITION. Let K be a k-matrix such that P’(u)K KPM’(u) for all

u UM’ f-] UM:. (i) If U’’ c_ U’: and the rows of K are linearly independent,
then M is a k-submachine of M2. (ii) If UM

_
UM: and the columns of K are

linearly independent, then M is a k-split ofm2 The matrix K will be referred to as
the associated matrix.

Notation. Hk(M is the collection of all IMI k-matrices. Moreover,
H(M) HI(M), and H*(M) is the collection of all nonempty subsets of H(M).

Notation. Let W be a real vector space, and for 1, 2, ..-, n, W c_ W and c
real numbers, then the set

i=1 i=1

DEFINITION. Let flbe a function from H(M1) into H*(M2). fl is regular iff
hl, h 2 e H(MI) and cl, c2 are real numbers such that c + c2 implies
fl(clhl + c2h2)= Clfi(hl) + c2fi(h2).

Notation. Ho(M is the IMl-dimensional Euclidean space and

no(M {h no(M hE 0}.

THEOREM 2.1. Let fi be a function from H(M) into H*(M2). The following
statements are equivalent"

(a) fi isregular;
(b) there exist a subspace W of Ho(m2) and a 1-matrix K such that

h K + W for every h H(M1); and
(c) there exist 1-matrices K and K2 such that fl(hl)= {h2 ff H(Mz)’hzK2

hlK1K2} for every h H(M1).
Proof. Let fl be regular and W {h2 h" ha, h e fi(hl)}. By [8, Thm. 3.4],

W does not depend on the choice of h H(M1). Let K be a matrix whose ith
row is an element of fl(ei), where {ei} is the standard basis of Ho(M1). It is clear
that fl(hl) h 1K + Wfor all h H(M1). Thus (a) implies (b). Since W c_G_ Ho(m2)
there exists a 1-matrix K2 such that g e W iff gK2 0. Thus (b) implies (c). Now
suppose (c) holds. Let h2 e fl(hl), h’2 fi(h’l) and a, b are real numbers such that
a + b 1. Then (ah2 + bh’z)K 2 (ah + bh’l)K1K 2. This implies that aft(hi)
+ bfi(h’l)c_ fi(ah + bh’l)" By [8, Thm. 3.2], fi is regular. Thus (c) implies (a).
Q.E.D.

DEFINITION. A (regular) k-assignment of M into M2 is an ordered pair
(a,), where a is a function from UM’ into U: and is a (regular) function from
H(M1) into H*(M:), such that for every u Ut’, h H(M1) and h: (h),
(i) h:PM:(a(u)) fl[hlpM’(u)l, (ii) hi Hk(M1) implies fi(hl) VI H(M:) :, and
(iii) fl(H(M1) is the affine span of fi(Hs(M1) f-) H(M:), i.e., for each h fl(H(MI)),
h: _,ch where h (Hs(M,)) VI HfM:) and c, are real, for all 1, 2,..., n,

STATE-SPLITTING 87

and ,".=, C 1. If in addition, (iv) fl(hx) f-] fi(h’) for all h g= h’, then (e, fi)
is a (regular) strong k-assignment of M into M2.

Remark. Condition (iv) is necessary since we are dealing with state-machines.
Since fl is regular, it is clear that fi(H(M 1)) is the affine span of fi(H3(M 1)). Condition
(iii) states that it suffices to consider only fi(H3(M1) 0 Hk(M2).

DEFINITION. Let (e, fl) be a regular (strong) k-assignment of M into M2.
If for every hl H(M1), fl(h) contains exactly one element, then (e, fi) is a reduced
(strong) k-assignment ofM into M2.

DEFINITION. M2 is a (reduced, regular) (strong) k-realization of M iff there
exists a (reduced, regular) (strong) k-assignment of M into M2.

For simplicity, 1-QSSM, 1-assignment and 1-realization will also be called
QSSM, assignment and realization, respectively. Moreover, if (e, fi) is a reduced
k-assignment of M1 into M2, then we shall identify fl with the function from H(M)
into H(M2) which maps every h H(M1) ino the unique element of fl(h).

DEFINITION. Let (, fl) be a reduced k-assignment of M into M2 (i) (, fl) is
a k-homomorphism of M onto M2 iff both and fl are onto. In this case, we say
that M is k-homomorphic to M2 (ii) (e, fl) is a state-behavior k-assignment ofM
into M2 iff both and fl are one-to-one. In this case, we say that M2 is a state-
behavior k-realization ofM 1. (iii) (e, fl) is a k-isomorphism of M1 onto M2 iff both
e ant/ are one-to-one and onto. In this case, we say that M is k-isomorphic to m2

THEOREM 2.2. M2 is a reduced k-realization ofM ff there exists a function
from UM1 into UM2 and a k-matrix K such that for every u UMl, Pt(u)K

KPM2(e(u)). Moreover,
(a) M is k-homomorphic to M2 iff is OntO and the columns ofK are linearly

independent;
(b) M2 is a state-behavior k-realization of M iff is one-to-one and the rows

ofK are linearly independent; and
(c) M is k-isomorphic to M2 iff both -1 and K-1 exist.

Proof. The proof follows from Theorem 2.1 above or 8, Thm. 3.6].
The matrix K in the above theorem will be referred to as an associated matrix

of/.
It follows from the above theorem that if is the identity function, then k-

submachine and k-split coincide with state-behavior k-realization and k-homo-
morphic, respectively.

Although the above definition of k-assignment differs from that given in
they coincide in the case of reduced k-assignment, which is the central issue of 8].

3. Properties of regular realizations. Some basic properties of regular realiza-
tion were derived in [8]. In this section, we shall present two additional char-
acterizations of regular realization.

Notation. Let K be a real matrix. Then K + will denote a pseudoinverse
[6] of K, i.e., KK +K K.

THEOREM 3.1. M2 is a regular (strong) realization of M iff there exists a
QSSM M3 such that M2 is a 1-split of M3 and M3 is a reduced (strong) realization
of m.

Proof. Let (e, fl) be a regular (strong) assignment of M into M2 By Theorem
2.1, there exist 1-matrices K and K2 such that fl(h)= {h2 H(M2):h2K2

88 EUGENE S. SANTOS

hlKIK2} for all h e H(M1). Without loss of generality, we may assume that the
columns of K2 are linearly independent. Let u e UM’. Since hlK fl(h) for all
h H(M1), therefore hlKiPM2((u))fl[hP’(u)] for all hi e H(M1). This
itnplies that K 1P2(x(u))K2 Pl(u)KK2. On the other hand, if gK2 0, then
gP2(x(u))K2 0. Therefore there exists a 1-matrix P(x(u)) such that PM2(z(u))K 2

K2P(x(u)). Moreover, PMI(u)KK2 K1P2(z(u))K2 K1K2P(o(u)). Let M3

be the QSSM where U3= (UM’) and P3(e(u))= P(z(u)) for all u e U’.
It follows from the foregoing discussions and Theorem 2.2 that M2 is a 1-split
of M3, and M3 is a reduced realization of M 1. If M2 is a regular strong realization
of M 1, then the rows of K K2 are linearly independent. Therefore M3 is a reduced
strong realization of M1.

Conversely, suppose there exists a QSSM M3 such that M2 is a 1-split of M3

with associated matrix K2, and M3 is a reduced (strong) realization of M with
assignment (e, rio) and associated matrix K3. For each h H(M1), define

{h2 H(M2)’heK 2 hlK3}. Since the columns of K2 are linearly independent,
hIK3H fl(hl) for all h H(M1). Thus, fl is a function from H(M1) into H*(M2).
With the aid of [8, Thm. 3.2, it is easy to verify that fl is regular. Let u Ut’,
h H(M1) and he fl(h). Then heKe hlK 3. Therefore

PM’(u)K3h2PMe(rx(u))K2 h2K2PMB(o(u)) hlKBPM3((u)) hl
This implies that h.P(e(u))e fl[hlP(u)]. Hence (e, fl) is a regular assignment
of M into M2. If M3 is a reduced strong realization of M 1, then the rows of K3

are linearly independent. Therefore fi(hl) f’l fi(h’) = for all h h’1. Thus, M2

is a regular strong realization of M. Q.E.D.
THEOREM 3.2. Me is a regular strong k-realization of M iff there exists a

QSSM M3 such that M3 is a k-submachine of M2 and M3 is 3-homomorphic to M
Proof. Let (e, fl) be a regular strong k-assignment of M into Me. Let

K3 be a k-matrix whose rows form a basis of the smallest subspace containing
fi(H3(M1)) ffl Hk(Me). Then fi(H(M1) is the collection of all h3K3 Let u be an
element of UM’. For every h3, h3K3 fl(hl) for some h ff H(M1). Therefore,

pM1h3KaP((u)) fl(h (u)). This implies that haKaPM((u)) is of the form h3K3.

Thus there exists a 1-matrix P((u)) such that KaP(e(u))= P(e(u))K 3. Let
h/ be an element of H(M1) such that the ith row of K3 belongs to fl(hi), and let K
be a matrix whose ith row is h. By the construction of K3, it follows that K is a
3-matrix. Moreover, for every h3, h3K3 fl(haK4). Since for every h H(M1),
fl(hl) , therefore hi is of the form haK4. This implies that the columns of K4

are linearly independent. Furthermore, for each ha, haP(e(u))K 3 fl(haP(o(u))K4).
On the other hand, haP(e(u))K 3 haKaP((u)) fl(haK4PM(u)). Since (, fl) is a
strong assignment, therefore P(e(u))K, K4P(u). Let M3 be the QSSM where
U3 (U) and P3((u)) P((u)) for all u UM’. It follows from the foregoing
discussions and Theorem 2.2 that M3 is a k-submachine of M2, and M3 is 3-
homomorphic to M1.

Conversely, suppose there exists QSSM M3 such that M3 is a k-submachine
of Me with associated matrix K3, and M3 is 3-homomorphic to M with
assignment (e, flo) and associated matrix K4. For each h ell(M1), define
fl(hl) {h 2 H(Me)’h2 haK3, h haK4 for some h3 H(M3)}. Since the

+K fl(h for all h H(M).coiumns of K are linearly independent, hlK4 3

STATE-SPLITTING 89

Thus,/ is a function from H(M1) into H*(M2). With the aid of [8, Thm. 3.2, it is
easy to verify that/ is regular. Assume u UM, hl H(Ma) and he fl(hl). Then
h2 h3K 3 and h h3K4. Therefore

h2PMz(o(u)) h3K 3PM2(x(ll)) h PM3(o(tl))K
and

h3Pt3(x(u))K4 h3K4P(u)= hlP,(u).
Thus hP(e(u))e fl[hP(u)]. This shows that (e, fl) is a regular assignment
ofM into Me. Let h be an element of Hk(MI). Since K4 is a 3-matrix, therefore
there exists a k-matrix h3 such that h3K4 hx. But K3 is also a k-matrix; therefore
h3K3 is a k-matrix. This shows that fl(hl) fq Hk(M.) =/= provided h e Hk(M1).
Since K4 is a 3-matrix, each row of K3 belongs to fl(H3(M1)). Moreover, since
each element of fl(H(M)) is of the form h3K 3 for h 3 e H(M3), and since K3 is a
k-matrix, therefore fl(H(M)) is the affine span of fi(H3(M1) f) Hk(Me). Lastly, it
is easy to verify that fi(h) f-I fl(h’) for all h h’l, since the rows of K3 are
linearly independent. This shows that (e, fl) is a regular strong k-assignment ofM
into Me Q.E.D.

Remark. If M and M2 are 3-QSSM’s, i.e., deterministic state-machines, and
k 3, then the M3 in the above theorem can always be chosen to be a 3-QSSM.
Thus, in this case, the above theorem reduces to [4, Thm. 1.6].

Observe that Theorem 3.1 holds only for k 1, while Theorem 3.2 holds
fork= 1,2and3.

COROLLARY 3.3. M2 is a regular strong k-realization of M with assignment
(o, fl), where is the identity function, iff there exists a QSMM M3 such that M3 is a
k-submachine of M and M3 is a 3-split of M 1.

COROLLARY 3.4. M2 is a regular strong realization of M iff there exists a
QSSM M3 such that M3 is a 1-submachine of M and M3 is 1-homomorphic to M1.

4. Cascade decomposition. Two types of decompositions appeared in the
literature, namely, quasi-series decomposition [1] and strong decomposition [3].
The former type of decomposition was considered in [8]. In the present paper,
we shall consider the latter type of decomposition, which we shall rename cascade
decomposition. Although most of the results given in [8] can be strengthened
by adopting cascade decomposition, only those which have direct bearing to the
present work will be examined below.

Notation. Let P (aij) be an m x n real matrix and P2 (Aij) an m x n
matrix whose entries Aj are real matrices of order r x s. Then P1 (R) P2 is an
mr x ns matrix whose ((i, k), (j,/))th entry is aijAj(k, 1), where Aij(k, l) is the
(k,/)-th entry of the matrix Aj.

DEFINITION. The cascade connection of two QSSM’s Ma and m2, for which
Ut= S x S x UM, where S {1,2,..., [M[}, is the QSSM M3, where
Ut3 Ut and for every u e U3, P3(u) Pt’(u) (R) P(u), where P(u) is a matri.x
whose (i,j)th entry is PlVt(i,j, u). If Pl(i,j, u) is independent of j, then M is a
quasi-series connection ofM and M2. If Ph(i,j, u) is independent of both and j,
then M3 is a parallel connection ofM and M2.

DEFINITION. A partition of M is a family rc of mutually disjoint nonempty
subsets of H(M) whose union is equal to H(M). These subsets will be called blocks

90 EUGENE S. SANTOS

of re. Each partition rc of M defines an equivalence relation mod rr, where h h2

(mod re) iff h and h2 belong to the same block of
DEFINITION. Let rc be a partition of M. (i) c is a SP-partition of M iff

h h2 (mod re) implies h 1Pt(u) =_ hzpM(u) (mod re) for all u e UM. (ii) rc is regular
iff h e B re, 0, 1, 2, and h0 clh + c2h2 implies Bo ciB + c2B2.

THEORFM 4.1. Let rc be apartition ofM. Thefollowing statements are equivalent"
(a) rc is regular;
(b) there exists a subspace W Ho(m such that h =-h2 (mod rr) /ff

h -haW;and
(c) there exists a 1-matrix K such that h h2 (mod re) iff hlK hzK.
Proof. The proof is similar to [8, Thm, 4.2].
The subspace W and the matrix K in the above theorem will be referred to as

the associated subspace and associated matrix, respectively.
DEFINITION. A regular k-partition of M is a regular partition of M associated

with a k-matrix.
THFORM 4.2. There exists a regular k-SP-partition of M iff there exists a

k-matrix K and for every u Ut, there exists a 1-matrix P(u) such that Pt(u)K
Kt’(u).
Proof. The proof is similar to [8, Thm. 4.5].
In the rest of the section, we shall present a necessary and sufficient condition

for a QSSM to admit a cascade decomposition of its state-behavior. In order to
establish the condition, we have to show that every k-matrix with linearly independ-
ent columns can be extended in a certain way to a k-matrix with linearly inde-
pendent rows.

Notation. Ers is the rs x s 3-matrix whose (i,j)th entry is iff r(j 1) + t,
where __< < r. Thus, for example, E23 is the 6 x 3 matrix

/1 0 0

0 0

0

0

0

0

LEMMA 4.3. Let Ko be an rn x n k-matrix whose columns are linearly independ-
ent. There exists an integer <= m n + and an rn x nt k-matrix K such that
KEt, Ko and the rows ofK are linearly independent.

Proof. If m n, then there is nothing to prove. Therefore, we shall assume
that m > n. Let E be the m-dimensional Euclidean space whose vectors are
represented by column matrices, and let F {el, e2,... era} be the standard
basis of E’. For every vector g Em, we say that g is commensurate with e F
iff the ith row of g is not zero. Since m > n, there exists an n x (m n) matrix L
such that each column ofL is a member of F, and the columns ofK0 and L together
span E". Let be a "partition" of the columns of L into n disjoint blocks (some
blocks may be empty) such that a column e of L is contained in block j implies

STATE-SPLITTING 91

that the jth column of Ko is commensurate with e. Since Ko is a 1-matrix, each
column of L must be contained in at least one block of . Let tj be the number of
elements in the jth block of , and let be the largest of all such tj. Clearly,

=< m n + 1. For each j 1, 2,..., n, let Kj be an m 3-matrix whose
first tj columns are the elements of the jth block of and all remaining columns,
except the last column, are 0. Let K Ko (R) K’ where K’ (Aij) and Aij is the ith
row of Kj. Since Kj is a 3-matrix, it follows that K is a k-matrix and KEt, Ko.
It remains to show that the rows of K are linearly independent. It follows from the
construction of K that each column of L is a scalar multiple of some column of
K. Moreover, since KEt, Ko, therefore each column of K0 is a linear combina-
tion of columns of K. Thus, the columns of K span E". This shows that the rows
of K are linearly independent. Q.E.D.

The matrix K will be called an extension of Ko.
Remark. If Ko is a 3-matrix, then Ko is a matrix, associated with a regular

3-partition r of some M. But z, being a regular 3-partition, corresponds to a
partition r’ of the states of M. In this case, the obtained in the above theorem
reduces to the number of elements of the largest block of r’.

THEOREM 4.4. There exist M and M2 such that the cascade connection of
M and m2 is a state-behavior k-realization ofM !ffM has a regular k-SP-partition.

Proof. Suppose the cascade connection of M1 and M2 is a state-behavior
k-realization of M with assignment (, fl) and associated matrix K. Then for every
u U, P(u)K K(PM(x(U)) @ P((u))), where P((u))= (P2(i,j,(u))). Thus
P(u)KE,,, KE,,,PM’(a(u)), where m IM2[and n IMll. Since K is a k-
matrix, so is KE,,,. By Theorem 4.2, M has a regular k-SP-partition.

Conversely, suppose M has a regular k-SP-partition, and let Ko be the
associated matrix. Let u be an element of UM. By Theorem 3.2, there exists a
1-matrix P(u) such that pM(u)K o KoPl(u). Let K be an m nt matrix which is
an extension of K0. Let

P(u) K + pM(u)K + E,,P(u)E,,+, K + pM(u)KoE.

Since the rows of K are linearly independent, therefore KK + is the identity
matrix, and

KP3(u) pM(u)K + KoPl(u)Et+ M +p (u)KoE, PM(u)K.
Moreover, since the columns of E, are linearly independent, therefore
is the identity matrix, and

P3(u)Etn-- K+pM(u)Ko + Et,P(u)- K+pM(u)Ko E,,P(u).

This implies that P3(u)- Pl(u)(R) Pz(u) for some Pz(U). Let Pz(u)= (Ai;(u)),
where Ai;(u) are x 1-matrices. Define M and M2 where uM’= UM, UM2

S x S x UM, S {1, 2,..., n}, and for every u UM, i,j S, PM’(U) PI(u)
and PM2(i,j, U) Aij(u). It follows from the foregoing discussions that the cascade
connection of M and M2 is a state-behavior k-realization of M.

It follows from the above proof that M and m2 can be chosen to have fewer
states than M iff M has a nontrivial k-SP-partition. The trivial partitions of M
are" the partition which has only one block and the partition where each block
contains exactly one element.

92 EUGENE S. SANTOS

COROLLARY 4.5. Let M be a k-QSSM. There exist k-QSSM’s M andM2 such
that the cascade connection of M and M2 is a state-behavior 3-realization of M
iffM has a regular 3-SP-partition.

For k 2, a proof for the sufficiency part of the above corollary can be found
in [3].

Remark. The above corollary does not hold, in general, if 3 is replaced by k.
This is due to the fact that the P3(u) given in the proof of Theorem 4.4 is not neces-
sarily a k-matrix.

We shall conclude this section with an example illustrating the procedures
given in the proofs of Lemma 4.3 and Theorem 4.4.

Let U {u,u2},

0 0 0

0 0
70 12 a

and

Let

pM(u2)

o1/4o1/4
0 0 0

0 0 0

and let z be the regular partition of M with associated matrix Ko. Since

and

pM(u2)Ko 0

therefore, it follows from Theorem 3.2 that = is an SP-partition of M. We shall now
construct an extension K of K0 following the procedure given in the proof of
Lemma 4.3.

STATE-SPLITTING 93

Let

Clearly, the columns of Ko and L together span E4. Since the first and second
columns of L are commensurate with the first and second columns of Ko, respec-
tively, therefore, a possible choice of (I) is to take the first and second blocks of (I) to
contain the first and second column of L, respectively. In this case, 2 1,

2,

0
KI=

0

0

and K2

0

0

0

The last column of K and K2 are uniquely determined since both matrices are
1-matrices. Thus

K’ (K lK 2)

0 0

00 0

0 0

Therefore

1/2(1 O)

0(0 1)
K=Ko(R)K’=

1 (o
\ 1(0 1)

1/2(0 1)

1(0 1)

o)

o(o

1/2 0 0 12
0 0 0 1

0 0

It is easy to verify that K is an extension of Ko.
Next, we shall construct M and m2 following the procedure given in the

proof of Theorem 4.4. Clearly,

K +

0 0

oo
0 3

0 0

94 EUGENE S. SANTOS

is a pseudoinverse of K, and

is a pseudoinverse of E22. Moreover, both K + and E +
22 are 1-matrices. Thus,

and

P(u)

P(u)

6 6

0 1- 12

70 0 --g

0 0 0

0 0 0

o

The matrices P3(ul) and P3(u2) are obtained by using the equation P3(U)=
K+PM(u)K + EzzPI(u)E2 K+pI(u)KoE2+2 with

and Pl(U2)
0 1/2

Hence the QSSM M is defined by Pm(ul) P(u) and Pm2(u2) P(u2).
Moreover, the QSSM m2 is defined by"

Pm2(1, 1, u) Pm(1, 2, u)

Pu(2’ 2’ Ul)= (--0PM2(1 2, U2)=Pm2(1, 1, U2)
0

5. Covers. The concept of covers or set systems is one of the most powerful
tools in the study of decomposition of deterministic machines [4]. In this section,
we shall generalize this concept and show how it could be used in the decomposition
of stochastic machines.

DEFINITION. A cover # of M is a collection of subsets of H(M). The subsets

STATE-SPLITTING 95

in/ will also be called blocks of #. If there exists a finite collection off, of subspaces of
Ho(M such that each block of# is of the form h + W, where h H(M) and W
then is a regular cover of M. If, in addition, every W in cg, is the subspace associ-
ated with some regular k-partition of M, then/ is a regular k-cover of M.

DEFINITION. Let/ be a cover of M./ is an SP-cover of M iff for every B
there exists a B’ e # such that u Ut and h e B implies hPM(u) B’.

Clearly, every regular k-SP-partition of M is a regular k-SP-cover of M.
Moreover, we have the following theorem

THEOREM 5.1. If It is a regular SP-cover ofM and cg, { W1 W2 "", W,},
then the regular partition rc of M with associated subspace Wo WI + W2 +""
+ W, is a regular SP-partition ofM.

Proofi Since g is a regular SP-partition of M, therefore, for every W
there exists a W’ e such that u e Ut and g W implies gPt(u) W’. This implies
that goPt(u) Wo for all go Wo and u Ut. Thus rc is a regular SP-partition of M.

THEOREM 5.2. If la is a regular k-SP-cover of M, then there exist QSSM’s
Mo, M and m2 such that Mo is a 3-split ofM, Mo is a k-submachine of the cascade
connection of M and M2, and]M2] + dim cg, N tM], where dim cg, is the
dimension of the subspace in cg, with the largest dimension.

Proofi Let cg, {W, W2, ..., W,} and for 1, 2, ..., n, let L be a matrix
whos rows constitute a basis for W. Since is a regular SP-cover of M, therefore,
for each W e #, there exists Wi # such that for every u e Ut and gi W, giP’(u)
e W,. This implies that for every i= 1, 2, ..., n, and u Ut, there exists Qi(u)
such that LiPt(u)= Q(u)Lj,. For each u e Ut, let Q(u)= (Q;j(u)), where Qj(u)

Qi(u) ifj Ji, and Qij(u) 0 otherwise. Let K (K’i.i), where for 1, 2, ..., n,
and j 1, KIj is the identity matrix of order]M]. For each u e Ut, let Po(u)

(P(u)), where for i,j 1, 2,..., n, P(u) Pt(u)ifj j, and P(u) 0 other-
wise. Let Mo be the QSSM where U" UM and for each u U, Pt(u) Po(u).
Clearly, Pt(u)K KiPt(u) for all u e Ut. Thus Mo is a 3-split of M since K1 is
a 3-matrix with linearly independent columns. Let L (Lij), where for i, j !, 2,
.., n, Lj L if j, and Lj 0 otherwise. It is easy to verify that LPt(u)
Q(u)L for all u e U". Let Wo be the subspace spanned by the rows of L, and let

be the regular partition of Mo with associated subspace Wo. Then rc is a regular
SP-partition of Mo. Moreover, for 1, 2, ..., n, let K be the k-matrix asso-
ciated with r, the regular k-partition of M with associated subspace W. Let
K2 (K), where for i, j 1, 2, ..., n, K K if/= j, and K 0 otherwise.
Clearly, K2 is a k-matrix associated with re. Thus, rc is a regular k-SP-partition of
Mo. It follows from the proofs of Lemma 4.3 and Theorem 4.4 that there exists
QSSM’s M and M2 such that IM2]-< nt- dim rg, =<]MI and Mo is a k-sub-
machine of the cascade connection of M and m2

Remark. In the above theorem, if Ho(M is not in cg,, then IM21 <]M
Moreover,]Mll n and hence [MI] could be reduced by (i) omitting subspaces
in , which are subsets of other subspaces in if any, and/or (ii) replacing any
subset of by its direct sum. However, in case (ii),]M2] may be increased.

THEOREM 5.3. If t is a regular k-SP-cover of M, then there exist QSSM’s Ma
and M2 such that IM21 -<_ + dim cg, __< IM] and the cascade connection ofM and
M2 is a regular strong k-realization ofM.

Proof The proof follows from Theorems 3.2 and 5.2.

96 EUGENE S. SANTOS

REFERENCES

[1] G. C. BACOY, The decomposition of stochastic automata, Information and Control, 7 (1964),
pp. 320-329.

[2] S. FUJIMOTO AND T. FUKAO, The decomposition ofprobabilistic automata, Denki Shikenjo Iho,
30 (1966), pp. 688-698.

I3] S. E. Gelenke, On the loop-free decomposition of stochastic finite-state systems, Information and
Control, 17 (1970), pp. 474-484.

[4] J. HARTMANIS AND R. E. STERNS, Algebraic Structure Theory ofSequential Machines, Prentice-Hall,
Englewood Cliffs, N.J., 1966.

[5] A. PAZ, Introduction to Probat;ilistic Automata, Academic Press, New York, 1971.
[6] C. A. RHODE, Some results on generalized inverses, SIAM Rev., 8 (1966), pp. 201-205.
7] E. S. SANa’OS, First and second covering problems of quasi stochastic systems, Information and

Control, 20 (1972), pp. 20-37.
[8] , Algebraic structure theory of stochastic machines, Math. Systems Theory, 6 (1972), pp.

243-262.

SlAM J. COMPUT.
Vol. 4, No. 2 June 1975

COMPUTATIONAL COMPLEXITY AND NUMERICAL STABILITY*

WEBB MILLER-

Abstract. Limiting consideration to algorithms satisfying various numerical stability requirements
may change lower bounds for computational complexity and/or ma.ke lower bounds easier to prove.
We will show that under a sufficiently strong restriction upon numerical stability, any algorithm for
multiplying two n x n matrices using ,only +, and x requires at least n multiplications. We
conclude with a survey of results concerning the numerical stability of several algorithms which have
been considered by complexity theorists.

Key words, complexity, roundoff error, bilinear form, matrix multiplication

1. Introduction. Proofs of lower bounds for the computational complexity of
a given problem must generally consider only a few measurements of cost and
ignore the others. For example, a discussion of the complexity of the problem of
sorting a list of items may count only the number of comparisons, disregarding
issues like noncomparison operations, storage requirements and programming
simplicity.

When the problem under consideration involves real (i.e., floating-point)
arithmetic, then another factor is relevant, namely, the propagation of rounding
errors. In a recent survey of arithmetic complexity, Borodin 3, p. 174] remarks:

But eventually we will have to develop results which simultaneously talk about arithmetic costs,
and the "robustness" or "stability" of the algorithm. Perhaps if we were more formal about the
numerical properties of an algorithm, then it might be easier to produce non trival lower bounds.

Of course, many people have given simultaneous consideration to complexity
and stability. In particular, numerical analysts are daily faced with the trade-off
stability and the operation count. Moreover, investigations have been made of
the effects of rounding errors upon several algorithms of interest to complexity
theorists (for a survey, see 6).

Rather, the first sentence quoted from Borodin seems to suggest the possible
existence of problems for which the fastest algorithms must be less than optimal
with regard to stability. One motivation for this paper is to present several such
examples. Thus we are interested in the effects upon complexity lower bounds of
various stability requirements (essentially the opposite problem of maximizing
stability subject to complexity constraints is investigated by Babuska [1] and
Viten’ko [20]).

However, our primary motivation is to be found in Borodin’s second sentence.
When we limit consideration to all programs (in a given language) which evaluate
a fixed function and which satisfy a certain stability requirement, it is entirely
possible that the fastest programs are excluded. More intriguing to us is the
possibility that the remaining programs have a simple structure which makes
finding a program that is optimal with respect to some measurement of cost
substantially easier than if arbitrary (and less stable) programs are allowed to
compete.

* Received by the editors August 21, 1973, and in final revised form July 5, 1974.

" Computer Science Department, Pennsylvania State University, University Park, Pennsylvania
16802. This work was supported in part by the National Science Foundation under Grant GJ-42968.

97

98 WEBB MILLER

Lower bounds for arithmetic complexity are often difficult to verify. In
particular, the problem of determining the minimum number of multiplications
needed to evaluate a bilinear form is equivalent to an ancient and seemingly
intractable problem of ranking tensors (for a discussion and further references,
see Dobkin [83, especially 5). It seems reasonable to consider subcases, e.g.,
stability requirements, which are natural in the complexity framework (and
perhaps not so natural in, e.g., the tensor framework) in the hope that they provide
a handle on lower bound proofs. (However, it should be noted that lower bound
proofs sometimes apply to arbitrary fields, whereas stability restrictions are only
natural over the fields of real or complex numbers.)

Here we have focused on the evaluation of systems of bilinear forms by
programs which apply only the operations +, and . For simplicity, we have
not allowed constants, though almost everything carries over with minor modifica-
tions. One of our results is that if only such programs meeting a very restrictive
stability requirement are considered, then n 3 multiplications are needed to find
the product oftwo n n matrices. Under a somewhat relaxed stability assumption,
we will show that computing the product of a 2 2 matrix and a 2 n matrix
requires at least 7n/2] multiplications. In each case, if the stability requirement
is dropped, then faster algorithms can be found and tight lower bounds seem to
become harder to verify (they are not yet known).

The concepts of numerical stability which we employ are closely related to
those currently used by experts in roundoff analysis (e.g., Wilkinson [213, 223).
They are idealized in at least two respects. First, they use very few of the actual
properties of floating-point arithmetic. This creates a tendency for pessimistic
results in that algorithms may be more stable than we can prove (see the remarks
by Kahan [12, pp. 1232-1234] on Viten’ko [20]). Second, we consider only the
first-order effects of rounding errors, so algorithms may be less stable than results
like ours suggest. (In 5 we will detail several more reasons why the practical
significance of the results given here is not especially great.)

We hope that this paper offers supporting evidence for Borodin’s cited belief
and for our conviction that numerical analysts and complexity theorists can
benefit from an exchange of ideas.

2. Numerical stability of polynomial programs. A polynomial program is a
sequence of instructions of the form

(2.1) V W # X

where # is one of +, or . For simplicity, we require that each operand,
W or X, is a variable (initial or defined).

We can think of the program as specifying a sequence of floating-point
operations to be performed on the data d (d l, ..., d,). In many contexts it is
helpful to take the alternative point of view that the program specifies symbolic
operations to be performed on multivariate polynomials in the initial variables d.
Any resulting polynomial V(d) has integer coefficients and no constant term.

Let V be a defined variable of such a program, i.e., V appears on the left of
a unique instruction (2.1). If we omit the instruction defining V and consider V
an initial variable, then any variable Z can be considered a polynomial Z(d, V).

COMPUTATIONAL COMPLEXITY AND NUMERICAL STABILITY 99

Define
OZ

AZ(a) -f#(a, v(a)), v(a).

The polynomial AZv(d) measures the sensitivity of the numerical evaluation of
Z(d) to a floating-point rounding error committed in the operation producing
V(d). For suppose that the evaluation is performed exactly except that V(d)(1 + 6)
is used in place of V(d). The induced error is

Z(d, V(d)(1 + b))- Z(d)= Z(d, V(d)(1 + b))- Z(d, V(d)) b. AZv(d)

for small b.
For example, let d (a, a2, bl, b2) and consider

T +-- a)< a2,

Ub b2,

V *- a 4- b 2

(2.2) W +-- a2 + b,

X-VW,

Y+--X-T,

ZY-U.

One easily computes

Z(d) alba + a2b2,

Z(d, W) (a A- b2)W- ala2 bib2,

OZ
ow(d, W) al + b2,

AZw(a (a -F b2)(a2 -+- bl).

Stability conditions can sometimes be interpreted as restricting the form of
certain polynomials AZv(d). If

0Z
(2.3) (d, V(d)) 0,

then the form of V(d) is also restricted since

OZ
d,v(a).-f(v(a)) AZ(a).

Our goal in the remainder of this section is to exhibit a useful condition which
guarantees (2.3).

Let Z be a defined variable of a polynomial program. Consider the following
process for marking certain instructions of the program. If Z is defined by an
addition or subtraction, then mark that instruction. If an instruction

V+--X # Y, where # is + or-,

100 WEBB MILLER

is marked and if X and/or Y is defined by + or -, then mark those instructions
defining X and/or Y.

Now delete any unmarked instructions. The set I(Z) of initial (i.e., undefined)
variables of the resulting polynomial program contains only variables which were
originally either initial or defined by multiplication (take I(Z)= {Z} if Z is
defined by multiplication).

Clearly Z is a linear combination of the U in I(Z). Specifically, there exists
a unique integer iz(U) for each U in I(Z) such that in the resulting program

Z Z iz(U)" U,

the dependence of Z on I(Z) is essentially the same in the original program.
In particular,

(2.4) Z(d) iz(U). U(d),

and for any V in I(Z), we have

(2.5)

and

Z(d, V) _= iz(U). U(d, V).

For an example of these notions, recall (2.2). We find that I(Z) {T, U, X}

iz(X -iz(T -iz(U).

THEOREM 2.1. If V in I(Z) is defined by a multiplication and if iz(V 0, then

#Z
.;(d,v V(d)) 0.

Proof. If U in I(Z) is originally defined by a multiplication, then U may
depend on V in the sense that

OU
v(d, v(d)) 0.

The only other U in I(Z) are originally initial variables and do not depend on V.
From (2.5) we compute

(2.6)

Z cU
(d V(d)) iz(U).-w,,(d, V(d))

CV

cU
iz(V) + * iz(U). -a-.,(d, V(d)),

where the sum * is over all U - V in I(Z) which are defined by a multiplication
U X x Y. For such U we find

U cX
d

cY
cv(d, V(d))= -(V(d)). Y(d) + --(d, V(d)). X(d).

Neither ofthese last two summands has a constant term. It follows that the constant
term in (2.6) is iz(V). This proves Theorem 2.1.

COMPUTATIONAL COMPLEXITY AND NUMERICAL STABILITY 101

3. Stable evaluation of bilinear forms. Consider a polynomial program
defining a variable B which evaluates a bilinear form

(3.1) B(, b) =- ab
i=lj=l

Here the input has been partitioned as d (a,b) (a 1,"’, am, b 1,’", b,) and
the aij are integer constants. In this section we will define and investigate four
types of numerical stability which are applicable to such variables.

If f and g are real-valued functions of (a, b), then

f(a, b) O(g(a, b))

means that there exists a constant K such that

If(a, b)l _-< K. Ig(a, b)l for all a, b.

We also need the notation

lal max {lail’l _-< _< m},

Ibl max {Ibl’l <_- j _-< n},

I(a, b)ln max {laibl "ai :/: 0}.

DEIINITION 1. The following four kinds of numerical stability are defined by
the requirement that each defined variable V satisfies the corresponding equality.

(i) Brent stability"

ABv(a, b) O(lal. Ibl).

(ii) Restricted Brent stability"

ABv(a, b) O(l(a, b)ln).

(iii) Weak stability"

ABv(a’b)=O(lal’c3Bi= B
ffaa/(a, b) + Ibl"

j:l j(a, b)

(iv) Strong stability"

ABv(a, b) O a (a b) + bj.
c3B

i--1 a/ j--I j(a, b)

Definition l(i) is an idealization of a notion studied by Brent [4], [5]. It is
idealized in that "second order" effects of rounding errors are obliterated by the
differentiation in the definition of ABv.

Definitions l(iii) and l(iv) are formalizations of ideas from "backward error
analysis" (see Miller [16]). Their intuitive thrust is that the result computed with
roundoff error is the exact result for slightly altered data. Here "slightly altered"
means (in the case of strong stability) that each coordinate is accurate to within
a few rounding errors or (in the case of weak stability) that the error in each ai
(respectively, bj) is small compared to lal (respectively, Ibl).

Of course B can have, e.g., Brent stability only in the context of a particular
program. We will often omit specific mention of the underlying program.

102 WEBB MILLER

Notice that (restricted) Brent stability is meaningful only for the evaluation
of bilinear forms. However, strong stability and weak stability are meaningful
when discussing any rational program, and we include them here so we can locate
the Brent notions in a more general hierarchy of stability requirements.

PROPOSITION 3.1. The following implications hold among the notions of
Definition 1: (iv) (ii) (i); (iv) (iii) (i).

Verifying Proposition 3.1 is easy. For instance, to show that restricted Brent
stability implies Brent stability, one need only note that

I(a, b)lB O(lal" Ibl).

It is also easy to give conditions under which two of the stability requirements
coalesce. We will use the following.

PROPOSITION 3.2. Suppose (3.1) is a permutation bilinear form, i.e., suppose
that whenever ai 0 and as 0, then either

(i) I and j J, or
(ii) v I and j v J.

Then strong stability is equivalent to restricted Brent stability.
Proof. If air 0, then (cB/c3ai)(a, b) aijbj. Hence

[(a, b)ln O ai" -a-a(a, b)

This shows that restricted Brent stability implies strong stability. Proposition 3.1
does the rest.

Restricted Brent stability does not, in general, imply strong stability. Consider
B(a,b) alb + alb2 + a2b + a2b2 and

(3.2)

U - a x bl
Va b2,

W--a2 hi,

X -- a2 b2,

YU+Y,

ZY+W,

BZ+X.

One easily computes ABv(a, b) albx. But if al b -a2 -b2, then

+

It follows that the program does not have weak stability;hence it lacks strong
stability. On the other hand, one easily sees that it possesses restricted Brent
stability. Of course, this B is not a permutation bilinear form.

THEOREM 3.3. Let V in I(B) be defined by a multiplication, and suppose that
in(V) :/: 0 and that V(a, b) 0. If B has Brent stability, then the definition of V

COMPUTATIONAL COMPLEXITY AND NUMERICAL STABILITY 103

must be of the form
L(a) x L2(b (or L2(b) x L(a)),

where L and L2 are linear (e.g., Ll(a) iai with integers i).
Proof. We will show that ABv is bilinear. Since, by Theorem 2.1, V is a divisor

of ABv, it will then follow that V must be bilinear. Now the result is immediate.
To show that ABv is bilinear, let us assume that it is not bilinear, then show

that the stability condition

(3.3) ABv(a, b) O(lal. Ibl)

is violated. We proceed by cases.
First suppose ABv has a term involving none of b (or none of the ai), say,

aaP’a am with a - 0.

Fixing b b2 b, 0 and allowing a to vary, we see that ABv(a, 0) is a
nonzero polynomial in a. Thus for some (a, 0) (a, b), we have ABv(a, b) :/: 0

lal" bt, violating (3.3).
The only other possibility is that ABv has a term of degree greater than two.

A simple argument shows that (3.3) is again violated. Iq

Theorem 3.3 shows that example (2.2), an instance of Winograd’s method
for inner products, does not possess Brent stability (see also Brent [4], [5]).

The next result shows that if we add to the hypotheses of Theorem 3.3 the
assumption of restricted Brent stability, then any term appearing in V must appear
in B. The intuitive reason is that otherwise, a term, rliaibj, must cancel algebraically
in a later operation, and corresponding numerical cancellation creates an error
not O(l(a, b)ln).

THEOREM 3.4. Let V in I(B) be defined by a multiplication, and suppose in(V =/= O.
Write

V(a, b) rlijaibj.

If B has restricted Brent stability, and if qij :/:: O, then the coefficient air in B (3.1)
is nonzero.

Proof. From ABv(a, b) O(l(a, b)ln), we may conclude that if aibj appears in
ABv, then it appears in B, since otherwise there is an (a, b), where I(a, b)ln is zero
but ABv is nonzero. V is a bilinear divisor of the bilinear form ABv. The result
follows since ABv must be a constant multiple of V.

THEOREM 3.5. Suppose that B is a permutation bilinear form evaluated by a

polynomial program and that B has strong stability (or equivalently, that B has
restricted Brent stability--see Proposition 3.2). If aib appears in B with nonzero

coefficient, then there is a multiplication in the program of the form (ai) (fib).
Proof. The term abj must appear in some V in I(B) satisfying in(V) 4:0 (see

(2.4)). If V is defined by (ta) (flsbs), where, say, i, z and fl are nonzero,
4: I, then a term aibj must appear in B by Theorem 3.4. This contradicts the

assumption that B is a permutation bilinear form.
Two remarks are in order. If a permutation bilinear form B is computed by

directly finding its terms and adding and subtracting them to get B, then B has
strong stability. This follows, e.g., from 16, Thm. 4.1] since NULL(U), as defined

104 WEBB MILLER

there, is trivial. Second, if B is not a permutation bilinear form, then such programs
may lack strong stability (see (3.2)) and "fast" programs may possess it (for
example, the evaluation B (al + az)(bl + b2)).

4. Speed sacrifices stability. We will say that a polynomial program to evaluate
a system of s bilinear forms

(4.1) Bk(a, b) trijkaibj, k 1, s
i=lj=l

possesses, e.g., simultaneous Brent stability if each Bk has Brent stability. In this
section we will draw two conclusions from our previous results.

Conclusion 1. Any polynomial program for (4.1) which has simultaneous
Brent stability can make use of multiplications only of the form Ll(a) L2(b).

Example 4.1. Any polynomial program of the "Ll(a) Lz(b)" form to
multiply a 2 2 matrix times a 2 n matrix requires at least 7n/2 multiplications,
and this bound can be achieved (Hopcroft and Kerr [11]). Howeve,r, Winograd’s
method requires only 3n + 2 multiplications. Thus if n _> 5, then requiring
simultaneous Brent stability increases the minimum number of multiplications.
Moreover, the requirement seems to simplify the verification of lower bounds,
since it is not known if Winograd’s method is optimal.

Example 4.2. Often one does not count multiplications which are
"preconditioning", i.e., which produce only polynomials in a alone or in b alone.
To reduce the number ofmultiplications in a polynomial program by precondition-
ing, one must sacrifice simultaneous Brent stability.

Example 4.3. It can be shown that any polynomial program using only
multiplication of the "Ll(a) Lz(b)" form must exhibit simultaneous Brent
stability (this is not hard to prove, but a proof does not belong in this paper).
Thus Strassen’s algorithm for matrix multiplication has simultaneous Brent
stability (see also Brent [4]).

Conclusion 2. If each Bk is a permutation bilinear form, then any polynomial
program with simultaneous strong stability must perform multiplications,
where is the number of pairs (i, j) such that some aijk in (4.1) is nonzero.

Example 4.4. The n 3 multiplications in the usual algorithm for multiplying
n n matrices make it optimal among polynomial programs with simultaneous
strong stability. For general polynomial programs, the arithmetic complexity of
matrix multiplication seems fa,r from resolved.

Example 4.5. Conclusion 2 also applies to the multiplication of complex
numbers or polynomials (i.e., computing the coefficients of the product of poly-
nomials). Consider (al + a2i) (bl + b2i), i.e., computing

Bl(a, b) alb a2b2 real part,

B2(a,b alb2 + a2b imaginary part.

If we compute B1 X Y and B2 X Z, where

X (al + a2)b, Y-- a2(b d- b2), Z al(b b2),

COMPUTATIONAL COMPLEXITY AND NUMERICAL STABILITY 105

then our previous results indicate that the influence of roundoff error upon B
should be "unduly large" for a, b such that

I(a, b)ll << lal" Ibl.
The correct result for

(0.0015 -+- 1.01i) (1.01 + 0.001i)

is B1 0.000505, whereas computing in "three-digit floating-point arithmetic",
i.e., rounding symmetrically to three digits after each operation, gives 0.00051
with the usual method, and 0.0 with the "fast" method.

5. Caveat. The practical value of the above results is limited by several
factors:

1. They consider only polynomial operations. If a system of bilinear forms
can be evaluated in n multiplications, then it can be evaluated with n multiplications
of the form L(a, b) L2(a, b) for linear Li (Winograd [23]). Such polynomial
programs (with constants) are "nearly Brent stable" in the sense that

ABv(a, b) O([max {la,I, Ibjl }32)
for all B and defined V. They can be given simultaneous Brent stability by scaling
a and b to have roughly the same size (see Brent [4], [5] for a special case).

2. Sometimes it costs as much to run a "more stable" algorithm in single
precision as it costs to run a fast algorithm in double precision.

3. For a particular method, range of data, machine and software ad hoc
roundoff analyses will often override general results like ours.

6. Some known stability results. This section contains a brief review of
stability results concerning algorithms of(possible) interest to complexity theorists.

(a) Evaluation of a polynomial p(x) =o aixi given x, ao, a,. A popular
stability condition is that the computed value be exactly a.*,xi, where each
relative difference la’ ail/]ail is small ([21, pp. 36-373). Following our approach,
this might be formalized as

APv(x, a) O(laixil)
for all defined variables V. There is nothing uniquely plausible about this require-
ment, and others have been considered, e.g., [13]. See also [2].

However, the condition does seem to be widely applicable. Both Horner’s
role and the naive method are easily seen to be stable in this sense. Also,
Woiniakowski [24] has verified this property for a family of algorithms of Shaw
and Traub [19] for evaluating a polynomial and its normalized derivatives.

(b) Polynomial evaluation with preconditioning. Workers involved in producing
subroutines for evaluating common functions have considered the possible use
of the Pan and Motzkin-Belaga forms. However, these procedures are too often
contaminated by numerical errors (see Rice [18] or Hart, et al. [10, pp. 67-73]).
On the other hand, preliminary work by M. Rabin and S. Winograd indicates the
existence of stable preconditioning methods of practical value (see [14, p. 179]).

(c) Interpolation. A semiformal roundoff analysis of Lagrange’s formula can
be found in Dorn and McCracken [9, pp. 287-291]. It seems natural to compare

106 WEBB MILLER

Lagrange’s or Newton’s form with fast methods [3], both in their use for evaluating
the interpolating polynomial at a point and for finding its coefficients.

However, plausible stability conditions need to be agreed upon before one
can formally discuss the propagation of rounding error in these methods. The
problem here is more acute than for general polynomial evaluation or (especially)
matrix multiplication. Much of the difficulty stems from the fact that one may well
not care how a method performs with completely arbitrary data, e.g., when the
polynomial assumes alternating values of and -1. Moreover, in practice, only
very low degree interpolating polynomials are used (with rare exceptions).

(d) The fast Fourier transform. Many studies have concluded that the FFT
is reasonably stable (see Ramos [17] for results and references). With this example
in mind, the reader might find it instructive to attempt an extension of our notions
and results to programs with complex constants.

(e) Parallel evaluation of arithmetic expressions. Brent [6] proves the stability
(in approximately the sense of our strong stability) of certain near-optimal schemes
for the parallel evaluation ofarithmetic expressions lacking division. For expression
containing division his schemes may lose strong stability [7].

Acknowledgments. Allan Borodin convinced me that this subject should be
explored and provided many helpful ideas. S. Winograd pointed out reference 11
and clarified the nature of his work with Rabin, mentioned in 6. David Dobkin
and a referee made several helpful suggestions. Support from H. R. Strong made
this work possible. A preliminary version appeared as an IBM Technical Report

REFERENCES

[1] I. BABUSKA, Numerical stability in mathematical analysis, Proc. 1968 IFIP Congress, vol. I,
North-Holland, Amsterdam, 1969, pp. 11-23.

[2] N. BAKI4VALOV, The stable calculation ofpolynomial values, U.S.S.R. Computational Math. and
Math. Phys., 11 (1971), no. 6, pp. 263-271.

[3] A. BORODIN, On the number ofarithmetics required to compute certainjnctions--circa May 1973,
Complexity of Sequential and Parallel Numerical Algorithms, J. Traub, ed., Academic Press,
New York, 1973, pp. 149-180.

[4] R. P. BRENT, Algorithmsfor matrix multiplication, Rep. CS 157, Computer Science Dept., Stanford
Univ., Stanford, Calif., 1970.

[5] --., Error analysis of algorithms for matrix multiplication and triangular decomposition using
Winograd’s identity, Numer. Math., 16 (1970), pp. 145-156.

[6]--, The parallel evaluation of arithmetic expressions in logarithmic time, Complexity of
Sequential and Parallel Numerical Algorithms, J. Traub, ed., Academic Press, New York,
1973, pp. 83-102.

[7] --, The parallel evaluation of general arithmetic expressions, J. Assoc. Comput. Mach., 21
(1974), pp. 201-206.

[8] D. DOBKIN, On the optimal evaluation ofa set ofn-linearforms, Proc. 14th Symposium of Switch-
ing and Automata Theory, Univ. of Iowa, 1973, pp. 92-102.

[9] W. DORy AND D. MCCRACKEN, Numerical Methods with FORTRAN IV Case Studies, John
Wiley, New York, 1972.

[10] J. HART ET AL., Handbook of Computer Approximations, John Wiley, New York, 1965.
[11] J. HOPCROFT AND L. KERR, On minimizing the number of multiplications necessary jbr matrix

multiplication, SIAM J. Appl. Math., 20 (1971), pp. 30-36.
[12] W. KAHAN, A survey of error analysis, Proc. 1971 IFIP Congress, North-Holland, Amsterdam,

1972, pp. 1214-1239.

COMPUTATIONAL COMPLEXITY AND NUMERICAL STABILITY 107

[13] C. MESZTENYI AND C. WITZGALL, Stable evaluation ofpolynomials, J. Res. Nat. Bur. Standards,
Sect. B, 71B (1967), pp. 11-17.

[14] R. MILLER AND J. THATCHER, Complexity of Computer Computations, Plenum Press, New York,
1972.

[15] W. MILLER, Computational complexity and numerical stability, IBM Tech. Rep. RC4480, IBM
T. J. Watson Res. Center, Yorktown Heights, N.Y., 1973.

[16] --, Remarks on the complexity of roundoff analysis, Computing, 12 (1974), pp. 149-161.
[17] G. RAMOS, Roundofferror analysis ofthefast Fourier transform, Math. Comp., 25 (1971), pp. 757-

768.
[18] J. RICE, On the conditioning ofpolynomial and rationalforms, Numer. Math., 7 (1965), 426-435.
[19] M. SHAW AND J. TRAUB, On the number of multiplications for the evaluation of a polynomial and

some of its derivatives, J. Assoc. Comput. Mach., 21 (1974), pp. 161-167.
[20] I. VTE’O, Optimal algorithms for adding and multiplying on computers with a floating point,

U.S.S.R. Comput. Math. and Math. Phys., 8 (1968), no. 5, pp. 183-195.
[21] J. WILKINSON, Rounding Errors in Algebraic Processes, Prentice-Hall, Englewood Cliffs, N.J.,

1963.
[22], Modern error analysis, SIAM Rev., 13 (1971), pp. 548-568.
[23] S. WIYOGaD, On the number of multiplications necessary to compute certain finctions, Comm.

Pure Appl. Math., 23 (1970), pp. 165-179.
[24] H. WONIAKOWSKI, Rounding error analysis for the evaluation of a polynomial and some of its

derivatives, SIAM J. Numer. Anal., 11 (1974), pp. 780-787.

SIAM J. COMPUT.
Vol. 4, No. 2, June 1975

DERIVATION OF CONFIDENCE INTERVALS FOR WORK RATE
ESTIMATORS IN A CLOSED QUEUING NETWORK*

S. S. LAVENBERG? AND G. S. SHEDLER

Abstract. Closed queuing networks arise naturally as models of multiprogrammed computer
systems and subsystems. Techniques for the efficient simulation of such models can be obtained from
analytical results on the stochastic structure of the queuing networks. In this paper, confidence inter-
vals are derived for a class of new work rate estimators in a closed queuing network. Numerical
results are given which demonstrate that a substantial reduction in the length of confidence intervals
is obtainable by use of the proposed estimators.

Key words, computer system modeling and analysis, confidence intervals, queuing networks,
simulation

1. Introduction. In recent years, closed queuing networks have received
considerable attention (e.g., [1]-[5]) as models of multiprogrammed computer
system and subsystem structures. With few exceptions, the literature is concerned
with the exact mathematical analysis of the congestion phenomena in such models.
In most cases, the analysis given is under the usual queuing theoretic "independent
identically (often exponentially) distributed" (i.i.d.) assumptions. In spite of the
mathematical simplifications which such assumptions introduce, many queuing
network models of interest to the computer systems community (e.g., models of
multilevel storage hierarchies) are of sufficient structural complexity that they
remain intractable analytically and/or limited computationally. Moreover, indica-
tions (cf. [6]) of significant departures from the i.i.d, assumptions of queuing theory
have appeared in the literature.

For these reasons, one is led to consider alternatives to exact (analytical)
solution of queuing networks. An obvious alternative is (Monte Carlo) simula-
tion, although nontrivial questions concerning the efficiency and accuracy of
simulation techniques arise. The literature on methods for the simulation of queu-
ing networks has been primarily concerned with variance reduction techniques
(e.g., [73) or hybrid control variable simulation techniques [83, the evidence of the
value of the proposed technique being empirical.

This paper is concerned with techniques for the efficient simulation of closed
queuing networks based on the use of estimators suggested by the structure of
the network. The main results of the paper, given in 4 and 5, are the derivation
and computation of asymptotic confidence intervals for a class of new work rate
estimators in a closed queuing network. The derivation of the confidence inter-
vals rests on the observation that particular stochastic processes associated with
the queuing network are cumulative processes (cf. [9]). In addition, the computa-
tion draws heavily on the characterization of the stochastic structure of the queu-
ing network as an imbedded semi-Markov process.

Received by the editors October 23, 1973, and in final revised form June 24, 1974.

" IBM Research Laboratory, San Jose, California 95193.
IBM Research Laboratory, San Jose, California 95193. This work was completed while this

author was visiting at the Department of Operations Research, Stanford University, Stanford, California.

108

DERIVATION OF CONFIDENCE INTERVALS 109

It is our experience that structural results frequently can be obtained for
complex queuing networks under rather general distributional assumptions, even
though exact numerical solution of the networks cannot be obtained in practice
due to severe computational difficulties. By "structural results" we mean relation-
ships between response variables in a network and characterizations of the
stochastic structure of the network. We anticipate that relationships between
response variables can be used in simulation to suggest estimators of response
variables, and that efficient simulation methods based on characterizations of the
stochastic structure of queuing networks can be developed.

A description of the closed queuing network considered in this paper is
given in 2. Section 3 provides the definition of the class of proposed work rate
estimators for the network. Section 4 contains a derivation of asymptotic confi-
dence intervals for these work rate estimators. A computation of confidence
interval lengths appears in 5. Some numerical results for confidence intervals
based on this computation are given in 6. In 7 some empirical results on confi-
dence intervals are reported for the network under more general distributional
assumptions. The final section contains some concluding remarks.

2. Description of the network. Consider the 2-stage closed cyclic queuing
network shown in Fig. 1. There are a fixed number N of customers in the network.
Stage service times X have nonzero finite mean and otherwise arbitrary distribu-
tion function Fx(t), and stage 2 service times T have nonzero finite mean and
otherwise arbitrary distribution function Fr(t). All service times are mutually
independent. Customers are served in the order of arrival at both stages.

Stage General Stage 2 General
Service Times X Service Times T

FIG. 1. Closed 2-stage cyclic queuing network

Suppose that at time 0 an initial location of customers in the network is
specified with service(s) about to begin. For 1, 2, let W(t) be the total server
busy time at stage in the time interval (0, t], given this initial location ofcustomers.
(The dependence on the initial location of customers is suppressed in the notation.)
It has been shown [11] that

(1) Ui-- lim W(t)/t exists with probability 1.

In this paper, Ui is called the work rate for stage i. U is a degenerate random
variable, i.e., a constant, whose value is independent of the initial location of
customers in the network. The estimation of work rates via simulation is discussed
in the next section.

110 S. S. LAVENBERG AND G. S. SHEDLER

3. Estimation via simulation of work rates. A straightforward estimator of
Ui is Ui(z) W/(z)/z, where z is the fixed time at which a realization of the simula-
tion is terminated. It follows from (1) that Ui(z) is an asymptotically strongly
consistent estimator of Ui, i.e., lim_+oo Ui(z) U with probability 1.

From conservation of flow arguments [11] it can be shown that

(2) U/U2 la /la2,

where /, is the mean service time at stage i, i.e., /t E[X] and /2 E[T].
Therefore,

UI(T,/ /Ul(T --(1 /)(l/]22)U2(T

is also an asymptotically strongly consistent estimator of U, where fl is fixed.
The choice of fl will be discussed later in 6 and 7. Also,

U2(T, j) (2/l)Ul(,

is an asymptotically strongly consistent estimator of U2
In simulation, it is desirable to have a confidence interval for the quantity

being estimated. Usually, confidence intervals are determined empirically from
multiple realizations of the simulation. (A noteworthy exception is the recent
work of Crane and Iglehart [12].) A derivation of approximate confidence inter-
vals centered about the estimators U(z), and U(z, fl) is presented next under the
assumption that stage service times X are exponentially distributed. The lengths
of these intervals provide a means by which the accuracy of these estimators can
be assessed.

4. Derivation of confidence intervals. Assume that stage service times X are
exponentially distributed with rate parameter 2, i.e., Fx(t 1- exp(-2t),

>= 0. Also, assume that stage 2 service times T have finite variance var ITS.
Under the exponential stage service time assumption, the work rates for the
stages can be computed numerically (e.g., see (3) and 5 of this paper). Thus in
this case there is no need to estimate work rates via simulation. Nevertheless, the
analytic results on confidence intervals which can be obtained with this assumption
allow a preliminary comparison to be made of the estimators Ui(z) and Ui(z,).

Let n(t), >_ 0, be the number of customers in stage at time t. We adopt the
convention n(t)= n(t +). Assume for convenience that n(0)= N, i.e., stage 2 is
empty at 0, and that at 0 service is about to begin. Let {ri’i 1, 2,...
denote those epochs of departure from stage 2 at which stage 2 becomes empty.
The r are regeneration points [103 in the process n(t). The times between them,
denoted by {Y’k 1, 2,... where Y r l, Y r ru_ 1, k 2, are inde-
pendent random variables identically distributed as a random variable Y, i.e.,
the Y form a renewal process. Let W l/V(r) and W W(r)- W(r_),
k >__ 2. Observe that the Wi, k >__ 1, are independent random variables identically
distributed as a random variable which is denoted by Wi. Thus, Wi(t) is a cumulative
process [10]. Note that E[Wi] = E[Y-] and E[W2] <= E[y2].

It follows from cumulative process results [10] that if E[Y] < 0, then

(3) U

DERIVATION OF CONFIDENCE INTERVALS 111

(6)

where

If, in addition, EI-Y2] < ct, then

(4) var [Wi(t)/t a/t,
where denotes asymptotic equality for large and

(5) a/2 (E[W] + E[Y2](E[W]/E[Y])2 2E[WY]E[W]/E[Y])/E[Y].

Further, it is known [10] that (W(t)- Ut)/ait/2 is asymptotically normally
distributed with mean zero and variance one, i.e.,

lim Pr {(W(t) Ut)/at /2 <= 7} b(7),

4)(7) (2r0- 1/2 exp (- X2/2) dx.

From (6)it follows that if7 >__ 0, lim,_ Pr {IU W(t)/tl 70.i/t 1/2} 24)(7) 1.
Therefore, for large z and 7 > 0,

(7) [Ui(T)])0.i/T, 1/2 Ui(T, "3
I- 70.i/T1/23

is approximately a 100(24)(7) 1) confidence interval for Ui. The length of this
interval is 270.i/z 1/2.

Since Wl(t) and Wz(t) are cumulative processes defined with respect to the
same sequence of regeneration points, Wl(t) + Wz(t) is also a cumulative process.
Thus, since var [Wl(t) + Wz(t)] var [Wl(t)] + var [Wz(t)] + 2 cov [Wl(t), Wz(t)],
cumulative process results yield, after some algebraic manipulation,

(8)

where

cov [Wl(t)/t, W2(t)/t] 0.12/t,

E[y2]E[W1]E[W2] E[W1Y]E[W2] + E[W2 Y]E[W1])0"12 E[W1 W23 + (E[Y])2 E[Y]
/E[Y].

(9)

Also, tUl(t, fl)= flWx(t)+ (1- fl)(]/1/]/2)W2(t)is a cumulative process and
tU2(t, fl) (]/2/]/1)tUl(t, fl)is a cumulative process. Using (4)and (8), it follows that

where

(10)

and

var [Ui(t fl)]

0.() fl20.2 + (1 fl)2(l/fi2)20.22 -+- 2(1 fl)(]/1/]/2)0.12

(11) 0.(fl) (]/2/]/1)20.().
Therefore, it follows that for large z and 7 >- 0,

(12) [Ui(z,) 70.i()/T 1/2 Ui(T, fl) --[- 0.i()/T 1/2]
is approximately a 100(2q5(7) 1) confidence interval for Ui. In order to com-
pare the lengths of the confidence intervals in (7) and (12), the expectations in (5)
and (9) must be computed.

12 S. S. LAVENBERG AND G. S. SHEDLER

5. Computation of confidence interval lengths. The expectations in (5) and (9)
can be computed directly using semi-Markov process analysis techniques [23, [13].
The computations, however, can be done more efficiently. The method employed
in this section involves an application of Wald’s equation [143, by means of which
the expectations are expressed in terms of expectations which are simpler to
compute using semi-Markov process analysis techniques.

In what follows, X and Xk, k > 1, denote exponential random variables, each
with rate parameter 2, and Tand T, k > 1, denote (nonnegative) random variables,
each with the stage 2 service time distribution function Fr(t); these random
variables are mutually independent. The main result of this section is the demons-
tration that the expectations in (5) and (9) of 4 are computable in terms of the
quantities N, it, E[T], var IT] and (k Pr {X + X2 -- + Xk < T}, <_ k
<N-1.

Let R(t) denote the number of departures from stage 2 in the time interval
(0, t]. Let R R(r) and Rk R(rk) R(rk_), k >_ 2. The Rk are independent
random variables identically distributed as a random variable R. The random
variable R is the generic number of stage 2 departures between successive regenera-
tion points. Recall that W, W2 and Y are, respectively, the generic stage 1 busy
time, the generic stage 2 busy time and the generic time between regeneration
points. A generic interval between regeneration points is shown in Fig. 2. Let

Stage

Stage

Y

XR

T T2 T
", ,I

Busy Interval

Idle Interval

FIG. 2. Generic interval between regeneration points

I = Xk. It is straightforward to show with reference to Fig. 2 that

R

w, + x’L a+, + x, w. "= y: ,
k=l

and

YLX+W2,
where X’ is exponential with parameter 2, X’ is independent of X, W1 and W2,

DERIVATION OF CONFIDENCE INTERVALS 113

X is independent of I1 and W2, and denotes equality in distribution. It follows
that

E[W,] E[,],
[W] [,],
E[W, W] E[, W],

E[W,Y] i/22 + E[I,]/ + E[#,W2],
E[W2Y] E[W2]/ + E[W],
[Y] 1/ + [w2],

[Y=] 2/ + 2[w:]/ + [w].
Furthermore, R is independent of XR+ , T+ , XR+2, TR+2, This

condition is sucient for Wald’s equation [14] to hold for the first two moments
of # and W2, i.e.,

[#,] [R]/,

E[W:] [R][T],

[#] [R]/ [R]/ + 2[RW,]/,

E[W] E[R] var IT] E[R2](E[T])2 + 2E[RW2]E[T],

provided that all expectations on the right-hand side of these equations are finite.
Appendix A contains a derivation of Wald’s equation for the second moment,
under more elementary assumptions than those in [14]. Wald’s equation also
holds for the second moment of Ix + W2. Since

E[#,W2] (E[(I, + W2)2] E[I2] E[W2])/2,

after some algebraic manipulation, it follows that

E[I,W2] -E[R2]E[T]/2 + E[RW2]/2 + E[RW]E[T].

Thus, the expectations in (5) and (9) can be expressed explicitly in terms of 2,
E[T], var[T], E[R], E[R2], E[RW] and E[RW2]. The quantities E[R] and
E[R2] can be computed in a straightforward manner by considering an imbedded
Markov chain at stage 2 departure epochs. E[RW] and E[R W2] can be computed
using semi-Markov process analysis techniques. The imbedded Markov chain is
discussed next.

Let {ei :i 0, 1, 2,...} be the epochs of departure from stage 2, where we
assume eo 0. Let ni n(e +), i.e., n is the number of customers in stage just
after the ith departure from stage 2. Then {n:i 0, 1,2, ...} is a finite state
Markov chain over the integers 1, 2, ..., N}.

The transition probabilities of the Markov chain can be expressed simply
in terms of the quantities ek, where

(Zk Pr {X + X2 + -3I- Xk < T},

114 S. S. LAVENBERG AND G. S. SHEDLER

Since X1 + X2 -- -Jl- X has Erlang-k (gamma) distribution,

2ktk-1 exp (-2t)
(13) (1- F(t)) (1 Vr(t)) (k- 1)!

dt, k >= 1.

Let pj denote the probability of transition from state j to state k in the imbedded
chain. Straightforward computation reveals that for <= j <= N 1, the nonzero
transition probabilities are

1- k=j+l,

Pjk O 01+1, k j + 1, =< =< j

%, k-- 1,

and that Pzk PN-1,k, <= k <= N. The imbedded chain can be shown simply to
be irreducible and aperiodic provided that T is not degenerate at zero, a case
which is excluded by our assumptions. Let rt (rtl,rt 2, ..., rtN) denote the
steady state vector for the imbedded chain, i.e., n is the unique probability vector
satisfying nP rt, where P (Pjk). Direct substitution verifies that rt is given by
the following recursive procedure.

Let

Then

ao 1,

ak (al(Xk+ 1-/) -Jr- (Xk
k/=l

k

A= a, k>__O.
j=O

(1 -1), k>2,

ft, a_,/Au_l, <= n <= N.

The quantities E[R] and E[R2] can be computed from P and rt [13, p. 130].
The computation of E[RWI and E[R W.] is described next.

Consider the sequence {Wm(ei+ 1)- Wm(ei)’i 0, 1,2, ...} of stage m busy
times between the epochs {ei}. It is easy to verify that the stage m busy time between
successive epochs e and e + is, given the states at these epochs, a random variable
which is independent of the stage m busy times between previous epochs and of
the states at previous epochs. This allows computation of E[RWm] in a manner
similar to that used to compute the moments of the first passage times for a
semi-Markov process [2], [13]. This computation follows.

Let Zm(j, k) denote the stage rn busy time between successive epochs, given
that the state is j at the first epoch and k at the next epoch. Let Zm(j) denote the
stage m busy time between successive epochs, given only that the state is j at
the first of the epochs. Let m(J, k) denote the stage rn busy time between an epoch
at which the state is j and the first subsequent epoch at which the state is k.
Similarly, let/(j, k) denote the number of stage 2 departures, i.e., the number of
epochs between an epoch at which the state is j and the first subsequent epoch

DERIVATION OF CONFIDENCE INTERVALS 115

at which the state is k. The departure at the first of the epochs is not included in
/(j, k). Suppose the state at an epoch is j and at the next epoch the state is I.
Denote this event by j --, I. Then if :/: k,

E[(j, k)m(j, k)lj l] El(1 + (l, k))(Zm(j, 1) + m(l, k))lj --, l]

(1 + E[_(l, k)])E[Zm(j, 1)] + E[2,,,(I, k)] + E[.(I, k)2,,(l, k)],

and if k,

Therefore,

(14)

E[(j, k)2m(j, k)lj k] E[Zm(j, k)].

E[.(j, k)2.(j, k)] E[Z,.(j)]

+ pjl(E[.(l, k)]E[Z,,(j, 1)] + El2,,,(1, k)]
:J: k

+ E[.(l, k)2,,(l, k)]).

Multiplying both sides of (14) by rrj and summing over j yields

E[.(k, k),,(k, k)] E[,,,(k, k)]

/+ E[.(1, k)] rcjpjlE[Zm(j, l)] + nlE[2,(l, k)]
:# k j=l :/:

where we have used the equation [13, p. 133]
N

e[2(k, k) F[Z(j)]/,.
j=l

The E[(1, k)] can be computed from P, and the E[m(l, k)] can be computed
from P and the E[Zm(l)] [13, pp. 130, 132]. Note that E[Wm] E[(N, N)] and
E[RW] E[(N, N)(N, N)]. Thus, if expressions are obtained for E[Zm(l, k)],
N l, k N N, and m 1, 2, then E[RW] and E[RW2] can be computed.

It can be shown that for N N N 1,

E[TI T< X], k= l+ 1,

k=l+l-j,
E[Z2(1, k)] E[TIXt + + X < T< X + + X+,], N j N l- 1,

E[TIX +.. + Xl< T], k= 1,

and for N,

e[Z(N, k)] e[Z(N , k)], k N.

Also forl N IN N- 1,

[z(/, k)], 2 k + ,
E[Z(l,k)]=

E[X + + XllX, + + XI< T], k= ,
and for N,

E[ZI(N,k)] E[Z,(N 1,k)] + 1/2, <= k __< N.

116 S. S. LAVENBERG AND G. S. SHEDLER

The conditional expectations above are expressible directly in terms of the

k in (13) as follows"

E[T[T < X] (0 2)/(1 1)2,

E[TIX1 + + Xj < T < X1 + + Xj+I]

(j -+- 1)(cz + 0j + 2)/(Xj Oj + 1)/,

E[X nt- + XIIX1 + + Xl < r] lxl+ 1/o12.

6. Numerical results. In this section, the length of the confidence interval
centered at Ui(z in (7) and the length of the confidence interval centered at Ui(r,/)
in (12) are compared numerically for a fixed level of confidence and a fixed realiza-
tion length by comparing numerically a and a(), where a(/) is expressed in
terms of al, a2 and a12 in (10) and (11). In this section, is taken equal to *,
where /3* denotes the optimum value of/, i.e., the value of which minimizes
a l(fl) and hence minimizes the length ofthe confidence interval centered at U l(z,).
A simple computation using (10) yields

(15)

Note from (11) that fl* also minimizes 0-2(j). It follows from (15) that if 0"2/1,/2
>> 0"1/121, then fl* 1; if 0"2/122 0"1/121, then fl* .5; and if 0"2/122 << 0"1/121,
then fl* 0.

When estimating U via simulation using the estimator Ui(, fl), fl* is not
known. Either a value of/3 which is expected to be near fl* is chosen a priori or
[* is estimated empirically from multiple realizations of the simulation. Thus
the accuracy obtained in practice when using the estimator Ui(:, fl) will not be as
great as is indicated in this section.

Numerical values for 0-1,0-2, []*, 0-’--- 0-1(*), O’ 0"2(]*), 0"/0"1 and 0"/0"2
are given in Tables 1-5 for various service time distributions at stage 2. (From (11),
0- (122/121)0-’.) Also given are numerical values for U1 and U2 which are
computed from (3) and numerical values for p 0-2/0-10-2, the asymptotic
correlation of U(z) and U2(z). The coefficient of variation of the stage 2 service
time distribution increases from 0 in Table 1 to 5 in Table 5. Observe from the
tables that the estimators U l(z) and (121/g2)U2(z) have, in general, unequal variances
and are negatively correlated, i.e., 0"1 :/: (121/122)0"2 and p < 0. (It follows from (15)
that if p < 0, then 0 < * < 1.) The optimum parameter value fl* represents a
compromise between putting all the weight (fl* 0 or fl* 1) on whichever of
these two estimators has the smaller variance and putting equal weights (fl* .5)
on the two estimators in order to take advantage of the negative correlation
between them. From the tables, when 122 - 12, the stage with the larger mean
service time--and hence the larger work rate--has a smaller value of 0-/12i and
fl* is usually closer to either 0 or 1 than to .5. When 122 121, the stage with the
larger service time variance has the smaller value of 0-/12, although the values for
the two stages do not differ greatly, and fl* is closer to .5 than to either 0 or 1.

DERIVATION OF CONFIDENCE INTERVALS 117

0.5

1.0

2.0

0.5

1.0

1.0

2.0

TABLE
Comparison of asymptotic confidence interval lengths.

Stage 2 service times" const.,//2 E[T] 1., var IT] 0

2 .468 .937 .398 .228 -.697 .190 .067
4 .499 .998 .490 .055 -.311 .020 .026
6 .500 1.000 .499 .011 109 .001 .006

2 .731 .731 .423 .484 -.774 .538 .152
4 .870 .870 .501 .537 -.615 .522 .227
6 .914 .914 .527 .551 -.571 .514 .249

.904 .452 .288 .558 -.741 .822 .161

.992 .496 .105 .681 -.413 .965 .092

.999 .500 .031 .704 -.199 .995 .030

.134

.051

.011

.152

.227

.249

.080

.046

.015

TABLE 2
Comparison ofasympotic confidence interval lengths.

Stage 2 service times" Erlang-3,//2 E[T] 1., vat IT] .333

.169

.052

.011

.359

.454

.473

.557

.880

.975

.589

.933

.993

.314

.423

.452

.144

.068

.022

.451 .903 .438 .284 -.714 .214 .079 .159

.495 .990 .547 .115 -.429 .051 .050 .099

.499 .999 .572 .040 -.232 .009 .019 .038

.181

.091

.033

.559

.861

.964

2 .703 .703 .497 .532 -.770 .519 .174 .174 .351 .328
4 .842 .842 .574 .599 -.632 .513 .252 .252 .438 .420
6 .893 .893 .604 .621 -.586 .509 .278 .278 .461 .448

2 .885 .443 .372 .620 -.741 .796 .202 .101 .542
4 .985 .492 .176 .765 -.474 .940 .146 .073 .831
6 .998 .499 .069 .805 -.283 .986 .066 .033 .947

TABLE 3
Comparison of asymptotic confidence interval lengths.

Stage 2 service times" exponential,//2 E[T] 1., var [T]

.358

.222

.120

-.771 .238 .088 .I 76 .174
-.555 .105 .083 .167 .133
-.401 .040 .053 .106 .078

.163

.095

.041

.429

.484

.496

.667

.800

.857

.857

.968

.992

U2

.857 .507

.968 .628

.992 .678

.667

.800

.857

.609

.693

.728

.507

.314

.170

.429

.484

.496

.609

.693

.728

.716

.888

.959

.492

.751

.882

-.800 .5 .192 .192 .316 .316
-.667 .5 .283 .283 .408 .408
-.615 .5 .319 .319 .439 .439

-.771 .762 .249 .125 .492 .174
-.555 .895 .236 .118 .751 .133
-.401 .960 .150 .075 .882 .078

18 S. S. LAVENBERG AND G. S. SHEDLER

0.5

1.0

2.0

TABLE 4
Comparison of asymptotic confidence interval lengths.

Stage 2 service times: hyperexponential,
FT(t) ?(1 exp(-t/61) + (1 ?)(l exp(--t/62)), >__ O,
61 4., 62 .5, 7 .143,

12 E[T] 1., var IT] 4

N U U

2 .409 .818
4 .463 .925
6 .483 .965

.786 .493 -.887 .228 .088 .177 .112 .359

.934 .376 -.708 .138 .115 .231 .123 .613
1.01 .289 -.590 .088 .107 .214 .106 .741

2 .625 .625 .991 .818 -.908 .450 .193 .193 .194
4 .725 .725 1.11 .896 -.794 .440 .319 .319 .286
6 .776 .776 1.16 .962 -.730 .447 .386 .386 .334

2 .811 .405 .940 .988 -.895 .686 .291 .146 .310
4 .907 .454 .827 1.17 -.759 .763 .417 .209 .505
6 .949 .474 .677 1.29 -.663 .829 .426 .213 .629

.235

.356

.401

.148

.179

.165

0.5

1.0

TABLE 5
Comparison of asymptotic confidence interval lengths.

Stage 2 service times" hyperexponential

N U U2

2 .402 .803
4 .448 .896
6 .467 .934

2 .605 .605
4 .668 .668
6 .692 .692

2 .778 .389
4 .827 .414
6 .848 .424

F.(t) ?(1 exp(-t/61)) + (1 7)(1 exp(-t/62)), _>_ 0,
25., 62 .5,) .02,
E[T] 1.,var[T] =25

1.82 .959 -.972 .206 .089 .178 .049
2.13 .640 -.881 .121 .133 .267 .063
2.26 .516 -.786 .086 .146 .292 .065

2.34 1.64 -.982 .411 .182 .182 .078
2.64 1.57 -.949 .370 .315 .315 .119
2.71 1.60 -.927 .367 .385 .385 .142

2.37 2.01 -.984 .630 .264 .132 .111
2.43 2.10 -.962 .636 .425 .212 .175
2.36 2.19 -.941 .654 .523 .262 .222

aFa2

.186

.417

.5’66

.111

.200

.240

.066

.101

.120

The tables indicate that for a fixed level of confidence and a fixed realization
length, a substantial reduction in the confidence interval length can be obtained
by using the estimator Ui(z, fl*) instead of the estimator Ui(z). Equivalently,
for a fixed level of confidence and a fixed confidence interval length, a substantially
smaller realization length can be used. (For a fixed confidence interval length,
tr(fl) and z are inversely proportional.)

7. Empirical results. In order to compare analytically the estimators Ui(z and
Ui(z, fl), it was assumed in the preceding sections that stage service times are
exponentially distributed. In this section, this exponential assumption is removed
and the estimators U(z) and Ui(z, fl) are compared empirically.

DERIVATION OF CONFIDENCE INTERVALS 119

When using the estimator Ui(z, fl) in practice, it is necessary either to choose
a priori the parameter fl or to estimate fl via simulation. In addition, it is desirable
to estimate via simulation a valid confidence interval based on this estimator.
The use of the estimator Ui(z, fl) when fl is chosen a priori is considered first.

If fl is chosen a priori, then the following theorem provides a distributional
theory for estimating confidence intervals based on Ui(z, fl) (or based on Ui(z)).

THEOREM. Assume Fx(t) (resp. FT(t)) is a finite mixture of Erlangian distributions,
J 6F(kj, t), > O, where 6 > O, < j < J, j 6i.e., Fx(t)(resp. Fw(t)) =1

kj is a positive integer and F(k, t) is an Erlang-k distribution. Assume T (resp. X)
has nonzero finite mean and finite variance. Then there exists an increasing sequence
of random times which are regeneration points in the stochastic process describing
the evolution of the network in time. Furthermore, the first two moments of the time
between successive regeneration points are finite.

The proof of this theorem is straightforward and proceeds by considering
a finite state imbedded semi-Markov process at the epochs of departure from the
non-Erlangian stage. It can be simply shown that the imbedded Markov chain at
these epochs is irreducible and that the unconditional waiting times ofthe imbedded
semi-Markov process have finite first and second moments. Thus all states of the
imbedded semi-Markov process are recurrent and the first two moments of the
recurrence times are finite.

Using this theorem, it follows from cumulative process results [10 that
(Ui(t, fl) Ui)/(var [Ui(t, fl)])1/2 is asymptotically normally distributed with mean
zero and variance one. Therefore a confidence interval for U can be estimated
using the t-statistic from multiple independent realizations of a simulation as
described below. (The theorem also provides sufficient conditions for estimating
confidence intervals using the method for regenerative processes proposed by
Crane and Iglehart [12]. This method is not pursued in this paper, however.)
Note that under the assumptions of the theorem, one could in principle use
semi-Markov process analysis techniques to compute the work rates. However,
due to the complexity of the computations, particularly as yJ= kj increases,
simulation is a viable alternative.

Let M > be the number of independent realizations. Each realization
starts at simulated time zero with all N customers in stage and service about
to begin. The realization is stopped when simulated time z is reached. The super-
script k will denote the value of an estimator observed on the kth realization. Let

M

Oi(’c, fl) U(r, fl)/M,
k=l

M

f’(z, fl) (U(z, fl) CJ(z, fl))2/(M 1).
k=l

Then M1/2(Ui(z, fl) Ui)/i(’c, fl) is asymptotically (i.e., for large) distributed as
the standardized t-statistic with M degrees of freedom. Therefore, for z large
and 7 > 0,

[Oi(z, fl) 7(’c, fl)lM 1/, 0;(, fl) + V(’c, fl)lM 1/]

is approximately a 100(20M_ 1(7) 1) confidence interval for Ui based on the

120 S. S. LAVENBERG AND G. S. SHEDLER

estimator Ui(z, fl), where 0t_ 1(7) is the distribution of the standardized t-statistic
with M degrees of freedom. Similarly, let

M

O,(z) U()/M,
k=l

M

() (U() O())2/(M 1).
k=l

Then for z large and 7 > O,

[0,()- 7(z)/M ’/2, 7,()+ 7()/M’/]
is approximately a 100(20t_ 1(7) 1)o confidence interval for U based on the
estimator U(z).

The question ofchoosing/3 a priori has not yet been addressed. One method of
choosing/3 a priori for a network with service time distributions Fx(t) and Fr(t)
is to choose/3 equal to flexp, where flexp is the optimum value of fl (see (15))computed
under the assumption that X and T are exponentially distributed. In order to
investigate whether this choice of fl is good, results from simulating the queuing
network are presented in Tables 6 and 7. Stage service times are constant and
stage 2 service times have hyperexponential distribution (i.e., a mixture of two
exponential distributions) with coefficient of variation equal to 2 in Table 6 and
equal to 5 in Table 7. Each row ofthe tables is based on 25 independent experiments
where each experiment consists of 5 independent realizations of a simulation with
realization length 1,000. In the tables, U, ff and ff(fl) are averages over the 25
experiments; i is the average of Ui(z), tY is the average of zl/2//(’1S) and i([3) is
the average of z 1/2 (z, fl).

The results in the last 2 columns of Table 6 and 7 indicate that substantial
reductions in confidence interval lengths are obtained in practice using the
estimator U(z, [3) with fl flexp instead of the estimator Ui(z). For example, if
/1 and N 4 in Table 6, then (1()/@1 .279 and @2()/t2 --.408, which
corresponds to a reduction in confidence interval length by a factor of 1/.279 3.58
for the stage work rate and by a factor of 1/.408 2.45 for the stage 2 work rate.
Reductions in confidence interval lengths by factors of 2 or more are usual.
Two other a priori choices for fl are fl flX,exp or T,exp where X,exp (resp., flT,exp)
is the optimum value of fl computed under the assumption that X (resp., T) is
exponentially distributed and T (resp., X) has distribution FT(t) (resp., Fx(t)).
These choices are briefly investigated in Table 8, which is self-explanatory. The
results of Table 8 should be compared with the results in the middle three rows
ofTable 7 to see that further reductions in confidence interval lengths are obtained.

The use of the estimator U(z, fl) when fl is estimated via simulation is now
briefly discussed. An estimate/ of the optimum value for the parameter fl could
be obtained from the M independent realizations by substituting 9(z) for tr

2

and ’1 z(z) for tr 12 in (15), where
M

lz() (U](z)- 01(z))(U(z)- [2(z))/(M- 1).
k=l

The resulting estimator (’c,) introduces additional bias due to the correlation

DERIVATION OF CONFIDENCE INTERVALS 121

TABLE 6
Empirical comparison ofasymptotic confidence interval lengths" z 1,000, M 5, 25 experiments.

Stage service times" const.
Stage 2 service times" hyperexponential

(same as Table 4)

0.5 2 .434 .858 .720 .312 .238 .086 .172 .120 .553
4 .489 .959 .892 .196 .105 .080 .159 .089 .814
6 .503 .986 .836 .133 .040 .060 .123 .071 .925

1.0

2.0

2 .671 .661 1.09 .713 .5 .234 .234 .215 .328
4 .764 .753 1.07 .731 .5 .298 .298 .279 .408
6 .812 .800 1.05 .811 .5 .333 .333 .317 .411

2 .852 .420 .894 .847 .762 .352 .174 .393
4 .934 .461 .788 1.11 .895 .524 .262 .665
6 .969 .478 .552 1.16 .960 .463 .231 .838

.205

.235

.198

TABLE 7
Empirical comparison of asymptotic confidence interval lengths" z 1,000, M 5, 25 experiments.

/z N U

0.5 2 .429
4 .475
6 .490

1.0 2 .651
4 .688
6 .707

2.0

Stage service times" const.
Stage 2 service times" hyperexponential

(same as Table 5)

.844 2.00 .760 .238 .202 .405

.934 2.05 .405 .105 .113 .226

.962 2.25 .302 .040 .101 .202

.636 2.23 1.27 .5 .494 .494

.680 2.56 1.40 .5 .640 .640

.695 2.45 1.42 .5 .594 .594

2 .808 .401 2.27 1.80 .762 .899 .449
4 .831 .415 2.10 1.76 .895 1.52 .763
6 .853 .423 1.97 1.84 .960 1.75 .877

.101 .533

.055 .557

.045 .670

.222 .391

.250 .457

.242 .418

.396 .250

.725 .434

.891 .477

TABLE 8

Empirical comparison of asymptotic confidence interval
lengths; z 1,000, M 5, 25 experiments.

Stage service times const., I 1.
Stage 2 service times: hyperexponential

(same as Table 5)

2 .411 .206 .206 .092 .162
4 .370 .265 .265 .104 .190
6 .367 .275 .275 .112 .194

fl flT,cxp

2 .462 .366 .366 .165 .290
4 .478 .562 .562 .219 .402
6 .486 .547 .547 .223 .386

122 S. S. LAVENBERG AND G. S. SHEDLER

between/ and U(z). (Note that i(z)already contains bias due to z being finite,
i.e., E[3i(v)] U.) This additional bias can be removed by the standard technique
of splitting, e.g., [8]. However, since/ is a random variable, it no longer follows
that U(r,/) is asymptotically normal. Therefore, it is an open question whether
a valid confidence interval for Ui based on O(r,/) can be estimated from a small
number of independent realizations, as is the case for Oi(r). If not, then any
reduction in confidence interval length obtained by using Oi(z,/) could be more
than offset by the extra realizations required. This question is not pursued in
this paper.

Remarks. (i) Another way of comparing the accuracy of the estimators Ui(z
and Ui(z, fl) is to compare the mean-square errors for fixed z. The mean-square
error of the estimator U(r)is given by

(16) MSE [Ui(z)] E[(Ui(’c)- Ui)21 var [Ui(’c) .qt_ (E[Ui(.c) Ui)2.

The second term in (16) is the square of the bias of the estimator. In Appendix B
it is shown that since W(t) is a cumulative process and 0 __< W/(t2)- W/(tl)

2 for all 0 =< =< t2,

E[Ui(r)] Ui + bi/r.

Therefore, from (4) and (16) it follows that MSE[Ui(z)] a2/z. Similarly,
MSE[Ui(z, fl) r/2(fl)/z. Thus, by comparing ai and a(fl), MSE[Ui(r)] and
MSE [Ui(z, fl)] are compared for fixed z.

(ii) It was assumed in 4 that n(0) N, i.e., stage 2 is empty at 0. However,
if n(0) n, 0 __< n < N, then the sequence {Y’k 1, 2,...} forms a general
renewal process [10], and all the results in 4-6 still hold. These results also hold
for queuing disciplines other than first-come first-served, such as last-come
first-served and random, which are also independent of service time.

(iii) The estimator for work rates proposed in this paper is an asymptotically
strongly consistent estimator which is a linear combination of the straightforward
estimators of the work rates at different stages. This new estimator was suggested
by the known relation between the work rates for different stages given in (2).
Similar relations, due to conservation of flow, exist between the work rates for
different stages in more complex closed queuing networks than the one considered
in this paper [11]. Asymptotically strongly consistent estimators of work rates
in these networks are similarly obtained by taking appropriate linear combinations
of the straightforward estimators of work rates for different stages. The results of
this paper suggest that these estimators for more complex networks are worth
investigating, analytically where possible and otherwise empirically.

Appendix A.
THEOREM. Let Vk, k >_ 1, be independent and identically distributed nonnegative

random variables. Let K be a positive integer-valued random variable such that K
and Vr + 1, Vr + 2, are mutually independent. Let Sr

__
Vk" Then

(A.1) E[S2] E[K] var IV] E[K21(E[V])2 + 2E[V]E[KSr],

provided the expectations and variance on the right side of(A.1) are finite.

DERIVATION OF CONFIDENCE INTERVALS 123

Proof. Let

1, k<=K,
Ok(K)=

O, k> K.

Then Ok(K) and V are independent and Ok(K)Oj(K) 0k(K), k >__ j.

E[S] E VkOk(K)VjOj(K
k=lj=l

k-1

k=l k=2 j=l k=lj=k+l

E[V Pr{Kk} +2E[V] E[VO(K)]
k=l k=l j=+l

= j=

where the interchanges ofsummation and integration arejustified by the monotone
convergence theorem and the double summations in (A.2) are equal by Fubini’s
theorem.
Observe that oo ;(K) max (K k, 0) Thereforej=k+l

(A.4) E Vk O;(K) E Vk(K k) E[KSr] E kV
k=l j= k=l k=l

where

E k =E kVO(K =E[V] kPr{K>=k}
k=l k=l k=l

(A.5) E[V](E[K2] + E[K])/2.

Equation (A.1) follows from (A.3)-(A.5), completing the proof.

Appendix B. Let J(t) be the number of regeneration epochs in the time
interval (0, t], i.e., J(t) sup {j’r <= t}, where ro 0. Then writing

J(t) +

Wi(t)= E Wij-(Wi(rs(t)+l)-Wi(t))
j=l

and noting that 0 W/(t2) W/(tl) 2 for all tl, 2 such that 0 < 2

yields
J(t) + J(t) +

(B.1) W/j --(rj(t)+l t) __< W/(t) W/j.
j=l j=l

(B.2)

It follows directly from results in [15] that

E ’ Wo tE[W]/E[Y] + E[W]E[y2]/2(E[Y])2

Lj=I

124 S. S. LAVENBERG AND G. S. SHEDLER

and

(B.3) Er.+,] + EY2/2EY]

if E[Y] < , ElY2] < and the random variable Y is not lattice, conditions
which hold for the queuing network considered in this paper. Combining
(B. 1)-(B.3) yields

E[W(t)/t] E[W]/E[Y] + b,/t,

where

(E[W] E[Y])E[y2]/2(E[Y])2 <= b, <= E[W]E[y2]/2(E[Y])2.

REFERENCES

[1] D. P. GAVER, Probability models for multiprogramming computer systems, J. Assoc. Comput.
Mach., 14 (1967), pp. 423-438.

[2] G. S. SHEDLER, /1 cyclic-queue model of a paging machine, IBM Res. Rep. RC-2814, Yorktown
Heights, N.Y., 1970.

[3] P. A. W. LEWIS AND G. S. SHEDLER, .4 cyclic-queue model ofsystem overhead in multiprogrammed
computer systems, J. Assoc. Comput. Mach., 18 (1971), pp. 199-220

[4] J. P. BUZEN, Queueing network models of multiprogramming, Ph.D. thesis, Div. of Engineering
and Applied Physics, Harvard University, Cambridge, Mass., 1971.

[5] S. S. LAVENBERG, Queueing analysis of a multiprogrammed computer system having a multilevel
storage hierarchy, this Journal, 2 (1973), pp. 232-252.

[6] P. A. W. LEWIS AND G. S. SHEDLER, Empirically derived micromodels ofsequences ofpage excep-
tions, IBM J. Res. Develop., 17 (1973), pp. 86-100.

[7] G. S. SHEDLER AND S. C. YANG, Simulation ofa model ofpaging system performance, IBM Systems
J., 10 (1971), pp. 113-128.

[8] D. P. GAVER AND G. S. SnEDLER, Control variable methods in the simulation ofa model ofa multi-
programmed computer system, Naval Res. Logist. Quart., 18 (1971), pp. 435-450.

[9] D. G. POLYAK, Precision of statistical simulation of queueing systems, Engrg. Cybernetics
(1970), pp. 72-80.

[10] W. L. SMITH, Renewal theory and its ramifications, J. Roy. Statist. Soc. Ser. B, 20 (1958), pp. 243-
302.

11] A. CHANG AND S. S. LAVENBERG, Work rates in closed queuing networks with general independent
servers, Operations Res., 22 (1974), pp. 838-847.

[12] M. A. CRANE AND n. L. IGLEHART, Statistical analysis of discrete even simulations, Proc. 1974
Winter Simulation Conf., pp. 513-521, Washington, D.C.

[13] R. E. BARLOW AND F. PROSCHAN, Mathematical Theory of Reliability, John Wiley, New York,
1967.

[14] N. L. JOHNSON, A proof of Wald’s theorem on cumulative sums, Ann. Math. Statist., 30 (1959),
pp. 1245-1247.

[15] W. L. SMITH, Regenerative stochastic processes, Proc. Roy. Soc. Ser. A, 232 (1955), pp. 6-31.

SIAM J. COMPUT.
Vol. 4, No. 2, June 1975

TRANSLATING PROGRAM SCHEMAS TO WHILE-SCHEMAS*

EDWARD ASHCROVT+ AND ZOHAR MANNA++

Abstract. While-schemas are defined as program schemas without goto statements, in which
iteration is achieved using while statements. We present two translations of program schemas into
equivalent while-schemas, the first one by adding extra program variables, and the second one by
adding extra logical variables. In both cases we aim to preserve as much of the structure of the original
program schemas as possible.

We also show that, in general, any translation must add variables.

Key words, program schemas, removing goto statements, while-schemas, flowchart transfor-
mations.

Introduction. The program schema approach makes it meaningful to consider
the relative "power" of programming language constructs. Most work in this
area [13], [4], [5], [14], [15] has considered adding features to program schemas
such as recursion and arrays. Here we consider removing, or at least restricting,
a feature of program schemas: the goto statement.

There has been much interest lately, following observations by Dijkstra [8],
in the possibility and desirability of removing goto statements from programming
languages, using instead such statements as the while statement. Programs in
such languages should be better structured, easier to understand and, hopefully,
easier to prove correct. For example, the elegant formal system of Hoare [10] for
proving programs correct requires programs with the sort of "nested" structure
that while statements provide. Goto-less programs are clearly an interesting class
of programs to study.

We therefore define a class of while-schemas in which iteration is achieved
with while statements: while , do S. The tests may be arbitrarily complicated;
this feature of our while-schemas is crucial. We show that while-schemas are as
powerful as program schemas by giving a translation, Algorithm 1, of program
schemas to equivalent while-schemas. This translation is interesting in that it
preserves most of the "loop structure" of the program schemas, and gives while-
schemas of the same order of efficiency. The translation allows the addition of
extra program variables.

Bohm and Jacopini [3] have shown that program schemas can be translated
into while-schemas, with the addition of extra logical variables. A modification of
a technique in Brown et a;1. [2] would show (by a further translation) that the
additional logical variables add no extra power to while-schemas. We present an
improvement on Bohm and Jacopini’s reduction to while-schemas with logical
variables, which we call Algorithm 2. This doesn’t give us "pure" while-schemas,
since logical variables are used, but the schemas produced are often more "readable"

Received by the editors November 2, 1973, and in revised form March 1, 1974. This research
was supported in part by the Advanced Research Projects Agency of the Office of the U.S. Secretary
of Defense under Contract SD-183, and in part by the National Research Council of Canada.- Department of Computer Science, University of Waterloo, Waterloo, Ontario, Canada.

++ Department of Applied Mathematics, Weizmann Institute, Rehovot, Israel.

125

126 EDWARD ASHCROFT AND ZOHAR MANNA

than those produced by Algorithm 1. The method preserves whatever "while-
structure" already exists in a program schema, and when applied to a program
schema corresponding directly to a while-schema, Algorithm 2 gives us back that
while-schema.

Both Algorithm and Algorithm 2 give while-schemas that use more variables
in general than the original program schemas. It is natural to ask whether this is
a necessary feature of any translation. We show that this is the case by giving a
program schema, with one variable, for which there is no equivalent one-variable
while-schema. This also means, ofcourse, that program schemas are more powerful
than while-schemas in the restricted sense that they need fewer variables in general.

The construction and proofs presented here first appeared in abbreviated
form in a paper by the authors presented at IFIP Congress 1971 (Ljubliana,
Yugoslavia).

1. Program schemas. A program schema consists of a finite sequence of
statements, separated by semicolons. This sequence must start with a start state-
ment, e.g., START(x2, x4), designating input variables, and end with a halt state-

ment, e.g., HALT(xl,x3), designating output variables. The other statements
may be of the following types:

(i) null statements, i.e., null;
(ii) assignment statements, i.e.,

where is a term;

(iii) conditional statements, i.e.,

if then S else $2,

where S and 82 are statements and is a.formula;
(iv) compound statements, i.e.,

[S1;$2;

where $1, S2 S are statements;
(v) goto statements, i.e.,

goto L

where L is a label.
Any statement can be labeled by preceding it with a label followed by a colon. A
formula is any quantifier-free formula of predicate calculus. A term is any composi-
tion of variables, constants and function symbols.

The statement if. then else null can be written if. then provided
no confusion results.

Example. The following is a program schema P1 with one variable, that will
be used often throughout the paper:

TRANSLATING PROGRAM SCHEMAS TO WHILE-SCHEMAS 127

SCHEMA PI" START(x);
x ,-- a(x);
L:ifp(x) then Ix e(x); goto L];
A: if q(x) then x - b(x) else x g(x); goto N];
M:if r(x) then x - d(x); goto M];
B: if s(x) then x - c(x); goto L] else x - f(x);
N: null;
HALT(x).

A, B, L, M and N are labels (A and B will be used in later discussions). The symbols
a, b, c, d, e,fand g denote functions and the symbols p, q, r and s denote predicates
or tests. The expressions p(x), q(x), etc. are (simple) formulas.

2. While-schemas. A while-schema is a program schema using only statements
of types (i), (ii), (iii) and (iv) and type (vi) below:

(vi) while statement, i.e.,
while $ do S,

where S is a statement and , is a formula.
Such statements are to be considered as abbreviations for the equivalent state-
ments

L: if $ then IS; goto L] else null.

Example. The following is a while-schema P2 with two variables.
SCHEMA P2. START(x);

x a(x);
while p(x)do x *-- e(x);
yx;
if q(x) then Ix b(x); while r(x) do x ,-- d(x)]
while q(y) /x s(x) do

Ix ,-- c(x);
while p(x) do x ,-- e(x);
yx;
if q(x) then Ix - b(x); while r(x) do x - d(x)]]

if q(y) then x f(x) else x g(x);
HALT(x).

The schema P2 uses the same symbols as P, denoting functions and predi-
cates, and here we have the (more complicated) formula q(y)/x s(x).

3. While-schemas with iogiea| variables. A while-schema with logical variables
is a program schema using only unlabeled statements of types (i), (ii), (iii), (iv)
and (vi), and type (vii) below:

(vii) logical assignment statements, i.e.,

-- true
or

t - false.

The variables appearing in logical assignment statements are called logical
variables, and they may not appear in ordinary assignments. They may appear,
however, in formulas, as if they were propositions, i.e., O-arT predicates.

128 EDWARD ASHCROFT AND ZOHAR MANNA

Example. The following schema P3 is a while-schema with one logical variable
(and one program variable).

SCI-IEMA P3. START(x);
x a(x);

true;
while do

[while p(x) do x e(x);
if q(x) then x b(x);

while r(x) do x - d(x);
if s(x) then x - c(x)

else x *- f(x); - false]]
else x g(x) falsel];

HALT(x).
P uses the same symbols as P1 and P2 denoting functions and predicates,

and here is a logical variable used also as a formula.

4. Equivalence of schemas. Two schemas having the same input variables
and the same output variables are said to be equivalent if they compute the same
function (from input variable values to output variable values), no matter what
functions or predicates are denoted by the ,symbols in the schema. (Of course, the same
symbol appearing in the two schemas must denote the same function or predicate.)

More formally, we can first give meaning to the symbols in a schema by using
an interpretation. An interpretation I consists of a domain D from which the vari-
ables in the schema may take values and a specification of the functions and pre-
dicates over D denoted by the function and predicate symbols in the schema. The
interpretation also supplies initial values (from Dr) for the input variables. Given
an interpretation I, a schema S becomes a program (S, I). The program has a
finite or infinite computation in the usual way, and if this is finite we let val(S, I)
denote the final values of the output variables. If the computation is infinite,
val(S, I) is undefined.

Two schemas S and S2 are then equivalent if, for all interpretations I,
val(S1, I) val(S2, I), i.e., both are undefined, or both are defined and have the
same values.

In most of the paper we do not need the formal definition of equivalence. In
these sections we will use simple equivalence-preserving transformations which are
clearly correct. However, we do use the formal definition using interpretations
in the last section.

Examples. The schemas P1, P2 and P are all equivalent. (In fact, P2 is the
result of applying Algorithm to P1, and P is the result of applying Algorithm 2
to P1, as we will see later.

To see informally that P is equivalent to P2, note that each iteration of the
main while statement in P2 corresponds in P to going from label B back to label B.
The variable y in P2, at the beginning of each iteration, holds the value that x
previously held in P1, the last time computation reached label A.

To see informally that P is equivalent to P, note that each iteration of the
main while statement in P3 corresponds in P to going from label L back to
label L (the long way, via statement labeled B) or to label N. In the latter case, is
made false in P, and we subsequently exit from the main while statement.

TRANSLATING PROGRAM SCHEMAS TO WHILE-SCHEMAS 129

5. Flowcharts. We will find it useful to consider the flowchart representations
of schemas. Program schemas clearly correspond to arbitrary flowcharts, with one
start node and one halt node, using assignment and test statements as shown in
Fig. 1; ff is a formula and z is a term.

(i) ASSIGNMENT (ii) TEST

FIG. 1. Flowchart statements

We shall be more concerned with normalforms for such flowcharts.

5.1. While-chart form. Firstly, it is clear that while-schemas have more
restricted "structure" than program schemas, and we define below (inductively)
a correspondingly restricted class of flowcharts.

A while-chart is a one-entrance, one-exit piece of flowchart of one of the five
types shown in Fig. 2. The boxes A1, A2, represent while-charts, is a formula
and z is a term. The various cases correspond to the types of statement allowed in
while-schemas. Any flowchart of the form of Fig. 3, where A is a while-chart,
is said to be in while-chart form. For every while-chart form flowchart, there is an
equivalent while-schema, and vice versa.

o EMPTY
EDGE

(b) ASSIGNMENT

(c) COMPOUND (d) CONDITIONAL (e) LOOP
FIG. 2. While chart constructs

START (...))

FIG. 3. While-chartform flowchart

130 EDWARD ASHCROFT AND ZOHAR MANNA

5.2. Block form. Even general flowcharts can be put into normal forms, by
such methods as duplicating nodes, unwinding loops, etc. One such normal form
is the block form of Cooper [7] and Engeler [9].

A block is a one-entrance, many-exit piece of flowchart constructed inductively
as follows (we occasionally number the exits from a block, starting at the left):

(i) A basic block is a block. A basic block is a one-entrance, many-exit tree-

like piece of flowchart. An example is shown in Fig. 4.
(ii) The flowcharts in Fig. 5 are blocks, where B and B2 are blocks.

IT FI

(Iq(Y)]F-)T

FIG. 4. Example of a basic block

(i) LOOPING ON THE
i-th EXIT

(ii) CONCATENATING WITH
THE i-th EXIT

FIG. 5. Nonbasic constructsfor blocks

A flowchart is in block form if it is of the form shown in Fig. 6, where B is a
block.

Clearly every flowchart in block form is equivalent to some program schema.
The result of Engeler and Cooper is that for every program schema we can find
an equivalent flowchart in block form (see for example, Manna 14]).

TRANSLATING PROGRAM SCHEMAS TO WHILE-SCHEMAS 131

START (...))

FIG. 6. Block formflowchart

Example. Figure 7 shows a flow chart P’I in block form which is equivalent
to the program schema P1. The blocks are indicated by broken lines. Bo, B and
B3 are basic blocks. B2, B4 and B6 are constructed by looping, and B and Bv by
concatenation.

)(START x

I--- -’.,.T-B
x--- a(x) ot

B7

B61
B5

FIG. 7. Blockformflowchart P’I

5.3. Properties of basic blocks. Before we consider our next normal form, we
observe two useful properties of basic blocks.

Property 1. Given any basic block B (with n exits) and some ith exit of B,
there exist a formula/-test(B), a basic block/-pruned(B) (with n exits) and a
sequence of assignment statements ioops(B) such that the flowcharts in Fig. 8 are
equivalent.

132 EDWARD ASHCROFT AND ZOHAR MANNA

i-OPS(B)

FIG. 8. i-extractedform

F

i-PRUNED (B)

To see this, note first that the basic block can be put into a form in which the
tests on the path on the ith exit precede the assignments, by repeated application
of the transformation shown in Fig. 9, where if’ is like ff but with x replaced by r.
It is then a simple matter to find a single test to "extract" the ith path by working
up the path from the bottom, repeatedly applying the transformations shown in
Fig. 10 (or their mirror images). The upper transformation extracts the first path,

FIG. 9. Moving, tests up

FIG. 10. Extracting paths

TRANSLATING PROGRAM SCHEMAS TO WHILE-SCHEMAS 133

A

134 EDWARD ASHCROFT AND ZOHAR MANNA

and the lower transformation extracts the second path (the third path is already
extracted).

This eventually gives us the desired form for the basic block. It will be called
the i-extracted form.

Example. Figure 11 shows the two stages in obtaining the 3-extracted form
of the basic block B of Fig. 4.

Property 2. The second property of basic blocks that we need is that every
piece of flowchart of the form shown in Fig. 12(a), where B is a basic block, is a
while-chart. This can be seen very easily by induction on the number of statements
in B. If there are no statements, we have an empty edge, which is a while-chart.
If there are n > 0 statements, we have either Fig. 12(b) or Fig. 12(c), where B
and B2 are basic blocks. In both cases we have while-charts, since the lower parts
are while-charts by the induction hypothesis.

(o) (b) (c)

FIG. 12

5.4. Module form. The final normal form for flowcharts which we will
consider is module form.

A module is either
(i) an assignment statement, or

(ii) a one-entrance, one-exit piece of flowchart constructed from modules and
tests; these tests are called the tests of the module.

A flowchart is in module form if it is of the form shown in Fig. 13, where M
is a module.

START (...)

FIG. 13. Module form.flowchart

TRANSLATING PROGRAM SCHEMAS TO WHILE-SCHEMAS 135

This definition may appear surprising since we immediately have that any
flowchart is in module form, by taking each assignment statement as a module,
at one level, and then taking the whole flowchart as a module at the next level.
However, we can find an interesting subclass of module form flowcharts:

A simple module is either
(i) an assignment statement, or

(ii) a one-entrance, one-exit piece of flowchart constructed from modules
and at most one test.

A flowchart is in simple module form if it is in module form and each module
is simple.

A simple module either has no tests (and is thus either an empty edge, an
assignment statement or the concatenation of modules) or it has one test and
can only be of the forms shown in Fig. 14, where A, B, C and D are modules.

The analogy with while-schemas is obvious:
Fig. 14(a) is equivalent to [C; if ff then A else B; D];
Fig. 14(b) is equivalent to [C; B; while ff do [A B]; D].

(b)(o)

F. 14. /mp/ mod/

In general, for every flowchart in simple module form there is an equivalent
while-schema, and vice versa.

The motivation for module form now becomes clear. At one extreme we can
take any flowchart as a module whose submodules are simply assignment state-
ments. If, however, by ingenuity and equivalence-preserving transformations we
can get many levels of modules, with fewer tests per module, then we get closer to
simple module form and hence closer to while-schemas.

Example. In Fig. 15 we give a module form flowchart P’ for the program
schema P1. Modules M1 and m2 are simple, but module M3 is nonsimple since it
contains two tests q(x) and s(x).

6. Algorithm 1. To translate program schemas to while-schemas it suffices to
consider flowcharts in block form. We show how to transform each block B
into an equivalent piece of flowchart consisting of a while-chart WB followed by a

136 EDWARD ASHCROFT AND ZOHAR MANNA

MI

F’ 1 T x
xd(x)

Fo. 15. Module form flowchart P’

FIG. 16. Transforming a basic block

basic block B. We do this by induction on the block structure as follows"
(i) B is a basic block" we use the transformation of Fig. 16.
(ii) B is constructed by looping on the ith exit of B we first transform B1;

and then extract the ith path of B1, as shown in Fig. 17.
(iii) B is the concatenation of B and B2, using the ith exit of B 1" we first

transform B and B2, and extract the ith path of B 1. It is then possible
to move up W2 past i-pruned(1), as shown in Fig. 18.

TRANSLATING PROGRAM SCHEMAS TO WHILE-SCHEMAS 137

FiG. 17. Transforming a looping block

i-OPS (B i- PRUNED (B

.i-1

=> I,-oPS(B-,)l
I’

rl

(i’-TEST (’1)
TJ

T F

’- PRUNED (B’I)
i-1

FIG. 18. Transforming a concatenation block (general case)

WB

138 EDWARD ASHCROFT AND ZOHAR MANNA

In Fig. 18, ff is a vector of the variables occurring in i-test(B); is a vector of
the same length of new variables; and i-test*(B1) is the same as i-test(B1) but with
variables replaced by , so that any computation must take the same branch
out of the two tests.

Note. If B2 is a basic block, we can simply make the transformation shown
in Fig. 19. No new variables are needed in this case.

-->

F. 19. Transforming a concatenation block, B basic

Thus for every block form flowchart, as in Fig. 6, we get a flowchart as in
Fig. 20. This flowchart is in while-chart form, by the second property of basic
blocks proved earlier, and thus can be simply written as a while-schema.

CSTART (...)’

FIG. 20. Transformed flowchart

Example. We take flowchart P’I of Fig. 7. Blocks B2 and B4 are already of
the required form; for example, B2 is shown in Fig. 21. (This is the decomposition
that Algorithm yields for looping on the third exit of B1). The transformed
version of B is shown in Fig. 22; note that q(x) comes from 2-test(B2), x ,- b(x)
comes from 2-ops (2) and x ,-- g(x) comes from 2-pruned(2). The transformed
version of B6 is shown in Fig. 23; note that q(y) A s(x) comes from 3-test(Bs),
x ,- c(x) comes from 3-ops(Js) and 6 is simply 3-pruned(Js). The final while-
chart form flowchart is shown in Fig. 24, and it corresponds exactly to while-
schema P2.

TRANSLATING PROGRAM SCHEMAS TO WHILE-SCHEMAS 139

p(x

-’-g(x)

1T wsz

Jxe Cx)

FIG. 21. B:

FIG. 22. B (transformed)

WB 5

Comments. (i) Putting a flowchart into block form in general requires some
increase in the size of the flowchart. This can be avoided by allowing the exits of
any block to be joined together in arbitrary ways and still be a block. In the same
spirit we would allow basic blocks that were not tree-like but merely loop-free.
Algorithm will work just as well for such block form. The only change needed is in
defining the /-extracted form for basic blocks; for example, i-ops(B) becomes a

140 EDWARD ASHCROFT AND ZOHAR MANNA

^ s(x-)
F" WB6

23. B (lransformed)

one-exit basic block rather than a sequence of assignment statements. This
modified block form corresponds to interval analysis (see Ill).

(ii) To minimize the number of new variables added by Algorithm 1, we
must find block form flowcharts which avoid concatenating blocks except when
the second block is basic. Even for while-schemas it is not clear how to do this,
and so Algorithm is not an identity mapping on while-schemas. We could avoid
this by allowing while-charts to be special cases of blocks. The algorithm is easily
modified to deal with this.

(iii) The duplication of WBI produced by transforming looping blocks
(Fig. 17) could be avoided by using a new control construct repeat [$1 exit on
$2] instead of while statements.

7. Algorithm 2. The idea of Bohm and Jacopini’s translation of program
schemas to while-schemas with logical variables 3] (see also [6]) can be expressed
as follows. Suppose the given program schema has n statements including the
halt statement, numbered, for our convenience, to n. We construct a while-
schema using k additional logical variables, where 2k- < n _<_ 2k. Each statement
of the original program schema then corresponds to a particular pattern of
values for the k logical variables, e.g., the number of the statement written in binary
notation. The while-schema consists of a single while statement, the formula of
which will be true provided the "pattern" of logical variable values does not
correspond to the halt statement. If the formula is true, we enter the body of the
while statement, where a series of tests decides to which statement in the program
schema the logical variable values correspond. The operation of that statement is
then performed, and the values of the logical variables are changed so that their
"pattern" corresponds to the next statement to be executed in the program schema.
The body of the while statement is repeatedly executed, until we reach the pattern

TRANSLATING PROGRAM SCHEMAS TO WHILE-SCHEMAS 141

FiG. 24. Transformed uersion of P(

for the halt statement in the program schema. When this happens, we exit from the
while statement, and reach the halt statement of the while-schema.

The while statement simply acts as a one-loop interpreter, performing one
operation of the original program schema on each iteration. The logical variables
simply represent a "program counter".

An improvement upon this method, due to Cooper [private communication],
reduces the number of logical variables required. We take the flowchart representa-
tion of the program schema and choose a "cut set" of the edges between the assign-
ment and test statements from which it is composed, i.e., we choose at least one edge
per loop. We add the edge leading to the halt statement to this set. These edges are

142 EDWARD ASHCROFT AND ZOHAR MANNA

then numbered, and coded up as logical variable value patterns as before. The
while statement "interpreter", on each iteration, now performs the operations of
the original program schema from one cut set edge to the next cut set edge, and
updates the logical variables accordingly. This technique is used in Algorithm 2
below.

We consider flowcharts in module form, and, for good results, we try to get
as many simple modules as possible. We then translate each module M into a
statement of while-schema WM by induction on the module structure.

(i) If M is an assignment statement, Wt is that assignment statement.
(ii) If M is a simple module, Wt is the corresponding statement of while-

schema (see Fig. 14).
(iii) If M is a nonsimple module, then we apply Cooper’s version of the

Bohm and Jacopini reduction. We choose a cut set of the edges between
modules and tests comprising the module M, and add the single exit
edge of M. We then take sufficient "new" logical variables to represent
these positions in M, and construct a statement of while-schema. This
statement will be a compound statement S1;$2. Statement $1 will
perform the operations from the entrance of M up to the first cut set
edge, and set the logical variables to correspond to that edge. Statement
S2 is then the while statement which "interprets" the module M. Its
formula checks that the current pattern of logical variable values does
not correspond to the exit edge. The body determines the current cut set
edge, performs the operations to the next cut set edge (using the while-
schema statements corresponding to the modules of which M is com-
posed) and updates the logical variable values accordingly. This is
possible as a statement of while-schema since the use of a cut set of
edges ensures that there is a bound on the number of tests and modules
that can be performed between one cut set edge and the next.

Example. The modules of flow chart P’ (Fig. 15) correspond to statements of
while-schema as follows: M and M2 are simple modules and correspond to

and
while p(x) do x e(x)

while r(x) do x d(x),

respectively. M3 is nonsimple, so we choose cut set edges, for example and/
in Fig. 15 (there is only one loop in M3 and we must add the exit edge of M3). We
then need one logical variable t, say, to keep track of the cut set edge--true
corresponds to , false corresponds to/. W3 is then the following statement of
while-schema

I-Ix a(x); true];
while do Wt

if q(x) then Ix b(x);
Wt2;
if s(x) then x c(x)

else Ix f(x);
false]]

else Ix g(x) false]]].

TRANSLATING PROGRAM SCHEMAS TO WHILE-SCHEMAS 143

Enclosing WM3 between start and halt statements then gives us the while-
schema P3.

Comment. No reasonable algorithm is known for finding the optimal equiva-
lent module form for a program schema, optimal in the sense that Algorithm 2
adds the smallest number of logical variables. However, it is clear that the flow
charts of while-schemas (i.e., while-charts) are in simple module form, so that
Algorithm 2 is the identity mapping on while-schemas.

8. The necessity of adding variables. We show that any translation from
program schemas to while-schemas must in general add variables. We prove that
for a particular one-variable program schema there is no equivalent while-schema
that also uses only one variable.

Similar results have been demonstrated by several authors: Knuth and Floyd
[11], Scott [private communication] and Kosaraju [12], for example. However,
these results are weaker than ours, either because the notion of equivalence used
is more restrictive than ours, requiring the equivalence of computation sequences
(i.e., the sequences of assignments and tests in order of execution) and not just the
equivalence of final results, or because complex formulas are not allowed in while
statements. For example, the following program schema has no "equivalent"
while-schema if we consider execution sequences, or disallow compound tests:

START(x);
x a(x);
L:ifp(x) then Ix b(x); if q(x) then Ix c(x); go to L]

else x d(x)]
else x e(x);

HALT(x).
However, if we apply Algorithm 1, we get an equivalent while-schema, which
happens to use only one variable:

START(x);
x a(x);
while p(x) / q(b(x)) do x c(b(x))
if p(x) then x d(b(x)) else x e(x);
HALT(x).
Since our result is stronger than the previous results, it needs a more compli-

cated program schema to demonstrate it. The one we use is the following program
schema Ps.

SCHEMA Ps. START(x);
L: if p(x) then Ix - e(x); go to L];

if q(x) then x e(x) else Ix - e(x); go to N];
M: if q(x) then Ix d(x); go to M];

if p(x) then Ix d(x) go to L] else x d(x);
N: null;
HALT(x).

This schema is similar to P, but is simpler since it only uses two functions
and two predicates. It is especially interesting because for most other simpler
versions of P there are equivalent one-variable while schemas. For example, the
program schema

144 EDWARD ASHCROFT AND ZOHAR MANNA

START(x);
x a(x);
L: ifp(x) then Ix e(x); go to L];

if q(x) then x b(x) else Ix g(x); go to N];
M: if q(x) then Ix b(x); go to/14];

if s(x) then Ix c(x); go to L3 else x *- f(x);
N: null;
HALT(x)

is equivalent to the following one-variable while-schema:
START(x);
x a(x);
while p(x)do x e(x);
while q(x) /x q(b(x)) do x .-- b(x)"
while q(x) /x s(b(x)) do

Ix .- c((x));
while p(x) do x e(x);
while q(x)/x q(b(x)) do x b(x)3

if q(x) then x .-- f(b(x)) else x - g(x);
HALT(x).
Our proof that there is no one-variable while-schema P equivalent to P5

must therefore depend crucially on special features of Ps. The essential property
of P5 is the following:

In any unfinished computation of Ps, if p is true and q is false, then the next-
but-one function that will be applied is e, whereas if q is true and p is false, then
the next-but-one function that will be applied is d. If both p and q are false, the
computation will terminate after applying one more function.
Let d, e and h be symbols and D {d, e}*. We shall consider the interpreta-

tions Iz, where z 6 D. h. D, defined as follows:
(i) Dt D
(ii) for y D, d(y) yd,

e(y) ye,
p(y)-- [lyl < Izl A z(lyl + 1)= e] 1,
q(Y) =- Ely] <]z] /x z(iy] + 1)= d],

(iii) the initial value of the input variable x is A, the empty string.2

Note that the predicates p and q are mutually exclusive, and from the essential
property of P5, the computation of (P5, Iz), where z uhv (u, v e D), must termi-
nate with val(P5, Iz) eu (the symbol h makes both p and q false and makes the
computation halt). Also for any interpretation Iw,h (e {d, e}, w, u, veD),
when the value of x becomes ew, the future course of the computation is deter-
mined by uhv, since this substring will determine the possible future values of the
predicates p and q. This property also holds for any one-variable schema P;
equivalent to P5 (it will be called the main property of P), and will be used to
show that such a schema cannot exist.

Let us assume therefore that there exists a one-variable while-schema P;

Here [y[denotes the length of string y; z(i) denotes the ith symbol in string z.
This is a ’Herbrand" or ’free" interpretation (see I131).

TRANSLATING PROGRAM SCHEMAS TO WHILE-SCHEMAS 145

equivalent to P. Without loss of generality we can assume there is some while
statement S in P, say while if’ do $1, which is not contained in or followed by
any other while statement, and for which S is executed in the computation for
some I. We can also assume that there is no bound on the number of iterations of
S for computations for such interpretations I (All such bounded while statements
could be "unwound" the corresponding number of times, leaving only "un-
bounded" while statements and while statements never entered for any Iz.)

Let the maximum "depth" of functional composition in any formula in

P be M. Then in computation of (P, I), if we evaluate a formula for value w
of variable x, then the outcome of is determined by z(Iwl + 1), z([w[+ 2), ...,
z(Iwl + M + 2). We define visible(z, w) as this substring of z starting at z(Iwl + 1)
and ending at z(Iwl + m + 2).

LEMMA. For all n > 0 there exist strings u, w, y D, wl n, such that for all
v D, the computation of (P’5, I,vwhy) exits from S with a proper prefix of euv as the
value of variable x.

This technical lemma has the following informal corollary.
COROLLARY. For every n >__ 0 there exists a computation ofP’ which exitsfrom

S with more than n functions still to be applied.
This corollary contradicts the fact that S is not followed by or contained in

another while-statement; the number of functions that can be applied after
exiting from S is bounded. Hence while-schema P; cannot exist.

Proof of lemma. The proof is by induction on n.
Base step (n 0). Since S is unbounded, there exists an interpretation Iz,

whose computation enters S before the end of the computation is "visible", i.e.,
more than M function applications from the end. In other words, z’ u’yv’hy’
where u’, y, v’, e D, e e {d, e} and lYl M + and the computation of (P5, Iz,y!
reaches S with eu’ as the value of x. Moreover, since S is entered, the formula

’ must be true for this value of x. Note that the truth of ’ is determined by
visible(z’, eu’) y.

Consider now the interpretation I l,vhy, where u u’y and v is any
string from D. The computation must reach S as for I,, i.e., with value eu’ for
variable x, since the changes in the interpretation are not "visible" by this point.
However, when it subsequently exits from S, it can not do so with value euv (the
final value) for x, since visible(z, euv) y, and for this value the formula ’ must
be true. Thus it must exit from S with a proper prefix of euv as the value of x.

Induction step. Assume we have strings u, w, y e D, with Iwl n, such that for
all v e D, the computation of (P;, I,,why) exits from S with a proper prefix of euv
as the value of x.

We shall find a string w’ e D, Iw’l n + l, such that for all v’ D, the compu-
tation of (P’, I,,w,hr exits from S with a proper prefix of euv’ as the value of x.

There are three cases to consider (in order)"
(i) For all v v’e (for all v’ e D) in the induction hypothesis, the correspond-

ing proper prefix of euv is also a proper prefix of euv’. In this case we take
w’ ew.

(ii) For all v v’d (for all v’ D) in the induction hypothesis, the correspond-
ing proper prefix of euv is also a proper prefix of euv’. In this case we take
w’ dw.

146 EDWARD ASHCROFT AND ZOHAR MANNA

(iii) For some v v"e in the induction hypothesis, the corresponding proper
prefix of euv is euv", i.e., the computation C of (P’5, I,v"ewhy) exits from S
with value euv" for variable x. Note that the rest of the computation
adds ew to the value of x.

Consider now the interpretations I,v,d,h, for all v’ D. By the
induction hypothesis, the value of x on exiting from S must in each case
be a proper prefix of euv’d. But the main property of P ensures that in
no case can this value of x be euv’, otherwise the future course of this
computation, being determined by why, would be the same as for C,
giving x a final value of euv’ew instead of euv’dw. Thus with w’ dw, the
computations of (P’, Iuv,w,hy (for all v’ D) exit from S with a proper
prefix of euv’ as the value of x. Q.E.D.

Acknowledgments. We are indebted to David Cooper for stimulating dis-
cussions and for his modification of the Bohm and Jacopini’s reduction, which we
have used in Algorithm 2. We are also grateful to Donald Knuth for his critical
reading of an earlier version of this paper, and subsequent helpful suggestions.

REFERENCES

[1] F. E. ALLEN, A basisJbr program optimization, Proc. IFIP Congress, Ljubliana, Yugoslavia, 1971.

[2] S. BROWN, D. CRIES AND T. SZYMANSKI, Program schemas with pushdown stores, this Journal,
(1972), pp. 242-268.

[3] C. BOHM AND G. JACOPINI, Flow diagrams, Turing machines and languages with only twoformation
rules, Comm. ACM, 9 (1966), pp. 366-371.

[4] A. K. CHANDRA, On the properties and applications ofprogram schemas, Ph.D. thesis, Computer
Science Dept., Stanford Univ., Stanford, Calif., 1973.

51 R. L. CONSTABLE AND D. GRIES, On classes ofprogram schemata, this Journal, (1972), pp. 66-
118.

[6] D. C. COOPER, Bohm and Jacopini’s reduction offlowcharts, letter to the Editor, Comm. ACM,
10 (1967), p. 463, p. 473.

E7] , Programsjbr mechanical program verification, Machine Intelligence 6, Edinburgh Univ.
Press, 1970.

I8] E. DIJKSTRA, Goto statement considered harmful, Comm. ACM, 11 (1968), pp. 147-148.

[9] E. EN6ELER, Structure and Meaning ofElementary Programs, Symp. on Semantics of Algorithmic
Languages, Springer-Verlag, Berlin, 1971.

[10] C. A. R. HOARE, An axiomatic approach to computer programming, Comm. ACM, 12 (1969),
pp. 576-580, p. 583.

[11] D. E. KNtJa’H AND R. W. FLOYD, Notes on avoiding goto statements, Information Processing
Letters, (1971), pp. 23-31.

121 S. KOSARAJU, Analysis ofstructured programs, Proc. of 5th SIGACT Conf., 1973, pp. 240-252.

[13] D. LUCKHAM, D. PARK AND M. PATERSON, Onjbrmalized computer programs. J. Comput. Systems
Sci., 4 (1970), pp. 220-249.

[14] Z. MANNA, Introduction to Mathematical Theory of Computation, McGraw-Hill, New York,
1974.

15] M. PAXERSON AND C. HEWlXT, Comparative schematology, Conf. Record of Project MAC Conf.
on Concurrent Systems and Parallel Computation, ACM, New York, 1970.

SIAM J. COMPUT.
Vol. 4, No. 2, June 1975

TIME BOUNDS ON THE PARALLEL EVALUATION OF
ARITHMETIC EXPRESSIONS*

D. J. KUCK’ AND K. MARUYAMA:I:

Abstract. This paper presents a number of bounds on the parallel processor evaluation of arithmetic
expressions. Several previous papers show that if the evaluation ofan expression using a serial computer
requires operations, by using a number of processors in parallel, the expression may be evaluated
in time proportional to log t. Since log is an obvious lower bound, it is of interest to attempt to
approach this bound.

The present paper shows that if more information than the number of operations (or operands)
is known, sharper bounds may be given in certain cases. Thus if the number of parenthesis pairs is
small or if the depth of parenthesis nesting is small, we may approach the lower bound. A new bound
is also given for expressions which have few division operations.

Similarly, if the expression’s form is restricted, sharper bounds may be found. Thus generalizations
of polynomials and generalizations of continued fractions are shown to have improved bounds.
We also give a new bound for expressions without division operations which have a limited number of
parenthesis pairs. Finally, we give an upper bound on the time to evaluate expressions in which
multiplication is not commutative.

Key words, arithmetic expressions, computational complexity, continued fraction, parallel
evaluation, polynomial, processing time, tree height reduction, upper bound

1. Introduction. Many computers now exist which are capable of executing
more than one operation simultaneously. As parallel and pipeline processors
continue to be developed, the question of how fast an arithmetic expression can
be evaluated becomes more interesting. The problem of tree height reduction for
the fast evaluation of an arithmetic expression has been studied by a number of
people.

The goal of a number of papers has been to present tree height reduction
algorithms which provide substantial speedup of expression evaluation. Recently
several papers have included upper bounds on the number of steps required to
evaluate the transformed expression. The three main transformation techniques
used are the laws of associativity, commutativity and distributivity. Early papers
concentrated on the first two of these. Later papers have used all three to obtain
upper bounds which are fairly close to the lower bound. By a simple fan-in argu-
ment, it is clear that a lower bound on the evaluation time for any arithmetic
expression of 2k constants and variables is k steps.

The present paper presents several new upper bounds which are sharper
than previous time bounds in certain cases. These include expressions which have
few parenthesis pairs and expressions which have few division operations. We
also give an upper bound which holds when multiplication is not commutative.
This provides a time bound on the evaluation of expressions of matrices and

Received by the editors December 27, 1973, and in revised form June 24, 1974. This work was
supported in part by the National Science Foundation under Grant GJ-36936 and by the IBM
Thomas J. Watson Research Center.

" Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana,
Illinois 61801.

IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598.

147

148 D.J. KUCK AND K. MARUYAMA

vectors. Finally, we prove sharper upper bounds on two special classes of expres-
sions; one is a generalization of polynomials in Horner’s rule form and the other
is a generalization of continued fractions. The paper begins with a brief survey
of a number of previous results. This is followed by a presentation of new results.

2. Definitions and background. The following definitions and assumptions
will hold throughout the paper. An atom is a variable or constant and is denoted by
a lower case italic letter. A binary operator 0 is either an addition, subtraction, multi-
plication or division, denoted by +, -, * and /, respectively. An arithmetic
expression is a well-formed string consisting of atoms and operators and is denoted
by an upper case italic letter. A subexpression of an expression E is defined as
follows: let E1 be a substring which appears in E, and let E’ be an expression which
is derived from E by replacing E1 by an expression (El). Then E1 is a subexpression
of E if the value of E equals the value of E’.

We write E(n) to denote an arithmetic expression of at most n distinct atoms. 2

The exact number of atoms in E is denoted by [E[. The exact number of pairs of
parentheses which appear in an expression E is denoted by [[E[[. We write E(n[p)
to denote an arithmetic expression of at most n distinct atoms with at most p
pairs of parentheses. We write E(n[d) to denote an arithmetic expression of at most
n distinct atoms in which the maximum depth of parenthesis nesting is d. The
exact number of division operations which appear in an expression E is denoted
by/E/. We write E(n[q) to denote an arithmetic expression of at most n distinct
atoms with at most q division operations.

The following machine idealizations are assumed (unless otherwise stated):
1. Each processor may perform any of the four binary arithmetic operations

at any time, but all processors need not perform the same operation at any time.
2. Each operation takes one unit of time, which we refer to as a step. 3

3. No time is required to communicate data between processors.
4. Any number of processors may be used at any time.

We use the notation TIE] to denote the number ofsteps required to evaluate expres-
sion E after some given transformation has been performed. Throughout the paper,
for any real number x, Ix denotes the smallest integer greater than or equal to x,
and x denotes the largest integer less than or equal to x.

Now we present a brief survey of previous results concerning the evaluation
time for arithmetic expressions. Details and further refererlces may be found in the
papers cited. Assuming that only associativity and commutativity are used to
transform expressions, Baer and Bovet [1 gave a comprehensive tree height reduc-
tion algorithm based on a number of earlier papers. Beatty [2] showed the

We assume that all unary plus operators are dropped. Sequences of unary minus operators of
even length may be dropped and sequences of odd length may be replaced by a single unary minus

operator. We assume that these are distributed such that no unary minus operator appears except at
the level of atoms.

By distinct we mean algebraically independent. Thus each atom appearsjust once in an expression,
so if we are presented with an expression containing multiple occurrences of some atoms, the expression
may be relabeled such that each atom has a unique label.

We assume that the processors are capable of complementing a number in negligible time before
computing with it. This means, for example, that if values a and b are available, either a * b or a * (-b)
may be evaluated in one step. See footnote 1.

TIME BOUNDS 149

optimality of this method. An upper bound on the reduced tree height assuming
only associativity and commutativity are used, given by Kuck and Muraoka [12],
is the following.

THEOREM 1. Let E(nld) be any arithmetic expression with depth d ofparenthesis
nesting. By the use ofassociativity and commutativity only, E(n, d) can be transformed
such that

T[E(nld)] <- [log2 n] + 2d + 1.

Note that if the depth of parenthesis nesting d, is small, then this bound is quite
close to the lower bound of [log2 hi. Unfortunately, there are classes of expres-
sions, e.g., Horner’s rule polynomials or continued fractions, for which no speed
increase can be achieved by using more than one processor under the assumption
that only associativity and commutativity are used in tree height reduction.

Muraoka [17] studied the use of distributivity as well as associativity and
commutativity for tree height reduction and developed comprehensive tree
height reduction algorithms using all three transformations. These algorithms
were programmed and used in the analysis of a number of real FORTRAN programs.
The algorithms as well as some numerical results of program analysis are con-
tained in [13], and further numerical results are given in [10]. An algorithm which
considers operations which take different amounts of time is presented by Kraska
[8]. While the arithmetic expressions found in most real programs are quite
simple, more complex ones may be derived by the substitution of one expression
into another, as discussed in [13]. Recurrence relations, for example, can lead to
an expression whose length is proportional to the number of times a loop is
executed. Thus it seems that an important fundamental issue in the design of future
computers and their compilers is the potential for program speedup by tree height
reduction techniques.

The following bounds show that distribution is indeed effective in trans-
forming an expression so that its reduced tree height approaches the lower
bound. It was shown by Brent [3] that arithmetic expressions of the form
((’’" (anx + an_x)Xn_ -+- + a2)x2 + a)x + a0 can be evaluated in
log2 n q-O2(x//10g2 n) steps. The special case of polynomial evaluation (x

x2 x,) has been studied by Maruyama [14] and by Munro and
Paterson [16]. They have shown that a polynomial of degree n can be evaluated
in log2 n + O2(v/log2 n) steps if n processors are available. They also have
deduced some results which apply when a fixed number of processors are avail-
able. In [7], Kogge and Stone discussed a class of linear recurrence relations and
showed that O2(log2 n) steps are sufficient for their evaluation. Certain special
recurrences, including continued fractions, were also discussed in [19].

The class of all arithmetic expressions without the division operation was
studied by Brent, Kuck and Maruyama [6], who proved the following.

THEOREM 2. Let E(nlq O) be any arithmetic expression with no division opera-
tions. Then by the use of associativity, commutativity and distributivity, E(nlq O)
can be transformed such that :

T[E(nlg 0) __< O (2.465 log2 n).
4 We find it convenient to use two different order of magnitude notations. If a and b are some

constants, we represent x + a by O(x)and ax + b by O2(x).

150 D. J. KUCK AND K. MARUYAMA

While this is fairly close to the lower bound, it is likely that some improvement is
possible. For later use, we simplify the notation by writing for the best known
coefficient (2.465 presently)such that T[E(n[q 0)] <= O l(logzn). Recently,
Brent [4], [5] has proved the following bound for any arithmetic expression E(n).

THEOREM 3. Let E(n) be any arithmetic expression. By the use of associativity,
commutativity and distributivity, E(n) can be transformed such that

T[E(n)] <= 01(4 log2 n).

The above results as well as the main results of this paper are summarized in
Table 1. It may be seen that Brent’s bound of Theorem 3 is the best known for
general arithmetic expressions, assuming associativity, commutativity and
distributivity are used. But for various special classes of expressions, better bounds
are possible. We also show that even if multiplication is not commutative, a
bound which is fairly sharp (Theorem 8) may be given.

TABLE
Summary of time bounds;

n number of atoms,
d depth of parenthesis nesting,
p number of parenthesis pairs,
q number of division operators

Transformations
allowed

associativity and
commutativity

associativity,
distributivity and
commutative addition

associativity,
commutativity and
distributivity

Class of
expressions

general

general

polynomial forms

continued
parenthesis forms

general
without division

general

Best known
time bound

log2 n + 2d + const.

6 log n + const.

log n -I- X//8 log n + const.

2 log n + const.

2.465 log n + const.

log n + 2.465 log p + const.

4 log n + const.

log n + 4 log p + const.

2.465 log n + 4 log q + const

Reference
in paper

Theorem

Theorem 8

Theorem 10

Theorem 9

Theorem 2

Theorem 4

Theorem 3

Theorem 5

Theorem 6

3. New time bounds using associativity, commutativity and distributivity. We
begin by presenting four lemmas. Lemmas and 2 are basic to a number of the
following proofs, while Lemmas 3 and 4 lead to the proof of Theorem 4. Through-
out the rest of the paper, we assume that expressions may be transformed using

TIME BOUNDS 151

associativity, commutativity and distributivity and that redundant parentheses
have been removed from all expressions.

Lemma is a direct generalization of [6, Lemma 2], and we state it without
proof.

LEMMA 1. (a) Let E(n) be any arithmetic expression and let n > m > 1. Then
we can always find a subexpression L 0 R such that

ILl < m, IRI < m and ILl + IRI m,

where O e {+, -,*,/}.
(b) Let E(nlp) be any arithmetic expression with p pairs of parentheses. Then

for any m, p > m > O, we can alwaysfind a subexpression L 0 R or (L 0 R) such that

L <=m, R <=m and L -+-IIR m,
where 0 6 {+, -,*,/}.

(c) Let E(nlq) be any arithmetic expression with q division operations. Then
for any m, q >_ m >_ O, we can always find a subexpression L 0 R such that

ILl<__ m, /R/ <= m and /L/ + /R/ >_ m,

where O e {+, -,*,/}.
Lemma 2 is a direct generalization of [5, Lemma 1, and we state it without

proof.
LEMMA 2. (a) Let E(n) be any arithmetic expression, and let x be any one of its

n atoms. For any m, n >_ m > 1, we can alwaysfind a subexpression X L 0 R such
that x is in X and XI >_ m, and either

1. x is an atom ofL and ILl m; or
2. x is an atom of R and JR[< m, where 0 {+, -,*,/}.
(b) Let E(nlp) be any arithmetic expression with p pairs of parentheses, and let

x be any one of its n atoms. Then for any m, p >_ m >_ O, we can always find a sub-
expression X L 0 R or X (L 0 R) such that x is in X and IlX[I >_ m, and either

1. x is an atom ofL and L <= m or
2. x is an atom of R and R <__ m, where 0 6 +, -, *, /}.
(c) Let E(nlq) be any arithmetic expression with q division operations, and let x

be any one of its n atoms. Then for any m, q >= m >= O, we can always find a sub-
expression X L 0 R such that x is in X and/X/>_ m, and either

1. x is an atom ofL and ILl <__ m; or
2. x is an atom ofR and/R/<= m, where 0 +, -, *,/}.
Now we turn our attention to the proof of a new bound on the time required

to evaluate expressions without division, assuming that the number of parenthesis
pairs in the expression is known.

LEMMA 3. Let E(nlp) be any arithmetic expression with p pairs of parentheses
but with no division operations. Then the following hold"

(a) T[E(nlO)] <- [log2 n] +
(b) T[E(nI1)] <= [log2 n] + 3

(c) TIE(hI2)] <= [log2 n] + 4

(d) T[E(nl3)] <__ log2 n] + 5

forn> 2,

forn> 3,

forn>4,

forn>_6.

152 D. J. KUCK AND K. MARUYAMA

Proof Parts (a) and (b) follow immediately from Theorem and the definition
of E(nlp) for P 0, 1.

To prove (c), we consider the following two cases.
Case 1. The depth of parenthesis nesting for E(n]2) is 1.
Case 2. The depth of parenthesis nesting for E(nl2) is 2.

In Case 1, by taking X and Y as subexpressions nested by pairs of parentheses in
E(n]2), we have X X(nlO) and Y Y(nlO). Furthermore, we have either

E(n]2) A(nlO)X(n[O) + B(n[O)Y(n[O) + C(n[0)
or

E(nl2) A(n[O)X(nlO)Y(n]O)+ C(n]0).

Since each of A, B, C, X and Y can be evaluated in ([log2 n] + 1) steps by (a),
E(nl2) can be evaluated in another 3 steps.

In Case 2, let X be the subexpression nested by the first pair of parentheses
and let Y be the subexpression nested by the second pair of parentheses which
appears in X. Then we have Y Y(nlO) and X X(n] 1) A(nl0)Y(n]0) + B(n]0).
Furthermore, E(nl2) A’(nlO)X(nl 1) + B’(n]O). By substitution, we have

E(n]2) A’(n]O)(A(n[O)Y(n]O)+ B(n]O))+ B’(n[0)

a’(n[O)a(n[O)Y(nlO)+ a’(nlO)B(n]O)+ B’(n]0).

Since each of A, B, A’, B’ and Y can be evaluated in ([log2 n] + 1) steps, E(nl2)
can be evaluated in another 3 steps. We can prove (d) by an argument similar to
the proof of(c). Q.E.D.

Using Lemma 3, we prove the following.
LEMMA 4. Let Po 1, p 2, P2 3 and Pk+ 3 Pk + Pk+l fOr k >_ O. Then

for any arithmetic expression E(nlp) with Pk pairs ofparentheses and with no division
operations,

T[E(nlPk)] <-- O(1ogz n + k).

Proof. We prove by induction that T[E(n[pk) [log2 n] + k + 3. By Lemma
3, E(n[1), E(n[2) and E(n[3) can be evaluated in ([log2 n] + 3) steps, ([log2 n] + 4)
steps and ([log2 n] + 5) steps, respectively. Thus the lemma holds for k _< 2,
since P3 P2.

We assume that the lemma holds for k __< r + 2, r >_ 0, and we prove it for
k r + 3. For any given E(nip,+3), using Lemma l(b),.find a subexpression
L 0 R or (L 0 R) of E(n[p,+ 3) such that

[]L][=<p,,]]g]] _<p and [[L[[+ [[R[[>__p,

where 0 +,-, *,/}. Let us denote such a subexpression by X, and let E’ be
the expression derived from E(n[p/) by replacing X by an atom x. Then IX[>_

and [E’[__<n+ 1-[X[__<n. Since lIE’ __<p+- [X[__<p+-p-p/, we
have

E’= A(n[pr+ 1)x + B(nlpr+ 1).

Moreover, since x corresponds to the expression X, we have

E(n]p,+ 3) a(n]p,+ 1)(L(n[p,) 0 R(n]p,)) + B(nlpr+ 1).

TIME BOUNDS 153

By the induction hypothesis, each of A(n[p+) and B(n[p,+) can be evaluated in
((r + 1) + [log2 n] + 3) steps and each of L(n[p,) and R(n[p,) can be evaluated in
(r + [log2 n] + 3) steps. Therefore, E(n[p, + 3) can be evaluated in (r + [log2 n] + 3)
+ 3 ((r + 3) + log2 n] + 3) steps. From this, the lemma follows. Q.E.D.

Now the following theorem can easily be proved (cf. [6, Lemma 4]).
THEOREM 4. For any arithmetic expression E(n[p) with p pairs of parentheses

and with no division operations,

T[E(n[p)] <__ O(log2 n + 2.465 log2 p).

Proof The general solution of the linear recurrence relation in Lemma 4 is

Pk Cl(’’l)k -[- C2(/]’2)k -[- C3(/]’3)k,

where 2, 22 and 23 are roots of z3 + z and c, c2 and c3 are arbitrary con-
stants. Let it be the real root and 2z and 23 be conplex roots then by inspection

) wherec2(22) and C3(/].3)k vanish as k gets large. Thus, we have p c1(2
2 1.3247. From this, the theorem follows. Q.E.D.

Next we turn our attention to several new bounds on the time required for
the evaluation of general arithmetic expressions of n atoms, assuming additional
information is available. Theorem 5 assumes the number of parenthesis pairs is
known, and Theorem 6 assumes the number of division operations is known.
Since commonly occurring expressions may have few parentheses or few divi-
sions, in practice these bounds may be better than that of Theorem 3.

THEOREM 5. For any arithmetic expression E(n[p) with p pairs ofparentheses,
T[E(nlp) <__ O1(log2 n + 4 log2 p),

and only one division operation need be performed.
Proof To prove the theorem, we prove the following claim, so that E(nlp)

can be evaluated in [log2 n] + 4[log2 p] + 4 steps by the first part of the claim.
CLAIM. E(nlp) can be transformed into the form G/H, and each of G and H

contains no division operators and each can be evaluated in 4[log2 p] + [log2 n] + 3
steps. Furthermore, E(nlp) can be transformed into the form (Ax + B)/(Cx + D),
where x is any atom in E(nlp) and each ofA, B, C and D contains no division operators
and each can be evaluated in 4[log2 p] + [log2 n] + 5 steps.

We prove the claim by induction on p. Let r Ilog2 p]. For r 0, i.e.,
E(nl 1), let Xo be the expression which is nested by the pair of parentheses. Then it
can be seen easily that E(n[1) can be transformed into the form

g(n[1) Ao 0o Xo + Bo, 0o {*,/},

where Ao, Bo and Xo are expressions with no parentheses and Ao is an expression
with only multiplication and/or division operations. Since [Zo[=< n- 1,. [Bol
=< n and IXol _-< n 1, by Theorem 1, each of Ao, Bo and Xo can be evaluated
in [log2 n] + steps. Now E(nll) G/H, where G AoXo + Bo and H for
0o=*, and G=Ao+BoXo and H=Xo for 0o=/. Hence each ofG andH
can be evaluated in [log2n] + 3 steps. So the first half of the proof is complete
for r 0.

Let x be any atom of E(nl 1). There are three cases to be examined for 0o *.

154 D. J. KUCK AND K. MARUYAMA

Case 1. x is in A. Since Ao is an expression with only multiplication and/or
division operations, we can rewrite Ao as

Ao (A1/C1)O1x 01 {*,/}
for any x in Ao, and each of A and C can be evaluated in [log2 n] + steps, by
Theorem 1. Similarly, we rewrite Xo and Bo as

X0 (Azy + Bz)/(C2Y + D2), Bo (A3z + B3)/(C3z + D3),

where y and z are any atoms in Xo and Bo, respectively. Further, A2, B2, C2,
D2, A3, B3, C3 and D3 are expressions of at most n 2 atoms; hence each of them
can be evaluated in I-log2 n] + steps, by Theorem 1.

Now for

E(n[1) (Ax + B)/(Cx + D),

by substituting expressions of Ao, Xo and Bo into E(n[1), we find for 0o * and
for01 =/,

A Cl(Czy + Dz)(A3z +
B and C are similar expressions and D 0. Thus A, B, C and D can be evaluated
in logz n] + 5 steps for 0o *.

By an argument similar to the above, Case 2 (x is in Xo) and Case 3 (x is in Bo)
can be examined, as can the case of 0o =/. This completes the proof of the second
half of the claim for r 0.

Now assuming that the claim holds for 0 =< r __< k- 1, the claim can be
proved for r k by using Lemma l(b), Lemma 2(b) and an argument similar to
that used by Brent [5] in proving Theorem 3. Q.E.D.

THEOREM 6. Assume we have a procedure to evaluate any expression E(n[q 0),
which has no division operations, in 0(log2 n) steps. Then for any arithmetic
expression E(n[q) with q >_ division operations,

T[E(n[q)] <__ 0(o log2 n + 4 log2 q),

and at most one division need be performed.
Proof. As in the case of Theorem 5, this theorem can be proved by proving

the following claim.
CLAIM. E(niq) can be transformed into the form G/H, and each of G and H

contains no division operators and each can be evaluated in 0(log2 n) + 4 log2 q
+ 4 steps. Furthermore, E(n[q) can be transformed into theform (Ax + B)/(Cx + D),
where x is an atom in E(n[q) and each ofA, B, C and D contains no division operators
and each can be evaluated in 0(log2 n) + 4[log2 q] + 6 steps.

This claim can be proved by induction on q using an argument similar to the
proof of Theorem 5, together with Lemma 1(c) and Lemma 2(c). Q.E.D.

Note that by using the value 2.465 from Theorem 2, we can immediately
obtain the entry shown in Table 1.

The next theorem presents a bound which is worse than that of Theorem 6.
However, since it is expressed in terms of the coefficient 0 (where an expression
without division can be evaluated in O(log2 n) steps), ifthe best present 2.465
(Theorem 2) can be reduced, then Theorem 7 will provide a better bound than

TIME BOUNDS 155

Theorem 6. In fact, if it can be shown that cz < 2, then Theorem 7 is an improve-
ment on Theorem 6, and if it can be shown that e < -}, Theorem 7 is an improve-
ment on Theorem 3, since in the worst case, q approaches n.

THEOREM 7. Assume we have a procedure to evaluate any E(nlq 0), which has
no division operations, in 0 l(z log2 n) steps. Then for any E(n[q) with q >__ division
operations,

T[E(nlq)] <= 0 l(cz(log2 n + 2 log2 q)),

and just one division need be performed.
Proof A detailed proof is given in Kuck [91, but since it involves a rather long

and straightforward argument, we will just sketch it here. The proof proceeds by
breaking any given expression E(nlq) into a set of r __< 2q expressions of the form

(1) E1Di-_DjF1 + F20i -,
DjF3 + F4 E2

where the F are free of division operations, 01 +_, *,/}, and D has the same
form as Di. As a tree of such expressions is traced from its root to its leaves,
eventually expressions occur in which E1 and E2 are free of division operations.
We represent the situation by assuming D has F9 and Flo as follows"

(2) D DkF5 + F6 O F9
OkF7 + F8 -(o’

where all the F are free of division operators, 0 e *,/}, and Dk has the same
form as Di. By substituting the right-hand side of (2) into (1) and factoring it, we.
obtain (assuming 0 +)

D[(F1F + F2FT)F1 o + FFTF93 + [(F1F6 + F2F8)Flo + F1F8F9]
(3) D 0

D,[(F3F5 + FFT)F,o + F3FTF9] + [(F3F6 + V4Fs)V,o + F3F8F9] E2
Note that (3) has the same form as (1) and has at most four occurrences of any Fi
on its right-hand side. Furthermore, we have eliminated two division operators
from the set of expressions derived from the given E(nlq). By performing a number
of such transformations in parallel, we can show that in [log2 r] + 1 steps, all
but one division (at the last step) can be eliminated. Thus an upper bound on the
number of atoms in the final expression is

O2(n4lg2 r) O2(n2lg2 r2) O2(nr2).
Hence, since r =< 2q, if any expression without division can be evaluated in z log2 n
steps, the theorem follows. Q.E.D.

4. Evaluating expressions with noneommutative multiplication, In this section
we consider the class of general arithmetic expressions in which multiplication
does not commute, i.e., ab v ba for arbitrary atoms a and b. Our interest in such
expressions arises from the study of well-formed expressions of scalars, vectors
and matrices. In [18, algorithms were presented for the fast serial and parallel
evaluation of products of scalars, vectors and matrices, but no bounds were given.
Here we prove an upper bound on the time required for the parallel evaluation of
general expressions with noncommutative multiplication and follow it with some
discussion of the result in the context of matrix expressions.

156 D.J. KUCK AND K. MARUYAMA

THEOREM 8. For any arithmetic expression E(n) whose multiplication operator
is noncommutative,

TE(n)] <= O1(6 log2 n).

Proof. In the proof of the theorem, we denote addition time by tA, multiplica-
tion time by tu and division time by o. We prove the theorem by proving the
following claim.

CLAIM. E(n) can be transformed into the form GH-1 and each of G and H can
be evaluated in time Flog2 n](3tM / 2tg 4- o) 2tM g. Furthermore, E(n) can be
transformed into the form (Ax 4- B)(Cx 4- D)-1, where x is an atom in E(n) and
each of A, B, C and D can be evaluated in time [log2 n](3tu 4- 2tk 4- to) 4- O.

Thus the theorem follows since E(n) can be evaluated in [log2 n](3tu + 2tg
4- tD) M A 4- o steps, by the first part of the claim.

Proof of the claim. We prove the claim by induction on n.
Let fl 3tM 4- 2tg 4- o and r I-log2 n]. For r 1, it can be seen easily

that G and H can be evaluated in M + A 4- o fl 2tM A steps. Furthermore,
A, B, C and D of E(2) can be evaluated in fl + D steps. Thus, the claim holds for
r 1. We assume that the claim holds for 1 __< r __< k 1, and we prove the claim
fort k.

We prove the first part of the claim first. For any given E(2k), we apply
Lemma l(a)with m 2k- 4- and find a subexpression X1 L1 01 R1 of E(2k)
such that IXl _>_ 2- / 1, ILal _-< 2-a and IRxl =< 2-x where 01 e {+ *}
Thus the second part of the inductive hypothesis gives

E(2) (A1X1 + B1)(C1X1 + O1) -1,
where A1, B, C1 and D1 can be evaluated simultaneously in fl(k 1) + D steps.
Also, the first half of the inductive hypothesis applied to L1 and R1 gives
L1 G1H(and R1 GzH 1, where G1, H1, G2 and Hz can be evaluated
simultaneously in fl(k 1) 2tM th steps.

By substituting expressions L and R into E(2), we can derive E(2) GH- 1,
and whatever 01 is, we can show that each of G and H can be evaluated in
fl(k 1) + D + tM + t flk 2tM t steps. This completes the proof of the
first part of the claim.

Now we prove the second part of the claim. Let x be an atom of E(2).
Applying Lemma 2(a) with rn 2- + on E(2), we see that there is a sub-
expression X2 L2 02 R2 of E(2k) such that [X2[2k- 4- 1, and either x is an
atom of L2 and ILL[2k- or x is an atom of R2 and]R21 2k- 1, where
0{+,-,,}.

Without loss of generality, suppose the former holds. Thus the second part
of the inductive hypothesis gives

E(2) (A2X2 4- B2)(C2X2 4- D2) -1,
where A2, B2, C2 and D2 can be evaluated simultaneously in fl(k 1) / to steps.
Similarly,

L2 (A3x + B3)(C3x + D3) -1,
where A3, B3, C3 and D can be evaluated simultaneously in fl(k 1) + D steps.

TIME BOUNDS 157

Since [R2[< 2k, the first half of the inductive hypothesis shows that R2 G3H ,
where G3 and Ha can be evaluated simultaneously in flk 2tu g steps.

By substituting expressions L2 and R2 into E(2k), we can derive

E(2k) (Ax + B)(Cx + D)-’,
and whatever 02 is, we can show that each of A, B, C and D can be evaluated in

flk 2tM tA + (2tM + tA + to) flk + to steps. Hence the second half of the
proof is complete. Q.E.D.

This bound may be of interest in studying the time required to evaluate any
well-formed expression of scalars, vectors, and matrices. Given a sufficient number
of processors, the times required to add or multiply pairs of such operands are
easy to derive (see 18]). However, matrix inversion time is rather difficult to bound,
since a variety of inversion methods are available, and the one used may depend
on the numerical details of the matrix. Thus various bounds could be derived for
different matrix inversion methods. In [15], matrix bounds similar to the above
are proved for various restricted classes of matrix expressions.

5. Evaluating continued parenthesis forms. In this section we consider a class
of special arithmetic expressions which we call continued parenthesis forms.
Our interest in these forms arises from the study of polynomials in the form of
Horner’s rule and from continued fractions both ofthese are continued parenthesis
forms. Theorem 9 shows that any continued parenthesis form of degree n (with
2n + atoms) may be evaluated in at most 2[log2 n] + 3 steps.

In order to simplify our proofs, we make some small notational departures
from above. We write Ece(n) to denote the continued parenthesis forms of degree n,
CF(n) and PF(n), which contain at most 2n + atoms, i.e., IEcp(n)l <_ 2n + 1.
The definitions are"

CF(n) ao O, (b, 02 (a, 03 (b, 02, (a, 02, +, ("" 02,_, (b, 02, a,)...)))...)),

PF(n) ((...(((...(a, 02, b,) 02,-, "") 02i+, ai) 02i bi) 03 a,) 02 b,) 0, ao,

where if 02i {*,/} and 02_ { +, for 1, 2, ..., n, then we call CF(n) a
continued fraction form of degree n, and we call PF(n) a polynomial form of degree n.
We write Ece(n[X) to denote a continued parenthesis form which is derived by
replacing a, of Ece(n) by another arithmetic expression X.

THEOREM 9. If 4n processors are available, then for any continued parenthesis
form Ece(n) of degree n,

T[CP(n)] <= 0,(2 log2 n),

where at most 24n operations, including just one division, need be performed.
Proof. We know that a continued parenthesis form Ecp(nlx of degree n (i.e.,

at most 2n + 1, n >_ 1, atoms) can be rewritten in the form of (Ax + B)/(Cx + D).
To prove the theorem, we prove the statement that each of A, B, C and D which
contains no division operators can be evaluated in 2[log2 n steps. Thus the
final result can be evaluated in another 3 steps, for a total of 2 [log2 nl + 3 steps.

Let r [log2 nl. The statement holds for r 0, 1. Let us assume that it holds
for r __< k 1, and prove the statement for r k by induction. For Ece(2*lx),

158 D. J. KUCK AND K. MARUYAMA

which can be rewritten as

(4) (A’x + B’)/(C’x + D’),

we apply Lemma l(a) by setting m 2 + l, and we can always find X (L 0 R)
such that IX[--m, and X Xcp(U-[x). Therefore we have Ecp(2’[x)

Ece(2’- IX).
Furthermore, Ece(2’- IX) and Xce(2’-’l x) can be rewritten as

(5) (AoX + Bo)/(CoX + Do)

and

(6) (A,x + S,)/(ClX + D1),

respectively. Thus, by substituting (6) into (5), we can find each of A’, B’, C’ and D’
for (4) as follows"

B’ BoD1 -t- AoBiA’ AoA + BoCa,

D’= DoD + CoB.C’ CoA + DoC 1,

By our induction hypothesis, each of A, B, C and D for 0, can be evaluated
in 2(k l) steps. We can evaluate each of A’, B’, C’ and D’ in another 2 steps,
which complete our inductive proof of the statement. Therefore, the final result
of(4) can be evaluated in another 3 steps, from which we have T[CP(n) <__ 2 [log: n
+3.

Let k [log: hi, and let P(2*) denote the number of processors required to
evaluate either A’, B’, C’ or D’ of Ece(2’). To evaluate A’, B’, C’ and D’ simul-
taneously, we evaluate Ao, Bo, Co, Do, A, B, C and D simultaneously. Thus,
the total number of processors is

4P(2) _<_ 4.2P(2- 1)
_

4’ 2- P(2).
Since P(2) __< 1, we get

4. P(2*) < 2.2 _<_ 2.2[lg:nl < 2.2(*:’+ 1) 4n
processors.

Let Q(2) denote the number of operations required to evaluate either A’, B’,
C’ or O’ of Ece(2). Then we have Q(2)=<2Q(2-1)+ 3__< __< 3.2- 3
__< 6n 3. Thus 4Q(2) + 5 _<_ 24n 7 operations are sufficient. From these, the
theorem follows. Q.E.D.

In Theorem 9, let m-- 2n + be the number of atoms in a continued
parenthesis form. Then Ecp(Ira 1)/2]) can be evaluated in 2[log2 m + steps
if 4[(m 1)/2 processors are available. Thus we can say that continued paren-
thesis forms of rn atoms can be evaluated in 2[log2 m] + steps using 12m
operations if 2m processors are available. This may be regarded as a generalization
of the continued fraction result in [19] but with a sharper processor bound here.

6. Evaluating polynomial forms. In this section we continue our discussion
of continued parenthesis forms, but here we deal exclusively with polynomial
forms of degree n, denoted by PF(n). We repeat the definition given in 5"

PF(n) (...(anO2nxnO2n_ an_l)O2n_ 2 X._ 02._ 3 03 al) 02 x 01 ao,

TIME BOUNDS 159

where 02i . {*,/ and 02i_ "]-, for 1, 2, ..., n. Results similar to those
in this section were given in I3], [14 and 16], but in those papers the restrictions
were made that 02i {*}, 02i- { + }. The main result of this section is Theorem
10, which states that any polynomial form of degree n may be evaluated in
O l(log2 n) + x//8log2 n) steps using at most 2n processors. Theorem 10 follows
from three lemmas which we now prove.

First, we find it convenient to introduce some new notation. For an expression

(7) X1 O1 X2 02 Oi-1 xiOi On-1 Xn,

where 0i +, -, *,/) for 1, 2, ..., n 1, we introduce the following"
(i) expression (7) is denoted by --’= xi if 01 (+,- for i= 1,2,-.., n- 1.

(ii) expression (7) is denoted by [717= xi if Oi {*,/} for 1, 2, ..., n 1.

Now we can expand PF(n) to the form"

ai xj +_ ao aiX(i +_ ao,
i=1 j=l i=1

where X(i) denotes x.171 J’
we state wthout proof the following simple lemma which can be proved

easily by induction.
LEMMA 5. Either {-=x,[1 _<_ k _<_ n} or {[7I= x,[1 <= k <= n} can be com-

puted from {xj[<= j <= n} in log2 n] steps using [n/2J processors.
Using Lemma 5, the following lemma can be proved as shown in I14] and [16].
LEMM 6. Let n(d) denote the degree of a polynomial form, PF(n(d)), which can

be evaluated in d steps. If an unlimited number of processors are available, then
n(d,) >= 2a"- holds, where d r(r + 1)/2, r >= 2.

In order to prove Lemma 7 and Theorem 10, we will find the following
notation useful, Given any polynomial form PF(2n), assume it is rewritten in
the form

2-(8) PFo(2d-) Oo 7, (PFj(2d-)Oj X(j. 2d- 1)),
j-1

where0o{+,-},0j{,,/},l =<j=< 2k- 1, andthePF)(2d’-l),O<_j2k- 1,
are polynomial forms of degree less than or equal to 2dk- 1.

We then write {XIPF(2dk)} to denote the set of all products and quotients
of x which appear in this form. For example, if we are given some PF(8) which is
rewritten as

(a0 q- alx -F a2x1x2) + (a3 -F agx4 + asx4X5)X1XzX

-+- (a6 -k- aTx7 -+- asxTxs)xx2x3x4x5x6,
then

{XIPF(8)} {x1, x1x2 x4 x4x5, x1x2x3 XT, x7x8 x1x2x3x4x5x6}.
Now we turn to Lemma 7, which provides the key to bounding the number of

processors required to evaluate a polynomial form.
dk 2d dkLEMMA 7. For any k >_ 2, both X(2 lj=l xj and (X]PF(2)}, the set of

x products and quotients corresponding to PF(2d’), can be evaluated in dk steps using
2a- processors.

160 D.J. KUCK AND K. MARUYAMA

Proof. We prove the lemma by induction on k. For k 2, {X[PF(8)} is

{X1, X1 01 X2, X4., X4 04X5, X1 01 X2 02 X 3, X7, X7 07 X8,

X1 01 X2 02 X3 03 X4 04 X 05 X6}
and

X(8) x 01 x2 02 x 3 0 3 x4 04 x 0 x6 06 x7 0 7 x8,

where 0i {*,/}, __< 7. By drawing computation trees, it can be seen that
{xlPF(8)} and X(8) can be computed in d2 3 steps using 2a2-1 4 processors.

Now we assume that the lemma holds for k =< r 1, and we prove the lemma
for k r. Given any PF(2aO, we rewrite it in the form of (8) as

2r-1

VFo(2n"-)01 PF)(2nr-) 02 X(j. 2nr-).
j=l

By induction hypotheses, we know that each {X]PF)(2e"-)} of PF}(2ar-) and
Xj(2ar-) for j 0, 1,..., 2r- 1, can be computed in d,_l steps using 2a"-’-I

processors. Thus we need a total of 2’. 2n"- -1 2e,- processors. Furthermore,
using the Xj(2n"- 1), all of the X(j. 2nr-) for j 1, 2, ..., 2’, can be computed in
another r steps using 2’- processors, by Lemma 5. Note that for j 2r, X(j. 2a"- 1)

X(2n0. Further, the union of the remaining X(j.2at-l) terms and the terms
previously evaluated give us {XIPF(2eO}, that is,

2

{X[PF(2aO} [{X[PF)(2e,-I)} U X(j. 2ar-)].
j=0

Therefore, both {X[PF(2nO} and X(2n") can be computed in r + d,_ d, steps
using 2a"- processors. From this the lemma follows. Q.E.D.

THEORFM 10. If 2n processors are available, then any polynomial form of
degree n, PF(n), can be evaluated in 0 a(log/n + x//8 log2 n) steps.

Proof. If P(2nk) processors are required to evaluate {X[PF(2ak)} and X(2a)
in form (8) of the proof of Lemma 6, then by Lemma 7 we have PI(2n) -<_ 2nk- 1.
Moreover, if P2(2n) processors are required to evaluate PF(2nk) without computing
{X[PF(2a)}, then we get

P2(2a) 5 2k" P2(2a-) _-< _-< 2k" 2-1 23. Pz(2n2).

Since P2(2a) P2(8) __< 4, we have

P2(2) __< 2+ 1)/2-1 2ak- 1.

Thus P(2) + P2(2n) 2ak processors are sufficient to evaluate PF(2a). By
noticing that 2a covers discrete integers and from Lemma 6, the theorem follows.

Q.E.D.
Let m be the number of atoms in a polynomial form. By Theorem 10, since

m 2n + 1, PF([(m 1)/2]) can be evaluated in

O1(log2 (m 1) + x//8 log2 [(m 1)/2)

steps if 2[(m 1)/2] processors are available. Thus, we may say that a polynomial
form of rn distinct atoms, rn >_ 2, can be evaluated in O a(log2 rn + x// log2 m)

TIME BOUNDS 161

steps if rn processors are available. We observe that for the points n dr, the
coefficient 8 may be reduced to 2, for a bound of O l(log2 n + x//2 log2 n) steps
in Theorem 10.

7. Conclusion. This paper has presented several upper bounds on the time
required to evaluate various classes of arithmetic expressions. Such bounds seem
to be of fundamental importance in bounding the time required to evaluate
various numerical algorithms using computers with multiple arithmetic units.
Since the proofs are all constructive, they may also suggest techniques which
could be used in compiling for such computers in the future.

Although the time bounds discussed in this paper are all within a constant
factor of the obvious lower bound, it is likely that these results can be improved.
It was conjectured in 17] that any arithmetic expression of n distinct atoms whose
operations are addition and multiplication can be evaluated in at most 2[log2 n]
steps. Here, as the summary of our experience, we propose the following two
conjectures.

Conjecture 1. Any arithmetic expression of n distinct atoms whose operations
are addition, subtraction and multiplication may be evaluated in at most log2 n
+ 02(x//lg n) steps using 02(n) processors (cf. Theorem 10).

Conjecture 2. Any arithmetic expression of n distinct atoms whose operations
are addition, subtraction, multiplication and division may be evaluated in at
most 01(2 log2 n) steps using 02(n processors (cf. Theorem 9).

REFERENCES

[1] J. L. BAER AND D. P. BOVET, Compilation of arithmetic expressions for parallel computations,
Proc. of IFIP Congress, North-Holland, Amsterdam, 1968, pp. 340-346.

[2] J. C. BEATTY, An axiomatic approach to code optimization for expressions, J. Assoc. Comput.
Mach., 19 (1972), pp. 613-640.

[3] R. P. BRENT, On the addition ofbinary numbers, IEEE Trans. Computers, C-19 (1970), pp. 758-759.
[4] , The parallel evaluation of arithmetic expressions in logarithmic time, Complexity of

Sequential and Parallel Numerical Algorithms, J. F. Traub, ed., Academic Press, New
York, 1973, pp. 83-102.

[5] --, The parallel evaluation of general arithmetic expressions, J. Assoc. Comput. Mach., 21
(1974), pp. 201-206.

[6] R. P. BRENT, D. J. KUCK AND K. MARUYAMA, The parallel evaluation of arithmetic expressions
without division, IEEE Trans. Computers, C-22 (1973), pp. 532-534.

[7] P. M. KOGGE AND H. S. STONE, A parallel algorithm for the efficient solution ofa general class of
recurrence equations, Ibid., C-22 (1973), pp. 786-793.

[8] P. W. KRASKA, Parallelism exploitation and scheduling, Ph.D. thesis, Univ. of Illinois at Urbana-
Champaign, 1972; Dept. Computer Sci. Rep. 518.

[9] D. J. KUCK, Evaluating arithmetic expressions ofn atoms and k divisions in z(log n + 2 log k) + c
steps, Doc. 69, Dept. Computer Sci., Univ. of Illinois at Urbana-Champaign, 1973.

10] --, Multioperation machine computational complexity, Complexity of Sequential and Parallel
Numerical Algorithms, J. F. Traub, ed., Academic Press, New York, 1963, pp. 17-47.

I11] D. J. KUCK AND K. MARUYAMA, The parallel evaluation ofarithmetic expressions ofspecialforms,
Rep. RC-4276, IBM T. J. Watson Research Center, Yorktown Heights, N.Y., 1973.

[12] D. J. KUCK AND Y. MURAOKA, Bounds on the parallel evaluation of arithmetic expressions using
associativity and commutativity, Ann. Princeton Conf. on Information Sciences and Systems,
Princeton, N.J., March 1973, pp. 161-168.

[13] D. J. KUCK, Y. MURAOKA AND S. CHEN, On the number ofoperations simultaneously executable in
FORTRAN-like programs and their resulting speed-up, IEEE Trans. Computers, C-21 (1972),
pp. 1293-1310.

162 D.J. KUCK AND K. MARUYAMA

[14] K. MARUYAMA, On the parallel evaluation ofpolynomials, Ibid., C-22 (1973), pp. 2-5.
[15] --, The parallel evaluation of matrix expressions, RC 4380 (# 19612), IBM T. J. Watson

Research Center, Yorktown Heights, N.Y., June 1973.
[16] I. MUNRO AND M. PATERSON, Optimal algorithm for parallel polynomial evaluation, Proc. IEEE

12th Ann. Symp. on Switching and Automata Theory, Oct. 1971, pp. 132-139.
[1T Y. MtJRAOKA, Parallelism exposure and exploitation in programs, Ph.D. thesis, Univ. of Illinois at

Urbana-Champaign, 1971; Dept. Computer Sci. Rep. 424.
[18] Y. MURAOKA AND D. J. KUCK, On the time required for a sequence of matrix products, Comm.

ACM, 16 (1973), pp. 22-26.
I19] H. S. STONE, An efficient parallel algorithm for the solution of a tridiagonal linear system of equa-

tions, J. Assoc. Comput. Mach., 20 (1973), pp. 27-38.

SIAM J. COMPUT.
Vol. 4, No. 2, June 1975

SOLVING A PROBLEM IN EIGENVALUE APPROXIMATION
WITH A SYMBOLIC ALGEBRA SYSTEM*

ANDREW D. HALL, JR.f

Abstract. In a recent paper by R. A. Handelsman and J. S. Lew [1], it is shown that for a certain
family of potentials, the eigenvalues of the one-dimensional time-independent Schr6dinger equation
are proportional to u(x, y)-2 with u determined by u I/ f(xu, yu2/t), where/(x, y) r0s=o f’xsy’"
Both fl and the frs are known constants, with f0o 1.

In [2], Lew proposed that a system for symbolic algebra be used to compute the Taylor series
expansion for u(x, y), although in [1] what is desired is the expansion of c(x, y) u(x, y)-2. To illustrate
how such a system can be used to solve this and similar problems, three solution methods are described
and corresponding programs giv.en.

During the attempt to put the output resulting from these programs into a form similar to that
given by Lew [1], the general solution was found. We give this solution here but defer the proof to
another paper [3].

Key words, symbolic computation, power series

1. Introduction. In a recent paper by R. A. Handelsman and J. S. Lew [1],
it is shown that for the family of potentials

(1) V(Z) AZ + BZ2m, B > O, m 2, 4, 6,...,

the eigenvalues E, of the one-dimensional time-independent Schr6dinger equation
are proportional to u(x, y)-2, with u determined by

(2) u 1/ f(xu, yU2/).

Here fl m/(rn + 1), and the parameters x and y involve negative powers of
(n + 1/2). The function f is defined by

(3) f(x,y) Z f xS"Y
r=O s=O

where the f, are known constants. In particular, fo0 1.
Handelsman and Lew define

(4) c(x, y) u(x, y)-2 ,, c,x,y,,
p=0 q=O

and the problem is to express the c,q in terms of fl and the f,. Handelsman and Lew
were able to compute the Cpq for p + q =< 4 "by a hand computation lasting
about a week" 2].

In this paper we present three methods for solving this problem and illustrate
each with a program written in ALTRAN [4], 5]. Alternative methods and solutions
are described in [6 and [7].

During the attempt to put the output resulting from these programs in a
readable form, the general solution was discovered. We give this solution here
but defer the proof to another paper I3].

Received by the editors May 28, 1973, and in revised form June 11, 1974.
f Bell Telephone Laboratories, Inc., Murray Hill, New Jersey 07974.

163

164 ANDREW D. HALL, JR.

2. Method 1. Method is a brute force solution designed to take advantage
of the ALTRAN library procedures for manipulating one-dimensional truncated
power series. The method illustrates an often useful technique for converting a
multidimensional power series problem into a one-dimensional problem that is
easily solved.

The problem is considerably simplified if we let u va so that (2) becomes

(5) v f(xv, yv2).

We wish now to determine the coefficients vp in the expansion

(6) v(x, y) Z v,xqY’,
p=O q=0

and then use the relation c u-2 v-2a to determine the coefficients cpq in (4).
We can make the problem one-dimensional by grouping terms according to

the sum of the exponents of x and y. Formally, this is accomplished by setting
x 2x and y 2y and viewing (3), (4) and (6) as power series in 2. These become,
respectively,

(7) f(2x, 2y) f(x, y)2, f(x, y) f_s,sxSy’-
k=O s=O

X(8) c(/].x,/].y) ck(x y)2 ct,(x y) c,_s, y
k=O s=0

X .k(9) v(2x, 2y) v,(x, y)2, v,(x, y) v,_s,, y
k=O s=0

Equation (5) becomes

(10) v(2x, 2y) f(2xvt,

The problem can now be solved in the following way. First represent v(2x, 2y)
as a power series in 2 to order n with unknown coefficients Vo, v l, ".., v,. Letting
2 0 in (9) and (10), we find immediately that vo 1. Now use (7) to compute to
order n the power series for f(2x, 2y). Then substitute xv and yv2 for x and y,
respectively. The result will be a power series for f(2xvt,2yvz) v(2x, 2v).
Normally, we would have to equate the coefficients of these two series and solve
the resulting system of equations for the unknowns Vo, v 1,’", v,. However,
from (10) it is easy to show that the coefficient of 2 in f(2xvt, yv2) depends only
on x, y, fl, f,s and the unknown coefficients v 1,..., v_ 1. Since we also know
from (10) that these are precisely the previous coefficients in the series, simple
substitution can be used to eliminate them. The result will be the desired .power
series for v(2x, 2y).

Using the relation c-= v -2a, we can now compute c(2x, 2y). From (8) we
see that we can easily extract the c, of (4) from the coefficients of c(2x, 2y).

An ALTRAN program for carrying out this computation to order n is shown
in Fig. 1. The program is straightforward except for the integer array-valued
function maxexp which is used to compute the maximum exponent of each f,
that can occur. For small n, we could have simply used n in place of the procedure

SYMBOLIC ALGEBRA SYSTEM 165

call maxexp (n, n), but for large n we need a better bound to conserve space.
For completeness, the procedure maxexp is discussed in detail in Appendix A.

procedure main

integer n 4
integer k, s
integer array arran maxexp

Declare the indeterminates and their maximum exponents.

algebraic x:n, y:n, f(0:n,0:n):maxexp(n,n), b:n, v(0:n):n

Declare arrays for the coefficients of the truncated power series.
In ALTRAN, the power series variable is not explicitly represented.

long algebraic array (0:n) vtps, ctps, ftps 0
long algebraic array altran tpspwr, tpssbs

Step 1. As in (9), let vtps be a series with unknown coefficients,
v(0), v(1) v(n), but noting that v(0) 1.

vtps v; vtps(0)

Step 2. Using (7), compute the power series for f. Note that
f(0) and that ftps(k) is initially 0.

ftps(0)
dok 1, n
dos =0, k

ftps(k) ftps(k) + f(k- s,s) * x**s * y** (k- s)
doend

doend

Step 3. Compute the right side of (10), using truncated power series
substitution to replace x and y by x*vtps**b and y*vtps**2.

ftps tpssbs(ftps, x*tpspwr(vtps,b) x
ftps tpssbs(ftps, y*tpspwr(vtps,2) y

Step 4. Form vtps(k) by replacing the v(1), v(2) v(k-1) in
ftps(k) with vtps(1), vtps(2) vtps(k-).

dok 1, n
vtps(k) ftps(k) (v vtps)

doend

Step 5. Compute c and write out the coefficients.

ctps tpspwr(vtps, -2*b

dok =0, n
write ctps(k)

doend

end
FIG. 1. Method

166 ANDREW D. HALL, JR.

3. Method 2. In Method 2, we derive a recurrence relation for the vk defined
by (9). We first replace x and y in (7) by xvt and yv2, respectively, to arrive at

(11) v(2x,2y) E fk_s,sXSyk-sl)fls+2(k-s) ,k.

NOW let the 7th power of v be represented by

(12) - (v),
k=0

where (V)k simply denotes the coecient of k in the power series expansion of v.
Substituting (12) into the right side of (11), we have

7o: s:o

Equating terms of order n in 2, we have

(14) v, i fk-s,sXSyk-s(VBS+2(k-S))n-k"
k=0 s=0

Note that the terms with k 0 do not contribute to the sum when n > 0, because
fls + 2(k s) 0 and (1), 0. Thus for n > 0, (14) expresses v, in terms of the
first n coefficients of the expansion of v for various values of 7.

Furthermore, for n > 0 and arbitrary, (v), can be computed from
(V)o, (v),_ and Vo, v, by the powering formula (see Appendix B)

D0

An ALTRAN program for computing v,, 0 N n N nmax based on (14) and (15)
is shown in Fig. 2. Since the procedure also computes (v),, the c, are easily
obtained by setting 7 -2ft.

4. Meth 3. In Method 3, we use a technique similar to that used in Method 2
to derive a recurrence for the Vpq defined by (6). We first replace x and y in (3)
by xv and yv2, respectively, to arrive at

(16) (x, ;) 2 2 Lx;s+".
r=0 s=0

Now let the 7th power of v be represented by

(17) v Z Z (V’)PqXqyp’
p=0 q=0

where (1))pq is used to denote the coefficient of xqyp in the expansion of v. Sub-
stituting (17) into (16) and equating this to (6), we have

(18)
p=Oq=0 i=0j

SYMBOLIC ALGEBRA SYSTEM 167

procedure main

integer nmax 4
integer i, k, n, s
integer array altran maxexp

Declare the indeterminates and their maximum exponents.

algebra ic (x: nmax,y: nmax,f (0: nmax,O:nmax) :maxexp nmax,nmax),
b:nmax,g:nmax)

long algebraic array (O:nmax) c, v O, vg 0

Step 1. Initialize.

v(O) 1; vg(O)

don 1, nmax

Step 2. Using (14), compute v(n).

dok 1, n
dos =O,k

v(n) v(n) + f(k-s,s) * x**s * y**(k- s)*,
vg(n-k) (g b’s+2* (k-s))

doend
doend

Step 3. Using (15), compute vg(n). Note that v(O) and that
vg (n) is initially O.

doi= 1, n
vg(n) vg(n) + ((g+l)*i-n) *v(i) *vg(n-i)

doend
vg(n) vg(n)/n

Step 4. Compute c(n), write it out, and recover the space.

c(n) vg(n) (g -2*b)
write c(n); c(n)=.null.

doend

end
FIG. 2. Method 2

Equating the coefficients of xqyp, we have
p q

(19) vpq-- frs(Us+Zr)p_r,q_s
r=0s=0

Note that the term with r s 0 does not contribute to the sum when
p > 0 or q > 0, because/Ys + 2r 0 and (1)a 0. Hence (19) expresses va in
terms of ()i with =< p, j =< q and/+ j < p + q.

Now for p > 0 or q > 0 and arbitrary ?, we can express () in terms of the

168 ANDREW D. HALL, JR.

procedure main

integer pmax 4, qmax 4
integer i, j, p, q, r, s
integer array altran maxexp

Declare the indeterminates and their maximum exponents.

algebraic (f(O:pmax,O:qmax):maxexp(pmax,qmax), b:pmax + qmax,
g:pmax + qmax)

long algebraic array (O:pmax, O:qmax) c, v O, vg 0

Step 1. Initialize.

v(O,O) 1; vg(O,O)

dop O, pmax
doq O, qmax

if (p+q .eq. O) go to skip

Step 2. Using (19), compute v(p,q).

dor =O,p
dos O,q

v(p,q) v(p,q) + f(r,s) * vg(p- r,q s) (g= b*s + 2*r)
doend

doend

Step 3. Using (20), compute vg(p,q). Note that v(O,O) and that
because vg(p,q) is initially O, the term with 0 does
not contribute to the sum

doi =O,p
doj =0, q

vg(p,q) vg(p,q) + (g+l)*(i+j) (p+q))*v(i,j)*
vg(p- i,q-j)

doend
doend
vg(p,q) vg(p,q)/(p+q)

Step 4. Compute c(p,q), write it out, and recover the space.

skip: c(p,q) =vg(p,q)(g -2*b)
write c(p,q); c(p,q) .null.

doend
doend

end

FIG. 3. Method 3

SYMBOLIC ALGEBRA SYSTEM 169

lower order coefficients of v and the vij, =< p and j <= q, by the powering formula
(see Appendix C)

P q

[(7 + 1)(i + j)- (p + q)]vij(v’)p_i,q_ J.(20) (v)’q (P + q)Voo i=,, j=
i+j:O

An ALTRAN program for computing va, p <= pmax, q =< qmax, is shown
in Fig. 3. Since the procedure also computes (v),a, c can be obtained by setting
7 -2/3.

5. Results. Methods and 2 would normally be used to compute Cpq for all
p, q such that p + q __< n, whereas Method 3 would be used to compute Cpq for
p __< pmax, q =< qmax. To compare the speeds of these techniques, Method 3 was
modified slightly so that it also computes Cpq for p + q =< n.

TABLE
Total processor time in seconds required for
the computation of all Cpq for p + q <__ n

Method

4.6
8.6

16.0
26.6

Method

1.3
3.1
6.8

13.3

Method

1.9
5.2

13.1
29.8

The processor time in seconds required for computing all Cpq with p + q __< n
for n 1, ..., 4 is shown in Table 1. The ALTRAN system used was installed on
the Honeywell 6070 computer (36 bit words, 1/s cycle time) at Bell Telephone
Laboratories, Murray Hill, New Jersey.

In each case, no more than 10,000 words of workspace were used. Using
Method 2 with 24,000 words of workspace, we were able to compute all cpq for
p + q -< 6 in 53.1 seconds.

Part of the output resulting from Method 3 (modified) is shown in Fig. 4.
To put the Cpq, p + q -< 6, in a form similar to that given in [1], an attempt

was made to devise a heuristic program to collect terms of the same degree in the
frs and factor the resulting coefficient which is a polynomial in ft. For example,
c21 can be written

(21) 2C21 -2fl[fzx + (fof + fzofo)(3 fl) + fofol(3 -/3)(2 fl)].

This effort led to the discovery ofthe general form ofthe (v’)pq appearing in (6).
Derivation of this solution will be deferred to a subsequent paper [3]. The formula
is as follows"

]2
P+q

Ft(p, q)(2p + flq + y)t,(22) (v)P 2p + flq + =o

170 ANDREW D. HALL, JR.

C (2,0)

2*F(1,0)**2*B**2 3*F(1,0)**2*B 2*F(2,0)*B

C(0,3)

F(O,1)**3*B**3 + 3*F(O,1)**3*B**2 2"F(0,1)*’3"

B 6*F(O,1)*F(O,2)*B**2 + 6*F(O,1)*F(O,2)*B

6*F(O,3)*B) / 3

C(1,2)

2*F(O,1)*F(1,1)*B 2*F(O,2)*F(1,0)*B 2*F(1,2)*B

C(2,1)

F(O,1)*F(1,0)**2g**3 + 5"F(0,1)*F(1,0)**2*B**2

6*F(O,1)*F(1,0)**2*g + 2"F(0,1)*F(2,0)*B**2

6"F(0,1)*F(2,0)*B + 2"F(1,0)*F(1,1)*B**2 6"F(1,0)*

F(1,1)*B 2*F(2,1)*B

C(3,0)

4*F(1,0)**3*B**3 + 18*F(1,0)**3*B**2

20*F(1,0)**3*B + 12*F(1,0)*F(2,0)*B**2- 30"F(1,0)*

F(2,0)*B 6*F(3,0)*B /3

FIG. 4. Output from Method 3

where the Ft(r, s) are defined by

(23) Ft(r, s)x’y’z’ eU’(=’r- ’=
r=O s=O t=O

and the notation (6)t is the falling factorial

(6)o , (6), 6(6)... (6 +), > 0.

From (23) and the fact that foo 1, it is easy to derive the following identities
which permit the computation of F(r, s) for all t, r and s.

Fo(0, 0) 1,

Fo(r, s) O, r + s > O,

Ft(r,s)=O, t> r + s,

F,+ l(r, s)-- i (i + j)fijFt(r -i,s j), r +s > O.
r + Si=oj= 0

SYMBOLIC ALGEBRA SYSTEM 171

For example, we find that

Fo(2, 1) 0,

F1(2, 1) f21,

F2(2, 1) fof + fzofo,

F3(2, 1) 1/2fofo.
Thus

(3 fl)(2 fl)]c2, (v 2)2 -2fl[f2 + (f,oA + fofo,)(3 t)+ f,ofo,

in accordance with (21).

6. Conclusion. Although the need for a program to solve this particular
problem has been obviated by the discovery of the general solution, it is clear
that algebraic manipulation systems--and in particular, procedures for mani-
pulating truncated power series--can greatly simplify the computation ofsolutions
to seemingly difficult problems. Of the three methods described for solving this
particular problem, Method 1, which uses a package specifically designed for
the manipulation of truncated power series, was by far the easiest to derive and
program. Methods 2 and 3 required considerably more work for only a small
improvement in performance. This illustrates the fallacy of using processor time
as the sole measure of the value or quality of an algebraic manipulation system.
More often, the relevant comparison is the ease with which a given problem is
solved, provided the cost is not exorbitant.

Appendix A. Maximum exponents. In order to write ALTRAN programs that
make reasonably economical use of storage, it is sometimes necessary to obtain
tight bounds for the exponents of the indeterminates. This is particularly true
when a large number of indeterminates are present.

It is easy to show by induction from (19) and (20) that the (v),q are "homoge-
neous" in the sense each term satisfies the identities

p q

r=Os=O

P q

Z Z s’e,.s=q, e,,,s<=q,
r=O s=O

where e,s is the exponent of fr.
It follows immediately that in (v)pq,

ma 1,r) max(1,s

Since foo 1, it does not appear formally in any of our computations, and
we take Coo (ALTRAN does not allow maximum exponent declarations to be 0).
The procedure maxexp used in each of our programs is shown in Fig. 5.

It is also easy to show from (19) and (20) that for p + q > 0, the exponent of

fl in Vpq cannot exceed p + q 1. Taking 7 -2fl in (20), we can therefore show
that the maximum exponent of fl in c,q cannot exceed p + q.

172 ANDREW D. HALL, JR.

procedure maxexp pmax, qmax

integer pmax, qmax, r, s

integer array O:pmax, O:qmax exp

dor O, pmax
dos O, qmax

exp (r,s) imin (iquo(pmax,imax(1,r)), iquo(qmax, imax(1,s)))
doend

doend

exp (0,0)

return (exp)

end

FIG. 5. The procedure maxexp

Appendix B. Powering of one-dimensional series. We derive here the formula
attributed to J. C. P. Miller in [8] for powering a one-dimensional series. Using
the previous notation, let

(B.1) v-- Vk2k
k=O

and

(B.2) w v (V)k2k.
k=O

Taking the derivative of w with respect to 2, we have

(B.3) w’ 7v- iv’,

(B.4) vw’ 7v’w.

Replacing v, w, v’ and w’ by their power series representations and equating
coefficients of 2", we have

(B.5) v,(n- i)(ve),_,-- 7 ivi(Vr)n-i,
i=0 i=0

and finally,

(B.6) 0 [(y + 1)i n]vi(V)n_i.
i=0

For n > 0 and vo 4= 0, we can solve (B.6) for (v),. Thus

(B.7) (v), [(y + 1)i n]vi(v),_i,
F//)0

in accordance with (15). For n 0, we obviously have (V)o v.

SYMBOLIC ALGEBRA SYSTEM 173

Appendix C. Powering of two-dimensional series. In a manner similar to that
used in Appendix B, we derive a formula for the powering of two-dimensional
series. Let

(C.1) v-- VpqXqyp
p=O q=O

and

(C.2) w v’= (v)pqxyp.
p=0 q=0

Taking the derivative of w with respect to x, we have

(C.3) w’ 7v- v’,

(C.4) vw’= ywv’.

Replacing v, w, v’ and w’ by their power series representations and equating
the coefficients of xqyp, we have

P q P q

(C.5) 2 Z 1)iJ(q J)(V7)p-i,q-J 7 Z 2 jvij(VT)p-i,q-J
i=Oj=O i=0 j--O

or

p

(C.6) 0 [(7 + 1)j- q]vij(V)p_i,q_j.
i=Oj=O

Unfortunately, (C.6) is trivial for q 0. However, by repeating the above process
using derivatives with respect to y, we obtain

p q

(C.7) 0 [(7 + 1)i p-]vij(V’)p_ i,q- j.
i=Oj=O

Adding (C.6) and (C.7), we get
p q

(C.8) 0 [(y + 1)(i + j) -(p / q)lvij(l)7)p_i,q_j.
i=oj=o

Now for p + q > 0 and Voo 0, we can solve (C.8) for (v)pq. Thus
P qo o [(7 + 1)(i + j) -(p + q)-lvij(v’)p_i,q_ J,(C.9) (V)Pq (P + q)Voo i= j=
i+j=/:o

in accordance with (20). For p + q 0, we obviously have (V)oo Vo.
REFERENCES

[1] R. A. HANDELSMAN AND J. S. LEW, Analytical evaluation of energy eigenvaluesfor a class ofanhar-
monic oscillators, J. Chem. Phys., 50 (1969), pp. 3342-3354.

[2] J. S. LEw, Problem 3--Reversion ofa double series, SIGSAM Bull. 23, 1972, pp. 6-7.
[3] A. J. GOLDSTEIY AYD A. D. HALL, Solutions to a problem in power series reversion, SIAM J. Math.

Anal., 6 (1975), pp. 192-198.
[4] W. S. BROWy, ALTRAN User’s Manual, Bell Telephone Laboratories, Murray Hill, N.J., 1971;

2nd ed., 1972.

174 ANDREW D. HALL, JR.

[5] A. D. HALL, ALTRAN Installation and Maintenance, Bell Telephone Laboratories, Murray Hill,
N.J.,. 1971; 2nd ed., 1972.

[6] R. Loos, A user’s solution of Problem #3 with REDUCE 2, SIGSAM Bull. 26, 1973, pp. 12-14.
[7] J. FITCrI, A solution to Problem #3, SIGSAM Bull. 26, 1973, pp. 24-27.
[8] P. HENRICI, Automatic computation with power series, J. Assoc. Comput. Math., 3 (1956), pp. 10-15.

SIAM J. COMPUT.
Vol. 4, No. 2, June 1975

MATRIX FACTORIZATION OVER GF(2) AND
TRACE-ORTHOGONAL BASES OF GF(2n)*

ABRAHAM LEMPEL"

Abstract. The main result of this paper is a theorem showing that every binary, symmetric matrix
A can be factored over GF(2) into A BB’, where the number of columns of B is bounded from below
by either the rank p(A) of A, or by p(A) + 1, depending on whether at least one, or none, of the main-
diagonal entries of A is nonzero. An algorithm for a minimal factorization of a given matrix A and
an application of this result for finding a trace-orthogonal basis of GF(2n) are presented.

Key words, matrix factorization, trace, trace-orthogonal basis, finite fields

1. Statement of the main result. Throughout this paper, all matrix oper-
ations and concepts such as rank, linear dependence, etc., are taken over the
finite field of two elements GF(2).

Let A (Aj) be a symmetric matrix of rank p(A) and let

if Aii 0 for all i,
(A)=

0 otherwise.

A matrix B is called a factor of A if A BB’, where B’ is the transpose of B; B is
called a minimalfactor of A if no factor of A has fewer columns than B. The number
of columns of a minimal factor of A will be denoted by/z(A). The main result can
now be stated as follows.

THEORFM 1. Every binary, symmetric matrix A has a factor over GF(2), and

(1) #(A) p(A)+ 5(A).

Theorem consists of two parts: an existence statement and a statement
regarding the number of columns of a minimal factor. The existence part is
proved in 2 by exhibiting a simple construction which always results in a so-
called elementary factorization. In 3 we derive an algorithm for reducing an
elementary factor of a nonsingular matrix A into a minimal one and thereby
validate (1). In 4 we extend the results of 3 to the case of singular matrices A.
A special case of the main result is discussed in 5, where it is shown that ever
finite extension of GF(2) contains a trace-orthogonal basis.

2. Elementary faetorization. Consider a symmetric matrix A of order n, and
let N {1, 2,..., n}. We define a subset N of 5/and a set N2 of ordered pairs
(i, j), < j, from N as follows:

NI ={kglj=l AkJ--1 t
N: {(i, j)[i, j N, < j, and Aij 1}.

A k-column, k N, is a binary column of n rows with a 1 in row k and zeros

* Received by the editors July 20, 1973, and in revised form July 8, 1974.

f Sperry Rand Research Center, Sudbury, Massachusetts. Now at Department of Electrical
Engineering, Technion-Israel Institute of Technology, Haifa, Israel.

175

176 ABRAHAM LEMPEL

elsewhere. An (i,j)-column, (i,j) N2, is a binary column of n rows with a in
rows and j and zeros elsewhere. The existence part of Theorem 1 is established
by the following lemma.

LEMMA 1. Let E be a matrix of n rows and INll + [N21 columns such that E
contains one k-column for each k N and one (i,j)-column for each (i, j) N2.

Then E is a factor of A.
The validity of this lemma is a straightforward consequence of the definitions

of the sets N and N2, and hardly needs a formal proof. Before going through
whatever proof is necessary, we offer the following example.

Example 1. Let

0

0 0 1

0

0

We have N {1,3} and N2 {(1, 2), (1, 3), (2, 4), (3, 4)}. Hence

0 0 0

0 0 0 0
E--

11O0 0 0

0 0 0

and the reader can easily verify that A EE’.
To verify the lemma, one readily observes that for - j,

,[if E contains an (i, j)-column,
(EE’), EE

0 otherwise.

Hence for 4: j, Ai (EE’)ij.
The main-diagonal entries of EE’ are given by

Now, Ekj iff one of the following three alternatives holds:
(i) the jth column of E is a k-column;

(ii) the jth column of E is an (i, k)-column, < k;
(iii) the jth column of E is a (k, j)-column, k < j.
Alternative (i) holds iff j Akj 1. The contribution (if any) of (i, k)-columns

to the sum of row k is equal to < k Aik’ and that of the (k, j)-columns is equal to

Zj> k Akj" Since Aik Aki we have

(EE’)kk= E Akj + E Aki + E Aki= Akk’
i<k j>k

which completes the proof.
In the following section we derive a procedure for reducing an elementary

factor E of A to a minimal one.

MATRIX FACTORIZATION 177

3. Minimal factorization. Let r(B) and c(B) denote, respectively, the number
of rows and columns of a matrix B. Let u denote an all-1 column whose number
of rows r(u) is implicitly specified by the context in which it is used; e.g., in Bu,
r(u) c(B).

LEMMA 2. If B is a factor of A, then

(2) c(B) >= p(A) + 6(A).

Proof. Clearly, c(B)>__ p(B). Moreover, since Akk jBkj, and, by the
definition of 6(A), Bu 0 iff 6(A) 1, it follows that c(B) 6(A) >= p(B). Since
p(B) >= p(A), we obtain c(B) 6(A) >= p(A). Q.E.D.

In Lemma 2, we have shown that 6(A) + p(A) is a lower bound on #(A), the
number of columns in a minimal factor of A. The following lemmas are needed
to establish a procedure for achieving this bound.

LEMMA 3. Let Z be a binary matrix such that Zu 0 and c(Z) is even. Let
Z + xu’, where x is an arbitrary binary vector with r(x) r(Z). Then

(3) ZZ’= ZZ’.

Proof. We have

22’= ZZ’ + Zux’ + xu’Z’ + xu’ux’.

Since Zu- 0, also u’Z’= O. Since r(u)= c(Z) is even, u’u 0 and, hence, (3)
holds. Q.E.D.

LEMMA 4. If A is nonsingular, if B is a factor of A, and c(B) > p(A) + 6(A),
then B contains a proper subset of columns whose sum is zero.

Proof. It is clear that if A BB’ and A is nonsingular, then p(A)= p(B).
With c(B) > p(A) + 6(A), we obtain p(B) + 6(A) < c(B). Hence, independently of
the value of 6(A), the columns of B are linearly dependent. Furthermore, if
6(A) 1, any subset of p(B) + 1 columns of B is proper and linearly dependent.
Since over GF(2) every set of dependent columns contains a subset which sums
to zero, the lemma is valid when 6(A) 1. Now, if 6(A) 0, then Bu v O, but,
since the columns of B are still dependent, there must be a proper subset of
columns of B whose sum is zero. Q.E.D.

It follows, that under the conditions of Lemma 4, B can be partitioned
(possibly, after an appropriate reordering of columns, which does not affect the
product BB’) as B IF
(4)

(5)

and

(6)

Let

(7)

where [G

G], where

c(F) >

c(G) >

Gu O.

G if c(G) is even,
Z=

[G 0] ifc(G) isodd,

0] is the matrix obtained by adjoining an all-zero column to G. Clearly,

178 ABRAHAM LEMPEL

ZZ’ GG’, and hence

is a factor of A, with

and c(Z)is even.

B* IF Z]

Now, let F and Z be the first columns of F and Z, respectively; let

(10) x F + Z

and let

(11) Z Z + xu’.

By Lemma 3, ’ ZZ’, and therefore

(12) /=[F 2]
is a factor of A.

Observing now that for 2, the first column of 2,

Z Z + X Z -- F -t- Z F1,

it follows that the joint contribution of F and 21 to the product//’ is null, and
hence the matrix obtained by deleting F and 2 from/ is also a factor of A.
Reviewing the transformation of the given factor B into/, as described above,
we observe that/ has one or two columns fewer than B, depending on whether
c(G) is odd or even, respectively. Thus the net effect of the transformation is a
strict reduction in the number of columns, and we have just proved the following
lemma.

LEMMA 5. If A is nonsingular, if B is a factor of A, and c(B) > p(A) + fi(A),
then there exists a factor B of A such that c(B) < c(B).

This concludes the proof of Theorem for the case when A is nonsingular.
The existence part of the theorem is covered by Lemma 1, and the minimality
part is covered by Lemma 2 and Lemma 5. Before proceeding to prove the singular
case, we summarize the main steps of the minimal factorization procedure for a
nonsingular matrix A.

Step 1. Find the elementary factor E of A according to Lemma 1. If c(E)
(A) p(A) + 6(A), stop; otherwise, set B E and proceed to Step 2.
Step 2. Find a proper subset of columns of B whose sum is zero, call the

submatrix formed by these columns G, and partition B as B IF G]. Go to
Step 3.

Step 3. Substitute Z for G, according to (7), to obtain B* IF Z]. Set
x=F +Z and replace each column Z) of Z by)=Z)+x, to obtain
/= IF ,. Go to Step 4.

Step 4. Delete F and 2t from/ to obtain the matrix/. If c(/) =/(A), stop;
otherwise, set B =/ and go to Step 2.

Step of this procedure was illustrated in Example 1. In the following ex-
ample we carry out the rest of the procedure to obtain a minimal factorization.

MATRIX FACTORIZATION 179

Example 2. For the matrix A of Example 1, we have p(A) 4 and 6(A) O.
Since c(E) 6 > t(A) 4, we apply Step 2. It is easy to see that the last four
columns of E sum to zero. Hence

0 0 0

0 0 0 0
F and G

110 0 0

0 0 0 0

since c(G) is even, Z G and

Thus

X

0

0 0

with 21 F1. Deleting F1 and 21, we obtain

0 0 0

B
0

0

with c(/) 4 p(A). The reader can easily verify that is indeed a factor of the
given matrix A.

4. Minimal factorization of singular matrices. Consider a singular, symmetric
matrix A of order n and rank p(A). There exists a permutation matrix P such that
PA is of rank p(A) and the first p(A) rows of PA are independent. Postmultiplying
PA by P’ yields a symmetric matrix A* which can be partitioned as

EL ;1,(13) A*= PAP’
M’

where L L’, K K’ and

(14) r[L M] p[L M] p(A*) p(A).

180 ABRAHAM LEMPEL

Hence there exists a nonsingular transformation matrix

such that

Thus

(17)

and

(18)

SL+M’=O

SM+K=O.

From (17), since L is symmetric, we obtain

(19)

Equations (16) and (19) imply

LS’+M=O.

and, since T is nonsingular,

(21) p(A) p(A*)= p(TA*T’)= p(L).

Thus L is a nonsingular symmetric matrix and, by Lemmas 1, 2 and 5, L has a
factor H such that

Hence

(22) c(H) p(L) + 6(L).

Observing that

(23) T-1 T

and

(24) p-1 p,,

we obtain from (13), (20), (23) and (24)

(25) A P’A*P= P’T[O01T’P.
Substituting HH’ for L in (25), we have

(26) A P’T [H’0] T’P.
0

MATRIX FACTORIZATION 181

is a factor of A, and

(28) c(B) c(H) p(L) + b(L).

Since p(L) p(A), to complete the proof of Theorem for the singular case, it
remains to show that

(29) 6(L) 6(A).

To this end, we first observe that since 6(A)= 6(A*), (29) is valid iff 6(L)=
implies 6(K) (see (13)). Because, if 6(L) 0, then L has a nonzero entry on
its main diagonal and so does A, whence 6(A) 0. If 6(L) 6(K) 1, then both
L and A have an all-zero main diagonal, and also 6(A) 1.

(30) S M’L-

and

(31) K SM M’L-1M.

Equation (31)can be rewritten as

(32) K RLR’,

where R M’L-1. From (32) we have

(33) Kii Z RijRikLjk
k

Since Ljk Lkj and summation is mod 2, the double sum of (33) reduces to

(34) Kii E RLjj RijLjj.

It is clear from (34) that if Ljj 0 for all j, then Ku 0 for all i, and hence 6(L)
implies 6(K) I. This validates (29) and thus completes the proof of Theorem I.

In summary, to find a minimal factor of a singular, symmetric matrix A, we
have to find first a permutation matrix P which transforms A into A* according
to (13). Then we find a minimal factor H of L, according to the procedure of 3,
in terms of which a minimal factor of A is given by (27), or more explicitly, by

B=P’ =P’ =P’
M’L-1 M’L-1H M’(H- 1)

For instance, if

then

0

A= 0

0

1 0

182 ABRAHAM LEMPEL

and

Here

and

0

5. Trace-orthogonal bases of GF(2"). An interesting application of Theorem
and the minimal factorization procedure is a method offinding a trace-orthogonal

basis for the elements of the field GF(2"). The trace of GF(2") is defined by
n-1

i=0

A basis f {o9, co2,
basis (in short, TOB) if

(36)

and

(37) T(coicoj) 0

co,} of GF(2") over GF(2) is called a trace-orthogonal

T(coi) Vco ff

’co co ff =/= j

Theorem 1, as subsequently shown, guarantees the existence of a TOB in GF(2")
for every positive integer n. Before we show this, it might be helpful to present
first a brief review of some well-known [!, [2], [3] properties of the trace operator
T and its connection with maximal-length sequences (in short, M-sequences)
from a linear shift register. Recalling that [4] GF(q) iff q and that over
GF(2) (+ fl)2 (x2 nt f12, one can readily verify that for all , /3 GF(2") and
a, b GF(2), the following properties hold:

(38) T() e GF(2),

(39) T(2) T(),

(40) T(ax + b)= aT(x) + bT().

Let 7 be a primitive element of GF(2"), i.e., the multiplicative order of 7 is
p 2"-1, and let g(x)= ’=o gixi be the minimal polynomial of 7-1 (the
inverse of 7, which is also primitive). If

(41) ak= T(Tk), 0<= k < p

it is well known [2], [3] that the sequence {ak} is a binary M-sequence of period

MATRIX FACTORIZATION 183

p, satisfying the linear recursion

(42) giak- O
i=0

Let m be an integer such that n __< m __< p, and let

(43) Ak (ak, ak+ ak+,,-1), 0 <= k < p,

where the index of ai is taken mod p.
It has been established [5] that the p m-tuples Ak, 0 --< k < p, and the all-

zero m-tuple Z form a field, isomorphic to GF(2"), under componentwise mod 2
addition and multiplication defined by

AkZ ZA Z, 0 k < p,

ZZ Z,

AiA= Ai+, 0<= i,j < p,

where, again, all indices are taken mod p. The one-to-one correspondence be-
tween m-tuples, n < m =< p, and the elements of GF(2") expressed as powers of
the primitive element 7 is

Ak--7 0 < k < p
(44)

Z --, 0o

Indeed, applying recursion (42) to the m-tuples Ak, we obtain

(45) giAk_i O.
i=0

k- iLetting Ak we have

0-- gi])k-i=])kgi-i--])kgi(-l)i
i=0 i=0 i=0

which is consistent with the assumption that g(x) is the minimal polynomial for
-1

7
Now, let m p and let M (Mij) be the square matrix of order p defined by

(46) Mij a + J, 0<= i, j < p.

It is easy to see that the kth row of M is the p-tuple Ak, 0 _<_ k < p, and that M is
symmetric. Since the rows of M represent the nonzero elements of GF(2"), its
rank is

(47) p(M) n

and, by (45), any n successive rows of M span the rest of its rows. By (39) and (41),

(48) a a2k, 0 <= k < p,

and since a2k Mkk the sequence of entries on the main diagonal ofM is identical

184 ABRAHAM LEMPEL

with {a}. Thus

(49) (M) 0,

and, by Theorem 1, there exists a factor B of M, i.e.,

(50) BB’= M

with

(51) c(B) n.

It is clear that the n rows of B’ form a basis for GF(2") since they span every row
of M. We proceed to show now that this basis is actually a TOB.

Let fl (O)o, o1, ..., %_ 1)’ be the vector of n elements of GF(2") corre-
sponding to the rows of B’. Since each o) is expressible as a power of the primitive
element y, we may write

(52) co 7e’, 0 =< n 1, 0 __< ei < P.

Substituting 7
k for the kth row of M, we can

e

(53) B

rewrite (50) as

70

7.:

Since for every nth order permutation matrix P, BB’= BPP’B’, there is no loss
of generality in assuming

(54) eo < el < < en-1"

Since the kth row of B’ corresponds to 7e’, which, in turn, corresponds to Ae,,
we have

(55) B (A’oA’e,’" Ae._,).

Thus if B (Bi), it follows from (43) and (55) that

(56) Bij ai+ej 0 <= < p, 0 <= j < n.

From (53) it is clear that for each such that 0 __< < n,

if j,
(57) =’ 0 otherwise.

Combining (56) and (57), we obtain

if/=j,
(58) aei+e’i= 0 otherwise

for all i,j 0, 1,..., n 1.

MATRIX FACTORIZATION 185

Finally, from (41) and (58), we have

if/=j,
0 < <(59) T(Te’+e)’-

0 otherwise,
i,j

Since

and since for j,

T(Te, +*)=

T(72e’)

we have just proved that the n elements

7eo,])e,, 7e,,-,

form a TOB of GF(2"). We summarize this result in the following theorem.
THEOREM 2. For every positive integer n, GF(2") has a trace-orthogonal basis.

The elements forming such a basis correspond to the n columns of a minimal factor
B ofM according to (50).

For practical reasons, it is desirable to have a representation of a TOB of
GF(2") in terms of n binary n-tuples, rather than vectors of length m > n. Since
the one-to-one correspondence (44) is valid for each m in the range n m < p, it
follows that the n-tuples formed by the first n entries of each row of B’ provide
the desired representation. Thus if D’ is the square matrix of order n formed by
the first n columns of B’, then the rows of D’ form a TOB of GF(2").

Let L (L) be the square submatrix of order n occupying the upper left
corner of M. It is clear that

(60) L DD’

and that

(61) Lij T(+ j) 0 i, j < n

Thus, given a primitive polynomial g(x), or the M-sequence {ak T(Tk)}, where
g(7-’) 0, it is easy to construct the matrix L according to (61). Applying the
minimal factorization procedure of 3 to L, we obtain D’ according to (60) whose
rows correspond to a TOB of GF(2").

The practical significance of a TOB for GF(2") is due to the following theorem.
THEOREM 3. If {Wo, ,, "’", W,-, is a TOB of GF(2") and if i e GF(2")

is represented by the n-tuple B (i,o, Bi,,, "’", Bi,,-,), where
n-1

(62) 7= Bijj, O < p,
j=0

then
n-1

(63) T(V’7k) BijBkj.
j=0

Proof. We have

T(7i7k) T Bijfo BkmO) T BijBkm(Djo)
l._j o m=0 _j=0 m=0

186 ABRAHAM LEMPEL

which, by (40), can be written as

n-1 n-1

(64) T(7’7k) B,Bk,,,T(coco,,).
j=Om=0

Since T(cojco,,) 0 ifj 4: rn and T(co) T(coj) 1, (64) reduces to (63). Q.E.D.
Theorems 2 and 3 may find further applications in the analysis and synthesis

of M-sequences, where trace computations are quite prevalent.

REFERENCES

[1] S. W. GOLOMB, Shift Register Sequences, Holden-Day, San Francisco, 1967.
[2] R. GOLD, Characteristic linear sequences and their costfunctions, SIAM J. Appl. Math., 14 (1966),

pp. 980-985.
[3] A. LEMPEL, ,4tlalysis and synthesis ofpolyn6mials and sequencers over GF(2), IEEE Trans. Informa-

tion Theory, IT-17 (1971), pp. 297-303.
[4] B. L. VAN DER WAERDEN, Modern Algebra, Frederick Ungar, New York, 1953.
[5] T. C. BARTEE AND P. E. WOOD, Coding for tracking radar ranging, Tech. Rep. 318, MIT Lincoln

Lab., Lexington, Mass., 1963.

SIAM J. COMPUT.
Vol. 4, No. 2, June 1975

BOUNDS FOR MULTIPROCESSOR SCHEDULING WITH
RESOURCE CONSTRAINTS*

M. R. GAREY AND R. L. GRAHAMS"

Abstract. One well-studied model ofa multiprocessing system involves a fixed number n of identical
abstract processors, a finite set of tasks to be executed, each requiring a specified amount of computation
time, and a partial ordering on the tasks which requires certain tasks to be completed before certain
others can be initiated. The nonpreemptive operation of the system is guided by an ordered list L of
the tasks, according to the rule that whenever a processor becomes idle, it selects for processing the
first unexecuted task on L which may validly be executed. We introduce an additional element of
realism into this model by postulating the existence of a set of "resources" with the property that for
each resource, the total usage of that resource at any instant of time may not exceed its total availability.
For this augmented model, we determine upper bounds on the ratio of finishing times achieved using
two different lists, L and L’, and exhibit constructions to show that the bounds are best possible.

Key words, scheduling models, graph theory, worst-case analysis, performance bounds

1. Introduction. A number of authors (cf. [123, [16], [7], [3], [11], [4], [5],
[9]) have recently been concerned with scheduling problems associated with a
certain model of an abstract multiprocessing system (to be described in the next

section) and, in particular, with bounds on the worst-case behavior of this system
as a function of the way in which the inputs are allowed to vary. In this paper, we
introduce an additional element of realism into the model by postulating the
existence of a set of "resources" with the property that at no time may the system
use more than some predetermined amount of each resource. With this extra
constraint taken into consideration, we derive a number of rather close bounds on
the behavior of this augmented system. It will be seen that this investigation also
leads to several interesting results in graph theory and analysis

2. The standard model. We consider a system composed of (usually n)
abstract identical processors. The function of the system is to execute some given
set - T .-., T} of tasks. However, - is partially ordered by some relation1- which must be respected in the execution of - as follows:if T - T, then the
execution of T must be completed before the execution of T can begin. To each
task T is associated a positive real number zi which represents the amount of time
T requires for its execution. The operation of the system is assumed to be non-
preemptive, which means that once a processor begins to execute a task T, it must
continue to execute it to completion, zi time units later. Finally, the order in which
the tasks are chosen is determined as follows: a permutation (or list) L {TI,
.., Tr} of - is given initially. At any time a processor is idle, it instantaneously

scans L from the beginning and selects the first task T (if any) which may validly
be executed (i.e., all T -< T have been completed) and which is not currently
being executed by another processor. Ties by two or more processors for the same
task may be broken arbitrarily (since the processors are assumed to be identical).

Received by the editors June 14, 1974, and in revised form August 9, 1974.

f Bell Laboratories, Murray Hill, New Jersey 07974.
Thus, -< is transitive, antisymmetric and irreflexive.

187

188 M.R. GAREY AND R. L. GRAHAM

The system begins at time 0 and starts executing .. The finishing time co
is defined to be the least time at which all tasks have been completed. Of course, co
is a function of L,-, n and the zi. It is known [7] that if -’ { T’I, ..., T’r} with

T’i -<(T) T -< T and z _< i for all and j, and -’ is executed by the system
using a list L’, then the corresponding finishing time co’ satisfies

(1) co’/co =< 2 1/n.

Furthermore, this bound is best possible. Efficient procedures are known [3], [4],
[93 for generating optimal lists when all the are and either - (viewed as a
directed graph in the obvious way) is a tree or n 2. However, Ullman [12] has
recently shown that even the case of n 2 and z 1, 2} for all is polynomial
complete2 and therefore probably has no efficient solution in general.

3. The augmented model. Before proceeding to a description of the new
model we first introduce some notation which will make the ensuing discussion
mathematically more convenient.

For a given list L, let F"- 2L’’) be defined by F(T/) i, +), where
r is the time at which the execution of T was started. Let f: [0, co) 2- be defined
by f(t)= (T -’t F(Ti)}. Thus f(t) is just the set of tasks which are being
executed at time t. The restriction that we have at most n processors can be ex-
pressed by requiring If(t)l <- n for all t [0, co).

Assume now that we are also given a set of resources
and that these resources have the following properties. The total amount of
resource 5i available at any time is (normalized without loss of generality to) 1.
For each j, the task Tj requires the use of 5(T) units of resource at all times
during its execution, where 0 __< i(T) __< 1. For each [0, co), let r(t) denote the
total amount of resource which is being used at time t. Thus

Tiff(t)

In this augmented model, the fundamental constraint is simply this"

r(t) __< for all 0, co).

In other words, at no time can we use more of any resource than is currently
available.

The basic problem we shall consider is to what extent the use of different
lists for this model can affect the finishing time co.

4. Summary of results. There are essentially three results which will be proved
in this paper. They all are derived from the following situation. We assume we
are given a set of tasks Y- {T1, -.-, T}, execution times z, a partial order
on ,, a set of resources (1,"", }, task resource requirements3 (Tj)
and a positive integer n. For an arbitrary list L, let co co(L) be the finishing time
for the (augmented) system of n processors executing - according to list L. Let
co* co(L*) denote the minimum of co(L) over all lists L. (Note that the use of
n >= r processors is equivalent to having an unlimited number of processors

See [10] for a definition of this term.

These are as described in the preceding section.

BOUNDS FOR MULTIPROCESSOR SCHEDULING 189

available, since clearly there can never be more than r processors active at any time.)
THEOREM 1. For 1 },

(2) 09/09* =< n.

THEOREM 2. For {1, 2, ls},’< empty, and n >= r,

(3) o9/o9* __< s + 1.

THEOREM 3. For (l 1, 2, }, "< empty, and n >= 2,

09 <min{n+l 2s+l}(4)
o* ---, s + 2

n

By way of comparison, the following result (now a special case of Theorem 3) is
proved in [7].

THEOREM 0. For ,
09/09* <= 2- 1In.

Furthermore, as in the case of Theorem 0, examples will be given to show that
each of these results is essentially best possible.

Thus the addition of limited resources into the standard model causes an
increase in the worst-case behavior bounds, as might be expected. What is some-
what surprising, however, is the significant effect the partial order - can have on
these bounds. This is in contrast to the previous case of in which the upper
bound 09/09* =< 2 1/n which holds for arbitrary could, in fact, be achieved by
examples with - empty. Also significant is the apparent need for somewhat more
sophisticated mathematical techniques than were required previously.

Proof of Theorem 1. The proof of (2) is immediate. We merely need to observe
that

i=1

since at no time before time 09 are all processors idle when using list L, and the
number of processors busy at any time never exceeds n.

More interesting is the following example, which shows that (2) is best
possible.

Example 1.

L},
ri 1, "i= e > O,

l(Y/)----, 1(//) 1, --__< =< n.
n

-< is defined by

L T,, T,, T,,

for 1 _< <_ n,

L’ I, Tn, T1, Tn).

190 M.R. GAREY AND R. L. GRAHAM

A simple calculation’ shows that

O) r/

Thus
O)* O)’ -4-r/;.

O) n
’tl as 8 -- 0.

O)* +he

Proof of Theorem 2. In this case, we assume [1,2,"", s}, "< is
empty and n _>_ r. The proof will require several preliminary results. The meaning
of undefined terminology in graph theory may be found in [8.

Let G denote a graph with vertex set V V(G) and edge set E E(G). By a
valid labeling L of G we mean a function L’V- [0, oe) which satisfies

(5) for alle= {a,b}eE, L(a) + L(b) >_ 1.

Define the score of G, denoted by S(G), by

S(G) infL {v L(v)},
where the inf is taken over all valid labelings L of G.

LEMMA 1. For any graph G, there exists a valid labeling L’V {0, 1/2, such
that

S(G) L(v).

Proof. For the case of a bipartite graph, K6nig’s theorem [8] states that the
number of edges in a maximum matching equals the point covering number.
Thus for any bipartite graph G, there exists a valid labeling L’V {0, 1} such
that S(G) L(v).

For an arbitrary graph G, we construct a bipartite graph GB as follows" for
each vertex v V(G) we have two vertices vl, v2 e V(G); for each edge {u, v} e E(G)
we have two edges {ul, v2}, {u2, v} e E(G). It is not difficult to verify that S(G)

2S(G) and furthermore, if L" V(GR) {0, 1} is a valid labeling of G, then
L’V(G) ---, {0, 1/2, 1} by L(v) 1/2(L(v) + L(v2))is a valid labeling of G. [

For positive integers m and s, let G(m, s) denote the graph with vertex set
{0, 1,-.., (s + 1)m- 1} and edge set consisting of all pairs {a,b} for which
la-bl >m.

LEMMA 2. Suppose G(m, s) is partitioned into s spanning subgraphs H, 1 <= s.
Then
(6) max {S(Hi)} >= m.

<i<s

Proof. Assume the lemma is false, i.e., there exists a partition of G(tn, s) into
H, 1 <= < s, such that S(H3 < m for <= =< s. Thus, by Lemma 1, for each
there exists a valid labeling L" V(H3 - {0, 1/2, 1} such that

(7) _, L,(v) S(Hi) < m.
vV(Hi)

* The reader will probably find it helpful to construct a timing diagram to understand the behavior
of this (and succeeding) examples.

That is, the cardinality of the smallest set of vertices of G incident to every edge of G.

BOUNDS FOR MULTIPROCESSOR SCHEDULING 191

Let A {al < <ap’Li(aj)<=1/2 for all i, Ni=<s}, and let S* denote= S(Hi). There are three cases.
(i) p =< m. In this case we have S* >__ m(s + 1)- p >= m(s + 1) rn ms,

which contradicts (7).
(ii) m < p <__ 2m + 1. For each edge {aj, am+j}, 1 _<_ j _<_ p m, there must

exist an such that Li(a) + L(a,,+) >_ 1. Thus S* >= m(s + 1)- p + (p m)
ms, again contradicting (7).

(iii) p > 2m + 1. We first note that for each vertex v V(G(m, s)), there exists
an such that L(v) >= 1/2. For suppose L(v) 0 for < =< s. There must be some

aj such that [aj vl => m. But since Li(aj) 1/2 for all i, then Li(aj) -1- Li(l; 1/2 for
all i, which is a contradiction.

For each i, let n denote the number of vertices v such that L(v) 1. Then

since otherwise

I{v’Li(v) > 0}1 < 2m- ni,

Li(v)> ni.1 +(2m- 2ni).1/2= m,
v.V(Hi)

which contradicts (7). Therefore

(8) o ,1 =<
i=1 i=1

Let q denote the number of vertices v such that there is exactly one for which
Li(v) > O. Then

(9) I{v’L(v)> 0}1 2(m(s + 1)- q) + q.
i=1

Combining (8) and (9), we have

(10) q >= 2m + s + ni.
i=1

Of course, we may assume without loss of generality that if Li(v 1, then L(v) 0
for all j i. Hence, by the definition of ni, there must be at least 2m + s vertices,
say b < < bzm +s, such that = Li(bj) 1/2, i.e., for each bj there is a unique
L such that L(bj) 1/2 and Lk(bj) 0 for all k # i. Thus, if [bj bk[m, then for
some i, L(bj)= Lg(bk)= 1/2. Since [bx- b2,,+l >= m, let io be such that Lo(bl)

Lo(b2,,+) 1/2. But, by the same reasoning we must also have Lio(b,,+j Lo(b)
1/2 and Lio(b2m+s Lio(bj) 1/2 for =< j =< m + s. Therefore

S(Ho Lo(V >= (2m +s).1/2>__m,
vV(Hio)

which is a contradiction. This completes the proof of Lemma 2. U
Recall that when is executed using the list L, F(T) is defined to be the

interval [ai, ai + z), where a is the time at which T starts to be executed and

192 M. R. GAREY AND R. L. GRAHAM

ri + zi is the time at which T is finished. Note that because of the way in which
the operation of the system is defined, each ai is a sum of a subset of the rj’s.

We may assume without loss of generality that co* 1. Assume now that
co > s + 1. Furthermore, suppose each ri can be written as ri ki/m, where ki
is a positive integer. Thus k <_ m, since ri <- co* 1. Also, for =< =< s, each
ri(t is constant on each interval [k/m, (k + 1)/m), this value being ri(k/m). An
important fact to note is that since -(is empty and n >= r, then, for t, t2 [0, co)
with t2 > 1, we must have

max {ri(tl) + ri(t2)} > 1.
l<_i<=s

For otherwise, any task being executed at time t2 should have been executed at
time or sooner. Thus, for each i, _< _< s, we can construct a graph H as
follows"

V(Hi) {0, 1, ..., (s + 1)m- 1};
()

Note that if la- bl >= m, then {a,b} is an edge of at least one Hi, __< __< s.

Hence it is not difficult to see that G(m,s) U H. Note that by (11), the mapping
Li" V(Hi) --, [0, oe) defined by Li(a) ri(a/m) is a valid labeling of H. Since G

_
G’

implies S(G) <__ S(G’) and the condition on the ri in (11) is a strict inequality, then
by Lemma 2 it follows that

(12) max 2 ri ax L,(v) > max {S(Hi)} >= m.
k=O

But we must have
(s + 1)m

(13)
m k=0

<= ri(t) dt < 1, <_ <_ s

(s+ 1)m- k
2 r <=m, <=i<=s.
k=0 m

This is a contradiction, and Theorem 2 is proved in the case that ri ki/m, where

ki is a positive integer for =<i=< r. Of course, it follows immediately that
Theorem 2 holds when all the ri are rational. The proof of Theorem 2 will be
completed by establishing the following lemma.

LEMMA 3. Let r (z, zr) be a sequence of positive real numbers. Thenfor
any e > O, there exists z’ (z’, z’r) such that

(i) Irl- zil < e for <= <= r;
(ii) for all S, T

sS tT sS tT

(iii) all rl are positive rational numbers.

BOUNDS FOR MULTIPROCESSOR SCHEDULING 193

Remark. The importance of (ii) is that it guarantees that the order of execution
of the T using the list L is the same for r and r’. Thus if L is used to execute ,,
once using execution times r and once using execution times rl, then the corres-
ponding finishing times o9 and o9’ satisfy Io9 o9’1 =< re. Hence if there were an
example - with o9/o9" > s + and some of the ri irrational, then we could
construct another example ’ by slightly changing the to rational rl so that
the corresponding new finishing times 09’ and 09* satisfy Io9- o9’1 =< re and
Io9" o9"1 =< re, and, therefore if e is sufficiently small, we still have o9’/o9" > s + 1.
However, this would contradict what has already been proved. Lemma 3 is
implied by the following slightly more general result. The proof we give here is
due to V. Chvfital (personal communication).

LEMMA 3’. Let S denote a finite system of inequalities of the form

aix >_ ao or aix > ao,
i=1 i=1

where the ai are rational. Then, for any > O, if S has a real solution (x 1,..., xr),
then S has a rational solution (x’, x’r) with Ixi x’i[< e for all i.

Proof We proceed by induction on r. For r the result is immediate.
Now, let S be a system of inequalities in r > variables which is solvable in reals.
S splits into two classes: So, the subset of inequalities not involving x, and
$1 S So. Each inequality in $1 can be written in one of the following four
ways:

(a) o + Y x __< x,,
i=1

r-1

(b) o + x < x,
i=1

r-1

(c) o + Y ix, >-
i=1

r-1

(d) flo + flixi > x.
i=1

For each pair of inequalities, one of type (a) and one of type (c), we shall consider
the inequality

r-1 r-1

i=1 i=1

Similarly, the pairs of types {(a), (d)}, {(b), (c)} and {(b), (d)) give rise to inequalities
r-1 r-1

(f) o + . ixi < flo + flixi.
i=1 i=1

Let S* be the set of all inequalities of type (e) and (f) that we obtain from
Since by hypothesis, S So 12 $1 has a real solution (xl, "’, x,), then So U S*
has the real solution (xl, "", x_ 1). But So I1 S* only involves r- variables,
so that, by the induction hypothesis, So (.J S* has a rational solution (x, ..., x_
with Ixi- xl < e’ for all and any preassigned e’> 0. Substituting the x into

194 M.R. GAREY AND R. L. GRAHAM

(a), (b), (c) and (d), we obtain a set of inequalities

(g) a’<=x,, b’<xr, c’>_xr, d’>x,,

where the a’, b’, c’ and d’ are rational. Since the xi satisfy (e) and (f), we have a’ < c’,
a’ b’ d’.b’ < c, < d, < Thus for any e > 0, if e’ is chosen to be suitably small,

then there is a rational x’,. satisfying (g) and with]x,- x’,.] < e, completing the
proof of Lemma 3’. This proves Lemma 3, and hence, Theorem 2. F1

The following example shows that the bound in Theorem 2 cannot be
improved.

Example 2.- {T,, T)., Ts+,, T;, Ti,

-<=; n>=s(N+ 1)+1 =r;

1
for < s + 1; z for 1 <= <= sN;

i(Ti) N’ i(Tj) sN’ J :/: i, <= <_ s;

i(Tj) N’ <= j <= sN, <= <_ s;

L (T T’ T’ T2 T’ T T’1, N, N+I, +1, kN+l,

LTklv+2, T(k+ 1)N, +2, N, +

(T’,, T, T;, T1, T, T+,).

It is easily checked that for this case, co s + and co’ + s/N, so that m/co’
(and hence co/co*) is arbitrarily close to s + for N sufficiently large.

Proof of Theorem 3. The proof of Theorem 3 consists primarily of two main
lemmas, each of which gives a bound on co/co* which is best possible for certain
values of s and n. We let 2 denote ordinary Lebesgue measure6 on the real line.

LEMMA 4. For {ll, 2, s} and -, empty,

n+l
co co* co’ l,

2

Proof. Let I {t’lf(t)] 1}. We first show

(14) 2(1) _<_ co*.

Consider the set T of tasks defined by T Ut, f(t). For any pair of tasks T,
T belonging to T, there must exist some k, 1 =< k =< s, such that k(T) + k(T) > 1,
for otherwise, one of those tasks should have been started earlier (unless n 1,
in which case the lemma is trivial). But this implies that in the optimal schedule

Since in all of our applications, the subsets X of [0, co) under consideration are finite unions of
disjoint half-open intervals, then 2(X) is just the sum of the lengths of these intervals.

BOUNDS FOR MULTIPROCESSOR SCHEDULING 195

no two members of T can be executed simultaneously. Therefore we have

o* _-> r => ,(I),
TiT

which proves (14).
To complete the proof of Lemma 4, observe that at least two processors

must be active at each time e i [0, 09) I.
Thus

nco* >= ri >= 22(i) + 2(1) 209 2(1) >= 209 co*,
i=1

and therefore (n + 1)o9" _> 2co. [2
The bound given by Lemma 4 is best possible whenever n <= s + 1, as shown

by the following examples.
Example 3.- To, Tx, T1, Tz, Tz, T x,T,_};

{?,?2,’",s}, 2=<n=<s +1;

’=1/2 l<j<n-l""ro 1, Tj Tj

’(T) n’ < s;

,(T) ,(T,) <_i<_n- 1;

i(Ti) i(TJ) 2n’
:/: j < < s

-<=;

l<j<n-l"

L (T, T’I, T2, T2, "., T,-t, T,_x, To);

L (TO Tx, Tz,..., 7",_, T’x, Tz.,.", T,_a).

It is easily checked that for this case,

n+l
09 co* co’ 1,

2

showing that the bound of Lemma 4 is best possible whenever n =< s + 1. [q

The following example, for the case s + 1 < n =< 2s + 1, is somewhat more
complicated.

Example 4. For suitably small e > 0 and a positive integer k, define

- {To} 1.3 {Tj’I <_ =< n 1,1 =<j =< k} IA {T’j’I __< =< n 1,1 =<j __< k};

= {l,2,’’’,s; S +1 <n<=2s +1; 4 =;
ro =2k; rj=rij= 1, <i<n- 1, <j<k"

i(To) , <= <= s;

196 M.R. GAREY AND R. L. GRAHAM

i(T/s) (n 1)eas_ 1,

;l(Tij) ’2j-1, # i,

-i(Ts + i,j) (n 1)c2s,

(T’i)- eES, # i- s,

l<i<s, l<j<k"

<=l<=s, <=i<n- 1, <=j<=k;

<=i<=n-s- 1, <=j<_k;

<=l<=s, <=i<=n- 1, <=j<_k..

To illuminate the structure of the two lists, L and L’, we describe them in block
form.

L (A1, A2, "’", A, A’I, A2, A_I, Ao),

where

Also

where

A (Bli, B2i,..., Bi), < k;

Bi=(T,T3), _-< i__<k, =<j=<s;

A (B’li, B2i,... B,_ 1,i), <= <= k 1;

Bji=(T’+j,i,T+,i+l), <= i=<k- 1, _<_j=< n- 1;

Ao (To, T+ 1,1, Ts+ 2,1, Tn-1,1, T+ 1,, T+ 2,, T,_ 1,).

L’ (Co, C1, C’1, C2, C’2,’", Ck, Ck),

Co (To);

Ci (Tli, T2i, Tn-1,i), k;

Ci (r’li, rzi,"’, rn-1,i), __< __< k.

It is not difficult to check that when the list L is used, each of the pairs of tasks
given in the sublists Bji and B) will be executed simultaneously on the first two
processors, with the other n 2 processors remaining inactive during that time.
After all such pairs have been executed, the tasks on sublist Ao will be started.
This results in

co=k(n- 1)-(n-s- 1) +2k---k(n +l)-(n-s- 1).

When the list L’ is used, each of the sets of n tasks given in the sublists Ci and
CI, will be executed simultaneously on processors 2 through n, with processor
executing To. Thus o* co’ 2k. We then have

co n +1 (n-s-l)
co* 2 2k

which is arbitrarily close to (n + 1)/2 for k sufficiently large.
We now prove an upper bound for o/co* which is best possible whenever

n>2s +1.
LEMMA 5. For {1,2, }, " , and n >__ 3,

co 2s+l"
<s+2

(D*-- n

BOUNDS FOR MULTIPROCESSOR SCHEDULING 197

Proof Suppose that we have a counterexample to the lemma. By Lemma 3,
we may assume all the zi are rational, i.e., there exists a positive integer m such that
for each i, =< =< r, there exists an integer ki satisfying zi ki/m. Without loss
of generality, we may also assume that co* 1. Thus each ki satisfies 1 _< ki _-< m
and co co(L) > s + 2 (2s + 1)/n.

Consider the operation of the system using the list L. Let I {t
1}, I’ {t e [0, co)’lf(t)l n} and let i [0, co) I’. By the proof of Lemma 4,

2(I) __< 1. Since at least two processors are active at each time e i,

F/ T H" (It) -- 2(1) + 2(co 2(1)- 2(I’))
i=1

(n 2)2(I’) + 209 1,

or

(15) &(I’)
n +l-2co
n-2

Since co > s + 2 (2s + 1)/n, we then have

2(i)-- co 2(I’) => co
n +l-2co

n-2

(16) > s + 2
2s+ 1 n+l-2(s+2 2s+l)n

n n-2

=s+l.

Now observe that for any l, t2 ff [satisfying 2 => 1, there must exist
an i, __< __< s, such that

(17) ri(tl) + ri(t2) > 1,

for otherwise, some task being executed at time tz should have been started at
time t or earlier. Recalling that i is a collection of intervals, each having the form
[k/m, (k + 1)/m) for some integer k, let ao < a < < ap be integers such that

m

Notice that (16) implies that p => (s + 1)m. For each i, N N s, we construct a
graph H as follows"

V(Hi) {0, 1,2,..., (s + 1)m- 1};

{u, v} is an edge of H iff
,m] +r’ > 1.

Note that lu vl m implies la, al m, which, by (17), implies that {u, v} is
an edge of at least one H, 1 N N s. Hence it is not difficult to see that G(m, s)
U H. The same reasoning used in the proof of Theorem 2 can be used now to

198 M.R. GAREY AND R. L. GRAHAM

show that, for some i, <_ s, S r(t)dt > 1, which contradicts the assumption
that co* 1. This completes the proof of Lemma 5. V1

Combining Lemmas 4 and 5, we obtain Theorem 3. It remains to be shown
that Lemma 5 is best possible whenever n > 2s + 1. This is done by the following
example.

Example 5. For suitably small e > 0 and a positive integer k’, let k k’n,
and define

e, e(n 1)i-k, <= <__ k;

,- {To} I,.J {To.1 <= <= n 1,1 <=j <= k};
,-- {l,2,’’’,,_s}; n > 2s + 1; -< ;
ro k; zij= 1, <= i< n- 1, <=j<= k;

i(To) el, <= <= s;

i(T0) (n- 1)sj, _< i__< s, =<j=< k;

,(To)-ej, l=/=i, <=ls, <=i<=n- 1,

As in Example 4, we again describe the lists L and L’ in block form.

where

Also

L (A 1, A2, A,_ 2s- 1, B1, B2, B, C),

A (T2s+i,1 T2s+i,2,’", T2s+i,k), <=i<=n-2s-1;

B, (TI, T+,,2, g/2 Ts+,,3,... Ti,k_ 1, gs+/,k), <i<s;

C (To, Ws+ 1,1, Ws+ 2,1, W2s,1, Wlk, g2k,’’’, gsk).

L’ (To,D1,D2, ..., D,),

where

D, (Tli, T2,..., T,_l,i), < _<_ k.

It is not difficult to check that

and co*

co=k’(n-2s- 1) +(k- 1)s +k=(s +2)k’n-(2s +l)k’-s

co’= k k’n. Thus

co 2s+l s
=s+2

co* n k’n’

which is arbitrarily close to the bound of Lemma 5 for k’ sufficiently large.

5. Concluding remarks. The results which have been discussed in this paper
lead naturally to a number of possible extensions, several of which we mention
here.

We first note that for the case {’1}, n > r, and general -, Example
may be used to show that co/co* can be arbitrarily large.

BOUNDS FOR MULTIPROCESSOR SCHEDULING 199

Regarding Lemma 1, an algorithm can be given which determines S(G) (and
a corresponding valid labeling as well) in at most

O(I EI x/jl VI
operations. A similar algorithm may be used for the following dual problem"
given a graph G, determine

max L*(e),
L* eE

where the max ranges over all functions L* "E ---, [0, oe) such that for all v e V,

L*(e’)<= 1,
e’ E(v)

where E(v) is the set of all edges incident to v. It would be interesting to investigate
the analogous questions for hypergraphs.

The following result follows more or less directly from Lemma 2.
COROLLARY. For a positive integer n, let f’O, n + 1) [0,), <= <= n, be

(Lebesgue) measurable functions satisfying the following condition"
If t, 2 [0, n + 1) with [t t2[>_ 1, then

max {f/(t,) +f/(t2)} >_- 1.
<i<n

Then

max | f/d2>__ 1.
<=i<_n][O,n+ II

It is interesting to note that, at present, no purely analytical proof of the
Corollary is known.

The techniques of Lemma 2 may also be used to derive several new results
in graph theory. In particular, it follows that if m is a positive integer and G,,
denotes the graph with vertex set

and edge set

V,, {0, 1,..., 3m- 1}

E,. {{a,b}
_

Vm’min {a b,3m a + b} >= m}.

then any 2-coloring of E,, contains m disjoint edges having the same color.
The corresponding general conjecture is that for a fixed s > !, if we take

and

V,,= {0,1, (s +l)m- 1}

E,. {{a,b}

Vm’min {a b,(s + 1)m- a + b} >__ m},

then any s-coloring of E,, contains m disjoint edges having the same color. At
present, this conjecture is still open. If true, it is close to being best possible,
since there exist m-colorings of the edges of the complete graph on (s + 1)m s
vertices which have no set of m disjoint edges having a single color (cf. [1], [2]).

200 M.R. GAREY AND R. L. GRAHAM

Finally, it is natural to inquire under what restrictions do there exist efficient
algorithms for determining optimal schedules for problems of the type considered
herein (cf. e.g., [6], [12]).

Acknowledgments. The authors take pleasure in acknowledging the resourceful
suggestions of S. A. Burr, J. C. Cheng, V. Chvital, D. S. Johnson, Shen Lin, and
H. S. Witsenhausen. The introduction of limited resources into scheduling
problems of this type was first suggested to the authors by E. Arthurs.

REFERENCES

[1] S. A. BURR, Generalized Ramsey theory for graphs--A survey of recent results, Graphs and
Combinatorics, R. Bari and F. Harary, eds., Lecture Notes in Mathematics No. 406,
Springer-Verlag, Berlin, 1974, pp. 52-75.

[2] E. J. COCKAYNE AND P. J. LORIMER, The Ramsey graph numbers for stripes, Univ. of Auckland
Math. Dept. Rep. Ser. No. 37, Auckland, New Zealand 1973.

[3] E. G. COFFrVIAN AND R. L. GRAHAM,, Optimal schedulingfor two-processor systems, Acta Informatica
(1972), pp. 200-213.

[4] M. FuJII, T. KASAMI AND K. NINOMIYA, Optimal sequencing of two equivalent processors, SIAM J.
Appl. Math., 17 (1969), pp. 784-789.

[5] ., Erratum: Optimal sequencing of two equivalent processors, Ibid., 20 (1971), p. 141.
[6] R. L. GRAHAra, Bounds on multiprocessing anomalies and related packing algorithms, AFIPS

Conf. Proc., 40 (1972), pp. 205-217.
[7] , Bounds on multiprocessing timing anomalies, SIAM J., Appl. Math., 17 (1969), pp. 263-

269.
[8] F. HARARY, Graph Theory, Addison-Wesley, Reading, Mass., 1969.
[9] T. C. Ht, Parallel scheduling and assembly line problems, Operations Res., 9 1961), pp. 841-848.
10] R. M. KARP, Reducibility among combinatorialproblems, Complexity ofComputer Computations,

R. E. Miller and J. W. Thatcher, eds., Plenum Press, New York, 1972.
[11] M. T. KAUFMAY, Anomalies in scheduling unit-time tasks, Stanford Electronics Lab. Tech. Rep.

34, 1972.
[12] J. D. ULLMAN, Polynomial complete scheduling problems, Computer Science Tech. Rep. 9, Univ.

of Calif., Berkeley, 1973.

SIAM J. COMPUT.
Vol. 4, No. 2, June 1975

THE COMPUTATION OF POWERS OF SYMBOLIC POLYNOMIALS*

ELLIS HOROWITZf AND SARTAJ SAHNIZI:

Abstract. Recent results on the computation of powers of symbolic polynomials are reviewed in
perspective. Then a new algorithm is given which computes the nth power of a completely sparse
polynomial using a linear number of multiplications. This is followed by experimental results com-
paring the new algorithm to iteration using both completely sparse and completely dense polynomials
as data.

Key words, polynomial powers, symbolic powers, sparse polynomial powers

1. Introduction. Let P(x, ..., x) be a polynomial in v variables with
integral coefficients. Suppose that d degree (P) in xi, 1 <= <= v, and that all
possible terms of P are present. Then P has (d + 1) terms and is said to be com-
pletely dense. If P has (id + 1) terms _< =< n, then pi remains completely dense
to power n. Using this worst case assumption of polynomial growth, and the
classical polynomial multiplication algorithm [4, p. 362], Heindel in [2 showed
that computing P" by iteration was faster than using the binary method (binary
expansion of the exponent, see 3, p. 399]). Briefly reviewing that result, we see
that it follows from the completely dense assumption that the cost for iteration
is asymptotically

(d -4- 1)(id / 1) < ((n 1)d / 1)O(d / 1)(n 1) < n+(d + 1)2,
<i<n--1

while the cost for the binary method is bounded by

(2id + 1)2 < (n(d + 1))2v.
< log2n

Thus the ratio of these methods, iteration/binary n+ 1/n2V-- 1,/n 1, and so
for v > variables, iteration becomes asymptotically superior. This was a some-
what nonintuitive result in the sense that the binary method requires only
O(log2 n) polynomial multiplications, whereas iteration requires O(n- 1), and
therefore one might naturally conclude (e.g., see Knuth [4]) that binary would
be better.

The binary method and iteration have one thing in common; namely, they
are whole polynomial methods. This is an intuitive idea by which we mean that
at every step where a multiplication is done, it is done with polynomials. There
are however, other methods for computing powers which do not rely on this
whole polynomial property. One such approach, based upon evaluation and
subsequent interpolation, was presented by Horowitz [3]. Using the previous
assumptions, that method will compute P" in time proportional to (n(d + 1))v+ 1.
At the heart of this algorithm is a routine which computes the nth power of an
integer using the binary method. Hence this algorithm, in addition to having a

* Received by the editors October 1, 1973, and in revised form June 4, 1974. This work was sup-
ported by the National Science Foundation under Grant GJ-33169.

" Computer Science Program, University of Southern California, at Los Angeles, Los Angeles,
California 90007.

:1: Department of Computer, Information and Control Sciences, University of Minnesota,
Minneapolis, Minnesota 55455.

201

202 ELLIS HOROWITZ AND SARTAJ SAHNI

better asymptotic time, showed that one could operate on multivariate poly-
nomials via some transformational technique and return the problem of com-
puting polynomial powers to computing powers of single precision numbers.

At present, the method which has the best asymptotic computing time is
obtained by using the fast Fourier transform and its convolution property; see
Pollard [5].

Table gives the asymptotic computing times for four "polynomial power"
algorithms applied to dense polynomials. The work factor gives the amount of
work per term in the answer that each method requires. A work factor of would
be optimal; however, the best known is log(n(d + 1)). The asymptotic com-
puting times for the first 3 methods were obtained assuming the classical multi-
plication method is used. These could be reduced by using faster polynomial
multiplication methods, though the direct use of the fast Fourier transform
(FFT) would still yield the lowest upper bound.

TABLE
Asymptotic times, P" completely dense

Method Time Terms Work factor

Binary nZV(d ql_ 1)2v nV(d + 1) * n(d + 1)
Iteration n+l(d -t- 1)2v n(d + 1)"* n(d + 1)
Eval-Interp n+l(d + 1)v+l n(d + 1)* n(d + 1)
FFT n(d+ 1)log(n(d+ 1))=nV(d+ 1)* log(n(d+ 1))

The reliance on the completely dense model alone is somewhat limited
because of the exponential growth of the number of terms in the answer. Practical
computation dictates that dense polynomials in 3 or more variables can only be
raised to quite small powers, e.g. see [3], before either core or time become
excessive.

Existing algebra systems need to handle multivariate problems, but often
these problems are of a sparse nature. In Ill, Gentleman suggested the definition
for a totally sparse polynomial, the intuitive opposite of the completely dense

t+i-1
case. If P initially has terms and pi has terms, __< < n, then P is

t-1
said to be completely sparse to power n. The motivation for this definition is simply

t+i-1
that for Pi to grow exactly as it must be the case that the fewest

t-1
possible number of terms combine as we compute each new iterate. An example
of such a polynomial is

P(X Xt) X1 -lt- "+" Xt

which is completely sparse for all i. Now in [1, Gentleman gives a result similar
in spirit to Heindel’s" for completely sparse polynomials, computing P" by
iteration is faster than using the binary method. The computing time for iteration

POWERS OF SYMBOLIC POLYNOMIALS 203

+ i- It + n-
=t --t.

<i<n-

No closed formula for the time using the binary method has been obtained, but
in 1] it is shown that the ratio of the costs of binary to iteration needed to com-
pute pZn, where P is completely sparse and initially has terms, is given by

2n n
+ O(t-),

This implies that the binary method is more costly by at least a binomial factor.
In this paper, we will present a new algorithm for computing a power of an

arbitrary polynomial. Its motivation comes from the definition of a completely
sparse polynomial, and its computing time has a logarithmic work factor. Thus,
this new method corresponds in complexity to the use of the FFT for computing
powers of completely dense polynomials. We then present empirical results com-
paring this new algorithm to iteration.

2. The algorithm. First let us consider a specific instance of a completely
sparse polynomial, namely,

P(x 1, Xt) X -’t- nt- Xt.

By the multinomial expansion theorem (e.g., see [6, p. 64]), it follows that

(2.1) (x + -- xt)n__ , n
X

nl+’"+nt=n Fll, Flt

where the ni are integers in the range 0 ni =< n. The number of distinct t-tuples
t+n-1

which sum to n is precisely corresponding to the definition of a
t-1

completely sparse polynomial. The definition of the multinomial coefficient is

n F/!

, t !
Moreover, we emphasize that each time the n change, the next multinomial co-
ecient may be obtained from the previous one using one multiplication and
one division, i.e.,

(2.2)
n

nl,...,ni- 1,ni+ + 1, F/t

Thus, if we generate the t-tuples in lexicographic order, it requires 2[
t-1

coefficient multiplications to compute the nth power of P(xl,..., x,). Un-
fortunately, for general sparse polynomials, it becomes necessary to sort the
terms thus adding a log factor to the computing time.

204 ELLIS HOROWITZ AND SARTAJ SAHNI

The general algorithm begins with an arbitrary polynomial, say

P(Y,’",Y)= _, aiy’’’’y
l<_i<_t

in v variables with nonzero terms. Conceptually, the method then proceeds by
setting

xi aiy" yi, <_ <_

producing the new polynomial

P(x x,) x + +
The nth power of P is computed in linear time and the substitutions back to the
Yi followed by a sort increase the bound by a log factor. This algorithm is now
given in complete detail.

The input polynomial with terms is assumed to be stored term by term in
the array TERM(I’t). The array N(1 "t) contains the exponent vector and is
initialized to"

N(1) +- n, N(2) - N(t) +- 0;

and the global variable POW is set to (TERM(I))". is a global variable whose
value is the number of terms in the input polynomial. Then the following routine
is called using

(2.3) MULT(TERM(1)", 1, 1).

3.
4.
5.
6.
7.
8.
9.

10.
11.
12.
13.
14.
15.
16. end
17. end POWER

ALGORITHM MULT(POL,, COEF, i).
Input" POL, a multivariate polynomial

COEF, an integer
POW, a global variable initialized to (TERM(I))"
i, a nonnegative integer

Output" the global variable POW is set to" (TERM(l) + + TERM(t))"
1. if i- then/* move forward */

do; do while (N(i)- 0);
N(i) N(i)
N(i+ 1)-N(i+ 1)+ 1;
COEF - COEF, (N(i) + 1)/N(i + 1);
POL (POL/TERM(i)) TERM(/+ 1);
POW - POW + POL COEF;
CALL MULT (POL, COEF, 4- 1)"

end;
if i= then return

else do/, backtrack ,/
N(i) N(i 4- 1);
N(i / 1) O;
return
end;

POWERS OF SYMBOLIC POLYNOMIALS 205

We now show that algorithm MULT when called as in (2.3) with POW
(TERM(I))" and N(1) n, N(2) 0 results in the desired solution POW
(1 _<i_<t TERM(i))". It is clear that if all the terms of the sum in (2.1) are gener-

ated and then TERM(i) is substituted for xi, we obtain the desired result.
Associated with each term in the sum for (2.1) is a power sequence (n l, n2, ..., nt)

and a coefficient For any power sequence (nl,n2,..., n) and
nl nt

2 =< _<_ t, define the /-prefix to be (nl,..., n_l) and, for 1, the 1-prefix is
(). To see that only correct power sequences are generated and that each such
sequence is generated exactly once, we note that"

(i) Steps 3 and 4, 12 and 13 are the only ones that alter the power sequence.
Both pairs of steps preserve the value of N(i) and maintain N(i) >= 0 (note that
the conditional of step 2 ensures that N(i) 0 when steps 12 and 13 are executed).
Hence only valid power sequences are generated.

(ii) Each time a call to MULT is made, either initially or from step 8, the
i- or (i + 1)-prefix, respectively, is different from all other calls with the same
/-value. Hence each power sequence is generated only once.

(iii) For any/-prefix, a call to MULT results in the generation of all power
sequences with the same/-prefix.

From (2.2) and steps 3, 4 and 5 of MULT, it follows that at all times the

Steps 3, 4 and 6 imply that POL at any time hasvalue of COEF is
N(1) N(t)

the value I-I (TERM(i))". Hence it follows that the routine MULT, when called
as described above, results in the computation of (1

__
TERM(i)).

To get an estimate of the computing time, we note that each call to MULT
from step 8 results in 2 multiplication/divisions (abbreviated 2 M/D) in step 5,
2 M/D in step 6 and another call to MULT. However, each such call results in

t+n-1
the generation of a new term. There are exactly such terms. To corn-

t-1

pute (TERM(1)), log n multiplications are needed. Hence MULT requires

(t+n- 1) t+n-
log n + 4 M/D O M/D.

t-1 t-1

The only other cost to be considered is that of the addition in step 7. The

best way to do this appears to be to just generate all terms, then sort
t-1

them adding together terms with identical power sequences (this will be required
only if the original polynomial P TERM(i) is not sparse to power n). This
sort-add step can be done in

O(t+n-lt_l log(t+n-1))t_l
resulting in an overall computing time of O(Tlog T), where T is the number of
terms in the answer. This is the same as for FFT over dense polynomials.

206 ELLIS HOROWITZ AND SARTAJ SAHNI

For comparison, let us consider computing P" by computing the sequence
p, p2,... pn (i.e., iteration). Then the number of multiplications is

--On
i=1 t-1 t-1

Here, too, a sort-add step is needed, thus adding a log factor to the computing
time. The total computing time is then bounded by the sort-add time, which is

t+n-1
O n logt

t-1

Hence we see that as far as an M/D count is concerned, MULT is optimal
to within a constant factor. It requires about O(n) times fewer multiplications
than iteration.

3. Empirical results. In this section we present the results of several tests
that were made to determine the global efficiency of these 2 algorithms. Though
asymptotic analyses are important, the value of practical testing should not be
underestimated. This is especially true when dealing with symbolic problems,
since the domain of actual computation is often moderately small, thus placing
added importance on constants and less on asymptotic results. All tests were
carried out on an IBM 360/65 using the SAC-1 System which provides, in part,
for arithmetic operations on multivariate polynomials.

Both completely dense and completely sparse polynomials were used as
test data for these algorithms. For completely sparse polynomials in v variables
the polynomials used were

P(xl, xv) xl + + xv,

except when v-- 1, in which case P(xl)= xl + 1. The completely dense poly-
nomial in variable had degree 7, while the corresponding polynomial in 2
variables had maximum degree 2 in each variable. Completely dense poly-
nomials in 3 and 4 variables each have maximum degree in each variable.
All coefficients of P were one. Table 2 gives the results in milliseconds for com-
pletely sparse powers, while Table 3 contains the completely dense results. The
addition of step 7 was done using a standard polynomial add routine rather than
a sort-add at the end as described in the analysis of MULT. Finally, a non-
recursive version of MULT was programmed so as to reduce the overhead of
repeated procedure calls.

Similarly the additions required by iteration were not carried out by a sort-
add. Considering that only relatively small problems were tested, it is unlikely
that the advantage of using the asymptotically superior sort-add would have
been reflected in the computing times of Tables 2 and 3.

4. Conclusion. We have seen that there are two basic complementary models
for which one does an analysis of powering algorithms: completely dense and
completely sparse polynomials. The main result here has been to exhibit an

POWERS OF SYMBOLIC POLYNOMIALS 207

TABLE 2
Completely sparse P"

No. of

variables

Iter Muir Iter Mult lter Mult lter Mult

2 16.6 16.6 16.6 16.6 33.2 133.1
4 16.6 49.9 83.2 66.5 316.1 366.0
6 83.2 83.2 183.0 99.8 931.8 665.6
8 116.4 83.2 332.8 149.7 1896.9 1098.2
10 216.3 133.1 499.2 199.6 3577.6 1580.8
12 282.8 299.8 748.8 266.2 5990.4 2312.9
14 432.6 166.4 1064.9 299.5 9085.4 2995.2
16 449.2 232.9 1248.0 316.1 13295.3 3966.3

133.1 266.2
898.5 1064.9

3095.0 2579.2
7937.2 5308.1
16872.9 9434.8

Power could not be computed with 23k words of work space.

TABLE 3
Completely dense P"

No. of

variables

degree

lter Mult Iter Mult Iter M ult lter Muit

2 116.4 332.8 116.4 399.3 116.4
4 715.5 3927.0 848.6 3810.5 1913.6
6 1597.4 22763.5 3461.1 17555.2 8253.4
8 2812.1 99274.2 7987.2 63015.6
10 4509.4 > 400 sec 14809.6 172689.9

915.2 515.8 2362.8
8636.1 9368.3 63763.2

46475.5

Power could not be computed with 23k words of work space.

algorithm which requires O(T) multiplications and O(Tlog T) exponent com-
parisons (T is the number of terms in the nth power of a completely sparse poly-
nomial). From a complexity point of view, this means the best methods we know
of for computing powers take O(Tlog T) operations (T is the number of terms in
the result) for both the completely dense and completely sparse models.

In practice, a specific problem may have characteristics that give an ad-
vantage to any one of the other known methods; e.g., see [7], [8]. In addition to
the number of arithmetic operations, one may have to consider other relevant
factors such as the efficiency/inefficiency of recursion, procedure calls, etc., in
the source language. We have shown that for completely sparse polynomials
using a FORa’RAN-based system, our new algorithm is better than iteration. But
for any symbol manipulation system which wants to provide only a single
powering routine, iteration seems the best choice (i) because of its simplicity,
(ii) because it yields all intermediate powers which may be useful, e.g., in sub-
stituting a polynomial for xin P(x), and (iii) because it is uniformly good for both
polynomial models. The best known methods for either model are, on the average,
better than iteration by a factor of 2. Unfortunately, these specialized algorithms,
FFT for dense and MULT for sparse polynomials, perform very poorly on sparse
and dense polynomials, respectively.

208 ELLIS HOROWITZ AND SARTAJ SAHNI

REFERENCES

[1] W. M. GEN’rLEMAq, Optimal multiplication chainsfor computing a power ofa symbolic polynomial,
Math. Comp., 26 (1972), pp. 935-939.

[2] L. HEINDEL, Computation of powers of multivariate polynomials over the integers, J. Comput.
System Sci., 6 (1972), pp. 1-8.

[3] E. HOROWITZ, The efficient calculation ofpowers ofpolynomials, Ibid., 7 (1973), pp. 469-480.
[4] D. KrquaIq, The Art of Computer Programming. Vol. II." Seminumerical Algorithms, Addison-

Wesley, Reading, Mass., 1968.

[5] J. M. POLLARD, Thefast Fourier transform in a finite field, Math. Comp., 25 (1971), pp. 365-374.
[6] D. KNUTH, The Art ofComputer Programming. Vol. I." Fundamental Algorithms, Addison-Wesley,

Reading, Mass., 1969.
[7] R. FAVEMArq, Polynomial multiplication, powers and asymptotic analysis." Some comments, this

Journal, 3 (1974), pp. 196-213.
[8] , On the computation ofpowers of sparse polynomials, Studies in Appl. Math., 52 (1974),

pp. 145-155.

SIAM J, COMr’UT.
Vol. 4, No. 3, September 1975

COMPUTATIONAL ALGORITHMS FOR THE ENUMERATION
OF GROUP INVARIANT PARTITIONS*

D. E. WHITE AND S. G. WILLIAMSON"

Abstract. Let G be a finite group acting on a finite set S and hence on H(S), the lattice of partitions
of S. Computational methods are developed for enumerating the invariants of this action.

Key words, partitions of a set, group actions

1. Introduction. In this paper, computational algorithms are developed for
enumerating structures on G-invariant partitiohs. These algorithmS are based on
identities derived in a previous paper [6, Thms. and 2]. Using [5, Thm. 23, we
show how these results may be extended to the enumeration of partitions whose
stabilizer is conjugate to a given subgroup of G.

2. Statement of results. We recall the basic definitions and results of [6.
Let G be a finite group acting on a finite set S (notation G :S). This action

induces a natural action on the partitions H(S) of S. A partition rr H(S) is G-
invariant if the stabilizer subgroup G G.

Let H, K be subgroups of G. We define

MI-I(K) = Z(o’Ko"-1 CZ H),
triG

where

(statement)
if statement is true,

if statement is false,

and IHI denotes the cardinality of H. Mn(K) is called the mark in G of H at K [1].
Let A be a system of orbit representatives for the action of G on S. Let 1-I(A)

be the partitions of A. Let be a complete set ofnonconjugate subgroups of G. Let
G be the stabilizer subgroup of e S. We have the following theorem shown in
[6].

THEOREM 1. The number of G-invariant partitions of S is given by

H E Mn(H)t Mn(Gt)"
dil-I(A) A6 H.

The computational results derived below from Theorem extend immediately
to [6, Thm. 2].

* Received by the editors August 3, 1974.

" Department of Mathematics, University of California at San Diego, La Jolla, California 92037.
This research was sponsored by the Air Force Office of Scientific Research under Contract/Grant
AFOSR 71-2089.

209

210 D. E. WHITE AND S. G. WILLIAMSON

Observe that the identity in Theorem depends only on the conjugate classes
of the stability subgroups of the elements of A. Let Hi, 1,..., g, denote the
elements of J which occur as conjugates of some subgroup Gt, A. Let Li,
i--- 1,..., g, denote the set of all t A such that Gt is conjugate to Hi. Then

7 {L’i 1, ..., g} defines a partition of A. We denote ILil by i. Let n IAI.
An integral partition ofn is a set of integers {k,..., kd} such that kx + + kd

n. Without loss of generality, we may assume that 0 < k <= <= kd. Given an
integral partition p {k, -.., kd} of n, we construct a class Mo of nor,negative,
integral g x d matrices. A matrix B (bj) is in Mo if

d

(1) bij i, 1, g;
j=l

(2) bij=kj, j= 1,...,d;
i=1

if bj denotes the jth column vector of B and if p < q and
()

kp kq, then bp __< bq lexicographically.

Using (1), (2) and (3), any matrix B in Mo may be specified by notation v{ v1/2 ...,
where the vectors v, 1, 2,..., are the distinct column vectors from B and
j, 1, 2, .-., are their multiplicities in B.

For any vector v (al,’.., ag) define v! (a !)(a 2 !)...(ag!). Let
(11, ,/g) where ILi[as defined above. Define

l!
N(B) VI (v !)Jt.j !.

THEOREM 2. The number of G-invariant partitions is

d

N(B)I-I 1-] (MrI(Hi))b’j.
P BMo j= HegCg Mn(H)i=1

We note that the extension of this result to [6, Thm. 2] is obvious and will be
illustrated in the example below (3).

We also observe that this result may be extended to count the number of
orbits of partitions whose stabilizer subgroups are conjugate to a given subgroup
of G. We do this as follows" from [5, Thm. 2], we note that if T is a finite set,
G" T and A a system of orbit representatives for this action, then for H a subgroup
of G,

(4)
K gC(’ teA T

where G, K means Gt is conjugate to K.
Thus by merely setting T H(S) and applying (4), we obtain our desired

result. In Theorem 11.3 of [2], M. J. Klass dealt with a slightly different problem,
that of counting orbits of given cardinality. We remark that this number may be
computed from (4). Furthermore, Theorem 11.3 of [2], which involves the M6bius
function on the lattice of subgroups of G, follows easily from [4, Thm. 13].

GROUP INVARIANT: PARTITIONS 211

3. Proofs and examples. We prove Theorem 2. Let 7 Li’i 1, ..., g/
be defined as above. We represent 6 {K Ka} 1-I(A) as a set

where

{B :j

By (L f) Ky, ..., Lg f-]

With each such 6 we associate a matrix B (biy), where biy IL f-) Kyl, and we
adopt the convention that the.blocks of c5 are listed in increasing order of car-
dinality and that if IKpl kp kq for p < q, then the column vector bv

<_ bq
lexicographically. Observe that with this convention B satisfies (1), (2) and (3) of
2 with p {Igll, "", IKa[}. Thus we rewrite Theorem in the form of Theorem

2, where N(B) represents the cardinality ofthe set r/(B) of partitions 6 corresponding
to the matrix B.

We now compute N(B). Let f# Sty1 x x SL act on r/(B) as follows (So
denotes the symmetric group on Q)" let N’ correspond to 6 as above, (al, "’", ag) e aA
Define (ol,..., og) ’ where B) (ol(L 71K),..., ag(L f"l Ky)). If 6’

{K’I, "", KS}, where IL f’l K}I IL f] Kyl for all i, j (that is, the associated
matrices B and B’ are equal, then for each one may choose o e SL, such that
o(L fq K})= (L f"l Ky) for all j. Thus acts transitively on r/(B) and N(B)

la51/1%1 when is the stabilizer of ff at 6. As a conceptual aid, we display the set
associated with 6 as the following array"

Bll B12 Be7
(Bij)

Bgl Bg2 Bgd

where Bij L Kj. is the set of column vectors of (Bij). Observe that
consists of all permutations in c which permute those columns of (By) yielding
identical column vectors in B (bij) (IBijl), or which permute elements within

the sets Bj. The number of such permutations is clearly I,It (vt!)J’Jt !. Theorem 2
follows.

We illustrate Theorem 2 with the following example. Let S be the squares of
an 8 8 chessboard. Let G be the dihedral group of order 8 acting on S. We list a
complete set of nonconjugate subgroups of G:

G G {e, a, o-z, 0"3, , O’/7, 0"2, O’3"},
where e is the identity, o is a 90 clockwise rotation and r is a reflection through a

line through opposite corners,

G2 --{e,o-, 0-2, 0-3}, G 3 {e, 0-2, o-q;, 0-3-c}, G4--
G {e, 0"2}, G6 {e, o’q:}, G 7 {e, z} and G8

The table of marks of G is Table 1.

212 D. E. WHITE AND S. G. WILLIAMSON

G1
G2
G3
G
G
G6
G
G

TABLE

G G G G Gs G G.

2
0 2
0 0
2 2
0 2
0 0
2 2

2
2 4
0 0
2 0
2 4

2
0 2
4 4

G8

where the (i,j)th entry is MGj(Gi). We list a system of orbit representatives for G’S
on the chessboard below"

xr)

2 23,828,736
3 336,152,832
4 10,675,543,925
5 15,217,251,125
6 26,284,502,917
7 28,249,780,357
8 50, 568,389,776
9 51,074,368,656
10 54,278,741,392
11 54,341,139,856
12 62,293,956,800
13 62,298,921,152
14 62,780,111,040
15 62,780,307,648
16 65,472,118,765

10

TABLE 2.

18
20
22
24
26
28
30
32
36
40
44
48
52
56
60
64

65,519,488,045
66,268,850,337
66,271,980,705
66,476,118,945
66,476,253,345
66,525,347,877
6 525,350,949
66,536,146,286
66,538,303,906
66,538,696,310
66,538,760,174
66,538,769, 770
66,538,770,982
66,538,771,126
66,538,771,138
66,538,771,139

GROUP INVARIANT PARTITIONS 213

A {1, ..., 10}. We see that 7 {{1,2,3,4}, {5,6,7,8,9, 10}}, g 2, 11 4,
12 6,H1 GvandH2 Gs We now ask how many G-invariant partitions, x(r),
of the squares ofthe chessboard are there such that no block has cardinality greater
than r? We answer this question in the Table 2, by using the extension of the present
Theorem 2 to Theorem 2 of [6]. We remark that as was developed in [6], we may
apply modifications of Theorem 2 to count rooted trees, full cycle permutations,
etc., on the blocks of G-invariant partitions. We also observe that the classification
ofthe elements ofA by stabilizer subgroup may be performed using (4) and need not
be stated explicitly.

REFERENCES

[1] W. BURNSIDE, Theory ofGroups ofFinite Order, 2nd ed., Cambridge University Press, Cambridge,
1961; Dover, New York, 1955.

[2] M. J. KLASS, Enumeration of partition classes induced by permutation groups, Ph.D. dissertation,
Dept. of Math., Univ. of Calif. at Los Angeles, 1972.

[3] P. K. STOCKMEYER, Enumeration ofgraphs with prescribed automorphism group, Ph.D. dissertation,
Univ. of Mich., Ann Arbor, 1971.

[4] D. E. WHITE, Classifying patterns by automorphism group: An operator theoretic approach, this
Journal, submitted.

[5] Counting patterns with a given automorphism group, Proc. Amer. Math. Soc., to appear.
[6] D. E. WHIa’E AND S. G. WILLIAISON, Combinatorial structures and group invariant partitions,

Ibid., submitted.

SIAM J. COMPUT.
Vol. 4, No. 3, September 1975

EVERY PRIME HAS A SUCCINCT CERTIFICATE*

VAUGHAN R. PRATTf

Abstract. To prove that a number n is composite, it suffices to exhibit the working for the multiplica-
tion of a pair of factors. This working, represented as a, string, is of length bounded by a polynomial
in log n. We show that the same property holds for the primes. It is noteworthy that almost no other
set is known to have the property thatshort proofs for membership or nonmembership exist for all
candidates without being known to have the property that such proofs are easy to come by. It remains
an open problem whether a prime n can be recognized in only log n operations of a Turing machine
for any fixed

The proof system used for certifying primes is as follows.
AXIOM. (x, y, 1).
INFERENCE RULES.

R1 (p, x, a), q - (p, x, qa) provided xtp- 1)/q (mod p) and ql(P 1).

R2: (p,x,p- 1)p providedxp- ,___ (modp).

THEOREM 1. p is a theorem p is a prime.
THEOREM 2. p is a theorem p has a proof of [4 log p lines.

Key words, primes, membership, nondeterministic, proof, NP-complete, computational complexity

1. Proofs. We know of no efficient method that will reliably tell whether
a given number is prime or composite. By "efficient", we mean a method for which
the time is at most a polynomial in the length of the number written in positional
notation. Thus the cost of testing primes and composites is very high. In contrast,
the cost of selling composites (persuading a potential customer that you have one)
is very low--in every case, one multiplication suffices. The only catch is that the
salesman may need to work overtime to prepare his short sales pitch; the effort
is nevertheless rewarded when there are many customers.

At a meeting of the American Mathematical Society in 1903, Frank Cole
used this property of composites to add dramatic impact to the presentation of
his paper. His result was that 267 1 was composite, contradicting a two-centuries-
old conjecture of Mersenne. Although it had taken Cole "three years of Sundays"
to find the factors, once he had done so he could, in a few minutes and without
uttering a word, convince a large audience of his result simply by writing down
the arithmetic for evaluating 267 and 193707721 x 761838257287.

We now show that the primes are to a lesser extent similarly blessed; one
may certify p with a proof of at most [4 log2 p] lines, in a system each of whose
inference rules are readily applied in time O(log3 p). The method is based on the
Lucas-Lehmer heuristic (Lehmer (1927)) for testing primeness.

In the system to be described, theorems take one of two forms:
(i) "p", asserting.that p is prime, or
(ii) "(p, x, a)", asserting that we are making progress towards establishing

that p is a prime and that x is a primitive root (mod p); a is a progress indicator

* Received by the editors May 24, 1974.
f Project MAC Massachusetts Institute of Technology, Cambridge, Massachusetts 02139. This

research was supported by the National Science Foundation under Grant GJ-34671.
Edmonds (1965) discusses a similar situation with a "supervisor and his hard-working assistant".

214

EVERY PRIME HAS A SUCCINCT CERTIFICATE 215

such that when it reaches p 1, we may establish these properties for p and x
in one more step.

The system is as follows.
AXIOM. (x, y, 1).
INFERENCE RULES.
RI: (p,x,a), q (p,x, qa) provided xp- 1)/q (mod p) and ql(p 1);

R2: (p, x, p 1) - p provided Xp- (mod p).

A certificate of p is then a proof in this system with. last line p.
Some familiar primes are given by the following proofs.

(1) (2, 1,1) Axiom;

(2) 2 (1), R2, 11 _= (mod 2);

(3) (3, 2, 1) Axiom

(4) (3,2, 2) (3), (2), R 21 2 (mod 3);

(5) 3 (4), Rz, 22 (mod 3).

No proof for 4 is possible because we would need to prove (4, x, 3) for some
x (mod 4) (by the condition ifl R2), which would contradict the condition in R 1.

(6) (5,2, 1)

(7) (5,2,2)

(8) (5,2, 4)

(9) 5

Axiom

(6), (2), R 1, 22 =_ 4 (mod 5);

(7), (2), R 22 _-- 4 (mod 5);

(8), R2 24 (mod 5).

No proof for 6 is possible because x (mod 6) for all x (mod 6).

(10) (11,2,1)

(11) (11,2,2)

(12) (11,2,10)

(13) 11

(14) (23, 5, 1)

(15) (23, 5,2)

(16) (23,5,22)

(17) 23

(18) (47,5,1)

(19) (47, 5,2)

(20) (47, 5,46)

(21) 47

Axiom

(10),(2), R1,25 _= 10(mod 11);

(11), (9), R1,22 _= 4(mod 11);

(12), R2,21 _= (mod 11);

Axiom;

(14), (2), R1,511 22 (mod 23);

(15),(13), R1,52 -= 2(mod 23);

(16),R2,2322 _= (mod 23);

Axiom;

(18), (2), R1,523 -= 46 (mod 47);

(19),(17), R1,52 25 (mod47);

(20), Rz, 546 =- (mod 47).

216 VAUGHAN R. PRATT

Not counting the proof for 3, this (shortest) proof of 47 took 18 steps, not
too far from the promised bound of [4 log2 47] 22. The gap is mostly due to
the proof of 47 not using the proof of 3 that is counted in the bound [4 log2 p].
A much larger gap is exhibited by the proof of 474397531, which is 23 lines long;
here, [4 log/p] 116. This prime was constructed to show that our bound on
proof length is not always tight. Steps (1) to (9) are as above.

(10)

()

(12)

(13)

(14)

(16)

(17)

(18)

(19)

(20)

(21)

(22)

(23)

(251,6,1)

(251,6, 2)

(251,6, 10)

(251,6, 50)

(251,6,250)

251

(474397531,2, 1)

474397531,2,2)

474397531,2, 6)

474397531,2, 30)

474397531,2, 7530)

474397531,2, 1890030)

474397531,2,474397530)

474397531

Axiom;

(10), (2), R,
(11), (9), R1
(12), (9), R1
(13), (9), R1
(14), R2;

Axiom;

(16), (2), R
(17), (5), R1
(18), (9), R
(19), (15), R1
(20), (15), R
(21), (15), R1
(22), R2.

2. Metaproofs. We now prove soundness and completeness of our system.
THEOREM 1. p is a prime ifand only ifp is a theorem.
Proof If. No number has multiplicative order p (mod p) when p is not a

prime. If such a p is proved, it must be by application of R2 to (p, x, p 1) where
xp-x

(modp). Hence x (modp) for some j < p- 1. Now j]p- 1, so

xp 1)/q (mod p) for some prime q. But to prove(p, x, p 1), we had to build up
p as the product of primes q which satisfied x- 1)/q (mod p). Applying
the fundamental theorem of arithmetic then leads to a contradiction.

Only if. This part proceeds by induction on p. If p is prime, then p has a primi-
tive root (mod p), that is, a number whose multiplicative order (mod p) is p 1.
A proof of p may start with the axiom (p, x, 1) for such a primitive root x. By the
induction hypothesis, each of the prime factors of p is a theorem. Moreover,
for each such prime factor q, x-)/ (mod p); otherwise the order of x would
be less than p 1. Hence the proof system permits the inference of any theorem
(p, x, a), where a is a product of prime factors of p 1. In particular, (p, x, p 1)
may be inferred, and since x- (mod p), we may infer p.

We now establish the efficiency of our method.
THEOREM 2. Ifp is a theorem, then p has a proofof at most [4 log2 p lines.
Proof The construction given in the proof of Theorem yields such a proof.

EVERY PRIME HAS A SUCCINCT CERTIFICATE 217

First prove 2 and 3 in five lines. (These primes p are special because p is not
composite.) We now assume as our induction hypothesis that by not counting
the proofs of 2 and 3, each prime p can be proved in at most 4 log2 p 4 lines.

For p 2 or 3, this follows directly from the identities 4 log2 2 4 0
and [4 log2 3] 4 2. For p > 3, let p pipE Pk, k >__ 2. Then the cost
of proving p is bounded above by

2 + k + , (14 log2 PiJ- 4)
<_i<_k

<__ [4 log2 PlP2 Pk)J 4

< [4 log2 p 4,

(by the induction hypothesis)

(since k > 2)

(the desired answer).

Ifwe now count the 5 lines required to prove 2 and 3, the cost rises to [4 log2 p +
lines. For p > 2, log2 p will not be an integer, and so the cost is bounded by
[4 log2 p], a bound that is 4 when p 2 and is therefore applicable to all p. F]

Almost identical proofs may be used to show that no more than [3 log2 pJ
lines involve an exponentiation and [2 log2 pJ a multiplication, facts which we
will use in the next section.

3. Picturesque proofs. The reader should have little difficulty in seeing that all
the information in the proof that 5 is prime is contained in the following tree,
whose vertices are primes together with their primitive roots.

or, collapsing (5,2)(5,2) repeated vertices II
(2, 1) (2, 1) for brevity: (2, 1)

The proof tree for 474397531, when collapsed, becomes

(474397531,2)

1(251,6)
\ \ Ill (3,2)

(2, 1)

It is straightforward to check a proof tree without reconstructing the proof.
The "VELP" test (vertices, edges, leaves, products) is

(i) For each vertex (p, x), xp- 1 (mod p).
(ii) For each edge (p, x) down to (q, y), xtp-)/q (mod p) and q[p 1.

(iii) Each leaf is (2, 1).
(iv) For each vertex (p, x) with immediate descendants (pa, x,), ..., (Pk, Xk),

P PlPz Pk + 1.
The proof tree approach is more picturesque than the proof system, whose

raison d’etre is that it is more formally and compactly presented.

4. Computations. Returning to our customer, we find him dissatisfied with
the exponentiation he must carry out to check a line. He protests that the evalua-
tion of xb requires b multiplications, and also that the numbers produced

218 VAUGHAN R. PRATT

along the way have O(b) digits, which he has neither time nor paper to write down
for large b.

The first protest is dealt with by the well-known trick of exponentiating by
repeated squaring, which yields xb with at most 21og2 bJ multiplications. This
method is an essential feature of the Lucas-Lehmer heuristic. The method may be
described recursively as:

xb" b-O- 1,

b odd - xxb- 1,

b even (x2)b/2

To eliminate the recursion and attendant waste of space, we translate this
algorithm into a "deterministic" system whose rules are

(u, v, w) - (u v/2 w) if v is even

(u, v, w) (u, v 1, uw) ifvisodd.

Now wu is an invariant of these rules, each of which reduces either the
number of significant bits (provided v : 0) or the number of l’s in v (expressed
in binary notation), but not both. Hence (x, b, 1) (y, O, xb) in a number of steps
exactly one less than the number of bits plus the number of l’s in b, which is at
most 2 [log2 (b + 1)] 1. By skipping the multiplication the first time w is multi-
plied by u, and beginning with (x, b, x), only 2 [log2 b multiplications are required.

The second protest is disposed ofby performing each multiplication modulo p
in the above algorithms when testing xb (mod p).

In any proof of p, each multiplication is performed modulo q for some prime
q _<_ p. Moreover, in testing xb, b < p. Hence each exponentiation requires at most
2 [log2 p multiplications of numbers smaller than p. At most [3 log2 p exponen-
tiations are required, whence no more than 61og22 p multiplications plus the
[2 log2 p multiplications from R are needed. Each multiplication may be carried
out in O(log p log log p) steps on a random access machine (RAM) (Sch6nhage
and Strassen, (1971)), and so O(log3 p log log p) steps suffice to check a proof of p
on a RAM. (A factor of log log log p creeps in for those who do the arithmetic
on paper (or on a Turing machine) due to time spent scanning and shuffling the
sheets !)

An item that might find a market among consumers of prime numbers would
be a pocket calculator with a predicate (x, b, p) that evaluates xtp- 1)/b 1 (mod p).
Only one bit of output is required, only integer arithmetic (multiple-precision) is
used, and so the unit should cost about $100 in quantity at today’s prices, assuming
that it handles integers ofup to several hundred bits. Users of the Hewlett Packard
HP-65 pocket computer with the appropriate program may find it suitable but
expensive. A proof using our method of, say, the smallest Mersenne prime yet
undiscovered would require a considerably more expensive unit, with perhaps
30,000-bit integers and sufficient parallelism to make the computation time
acceptably low.

5. Complexity. The families NP (P) of sets of strings accepted (recognized)
in time some polynomial function of their length by some nondeterministic

EVERY PRIME HAS A SUCCINCT CERTIFICATE 219

(deterministic) Turing machine2 have recently engaged the attention of computa-
tational complexity theorists. The family P is of interest in that it includes all sets
that can be recognized reasonably quickly, a property that has become identified
to some extent with membership in P. The family NP is of interest (Cook (1971),
Karp (1972)) because it includes thirty or more operations-research-related sets
each with the astonishing property that if it belonged to P, then NP P, implying
that all of its fellow O.R. sets would be in P, along with other sets in NP (such as
{primes} as we showed above) not known at present to belong to P. In view of
the effort that has been expended in the past twenty years or so on trying to show
that any one of these sets is in P, it is widely conjectured that none is, that is,
NP : P. These peculiar sets are called NP-complete.

A family of sets that has only very recently attracted any attention is coNP
{SIS NP}. Of course, coP P, whence if NP P, then coNP NP. How-

ever, it is conceivable that NP - P but NP --coNP. It is straightforward to
show that NP coNP if and only if some NP-complete set is in coNP, just as
NP P if and only if some NP-complete set is in P, and it is conjectured that
NP 4: coNP.

If true, this implies that NP f) coNP contains no NP-complete problems.
One is tempted to speculate that NP f’) coNP P. After all, the families RE and R
of recursively enumerable and recursive sets, whose relationship resembles the
NP P relationship, satisfy RE f-) coRE R; and until recently, every known
member of NP coNP was known to be in P. Thus one could be forgiven for
wanting to conjecture that NP f’) coNP P.

An immediate corollary of 4 above is that the primes are in NP f’) coNP.
Provided NP 4: coNP, this settles in the negative a question raised by Cook as
to whether the composites are NP-complete. Conjecture aside, it gives us the first
known member of NP f-) coNP not known to be in P. Chvatal has recently ex-
hibited another set with this property, namely the set of pairs (linear programming
problem, optimal solution to it). No other such sets are known, although a plausible
candidate is the set of irreducible univariate polynomials over the integers.
Berlekamp (1967) has shown that over any finite field such a set is in P. A somewhat
less plausible candidate is the set of pairs of isomorphic graphs.

If the primes or the optimal-lp-solutions are not in P, it will not be because
they are NP-complete (still supposing NP - coNP) which is the usual reason.
One might therefore say that these problems were anomalously hard, although
any term for this phenomenon lacks the all-or-nothing significance of "NP-
completeness". The whole question of proving lower bounds on the complexity of
sets in NP is completely open, and any information about the structure of hard
problems would be welcome. In particular, the criterion that membership in
NP f’) coNP precludes NP-completeness, though based only on a conjecture, is
nonetheless a useful guide considering how few tools we have in the area.

6. Conclusion. We exhibited a simple system whose theorems are exactly the
set of all primes and whose proofs are very short. We inferred from this that the
primes are in NP coNP, giving us our first example of a member ofNP coNP
not known to be in P. We advocated membership in NP f’l coNP as a strong

That is, for each such set there is a polynomial and a Turing machine.

220 VAUGHAN R. PRATT

reason for presuming non-NP-completeness, based on the plausible and moderately
popular conjecture that NP :/: coNP. We observed the striking paucity of sets
that are candidates for lying between P and NP-complete sets. It is interesting
to find the number theorists’ most famous set occupying a special position in
complexity theory.

REFERENCES

E. R. BERLEKAMP (1967), Factoringpolynomials overfinitefields, Bell System Tech. J., 46, pp. 1853-1860.
S. A. COOK (1971), The complexity of theorem-proving procedures, Conf. Rec. of 3rd Ann. ACM

Symp. on Theory of Computing, pp. 151-158.
J. EDMONDS (1965), Minimum partition ofa matroid into independent subsets, J. Res. Nat. Bur. Standards

Sect. B, 69B, pp. 67-72.
R. M. KARP (1972), Reducibilities among combinatorial problems, Complexity of Computer Computa-

tions, R. E. Miller and J. W. Thatcher, eds., Plenum Press, New York, pp. 85-103.
D. H. LEHMER (1927), Bull. Amer. Math. Soc., 33, pp. 327-340.
A. SCHBNHAGE AND W. STRASSEN (1971), Vast multiplication of large numbers, Computing, 7, pp.

281-292. (In German.) English description: D. E. Knuth, The Art ofComputer Programming,
vol. 2, 2nd printing, pp. 270-275.

SIAM J. CoMPtrr.
Vol. 4, No. 3, September 1975

FINDING A MAXIMUM CUT OF A PLANAR GRAPH
IN POLYNOMIAL TIME*

F. HADLOCKf

Abstract. The problem of finding a maximum cut of an arbitrary graph is one of a list of 21 com-
binatorial problems (Karp-Cook list). It is unknown whether or not there exist algorithms operating
in polynomial bounded time for any of these problems. It has been shown that existence for one implies
existence for all. In this paper we deal with a special case of the maximum cut problem. By requiring the
graph to be planar, it is shown the problem can be translated into a maximum weighted matching
problem for which there exists a polynomial bounded algorithm.

Key words, maximum cut, planar graph, geometric dual, polynomial time

1. Introduction. In this paper, it is shown that the maximum cut problem
can be translated into the maximum weighted matching problem when the graph
under consideration is planar. For an arbitrary graph, several algorithms exist
for finding a maximum cut [4] and [5]. Both require exponential time in worst-case
situations. Since the maximum weighted matching problem has a polynomial
bounded algorithm [1], [2], a maximum cut of a planar graph can be found in
polynomial time by using the translation process to be presented.

2. Maximum cuts and odd circuits. An edge set D whose removal leaves a
subgraph free ofodd circuits will be called an odd-circuit cover. The purpose of this
section is to obtain an alternative formulation for the problem offinding amaximum
cut. First the relationship between cuts and odd-circuit covers is established.

THEOREM 1. An edge set is contained in a cut if and only if its complement is an
odd-circuit cover.

Proof. Let Q be an edge set contained in a cut C. The intersection ofany circuit
with C is even and so Q must contain an edge ofany odd circuit. Hence Q is an
odd-circuit cover.

Conversely, if Q is an odd-circuit cover, its removal leaves a graph free of
odd circuits and hence bipartite. Thus Q is contained in a cut.

As a consequence of Theorem 1, an alternative to looking for maximum cuts
is to look for minimum odd-circuit covers. This is justified by the following corol-
lary, which follows immediately from Theorem 1.

COROLLARY 1. An edge set is a maximum cut if and only if its complement is a
minimum odd-circuit cover.

The following fact means we can confine our attention to a circuit basis
rather than looking at the entire space in constructing an odd-circuit cover. Since
a graph is bipartite if and only if its circuit space has an even basis [6], an edge set D
is an odd-circuit cover if and only if its removal leaves a subgraph with an even
basis. The term even basis refers to a circuit basis in which every element is an even
circuit.

3. Odd-circuit covers and odd-vertex pairings. To obtain a maximum cut of a
planar graph G, we suppose some embedding and take as a basis the contours ofthe
finite faces. It is more convenient to work with the geometric dual, GD, of G, where

* Received by the editors November 26, 1973, and in revised form July 24, 1974.

" Department of Mathematics, Florida Atlantic University, Boca Raton, Florida 33432.

221

222 F. HADLOCK

the odd basis elements (along with the contour of the infinite face, if odd) become
precisely the set of odd vertices. An edge e in G corresponds to an edge e’ in GD
if and only if the two faces separated by e in the embedding of G correspond to the
endpoints of e’ in GD.

An edge set whose removal leaves a subgraph free of odd vertices will be
called an odd-vertex pairing. Thus a subgraph with an odd-vertex pairing as edge
set has an Euler subgraph as complement. The following theorem establishes a
correspondence between odd-circuit covers and odd-vertex pairings.

THEOREN 2. An edge set D is an odd-circuit cover of a planar graph G if and only
if the corresponding edge set P is an odd-vertex pairing for the geometric dual GD
of G.

Proof. Let GD be the geometric dual of G for some embedding of G, with D and
P corresponding edge sets of G and Go, respectively. Let G’ and G be the sub-
graphs of G and GD left by the removal ofD and P. Circuits of G correspond by the
1-1 edge correspondence to cut-sets of GD. This is also true for G’ and G. In
particular, circuit basis elements of G’ correspond to cut-set basis elements of

G as follows. A circuit basis element of G is the contour of a finite face. Its edges
correspond in 1-1 fashion with the edges of GD which are incident with the vertex
representing that face. The set of edges incident with the vertex is a cut-set basis
element.

If D is an odd-circuit cover, the circuit basis for G’ is even. Since the edge
correspondence is 1-1, the cut-set basis ofG is even. Consequently the degree must
be even for any vertex of G corresponding to a finite face of G’. The vertex cor-
responding to the infinite face cannot be the sole odd vertex. Hence P is an odd-
vertex pairing.

The converse follows by a similar argument.
To find a maximum cut of a planar graph, it suffices to find a minimum odd-

vertex pairing of its dual. The following theorem gives a useful characterization of
odd-vertex pairings.

THEOREM 3. For an edge set P ofan arbitrary multigraph G, P is a minimum odd-
vertex pairing if and only if P forms an edge disjoint collection of paths with odd
vertices of G as endpoints, using each once as endpoint, and with minimum sum of
path lengths.

Proof. Let P be a minimum odd-vertex pairing for a multigraph G. The parity
of a vertex refers to its degree odd or even. IfH is the subgraph left by the removal
of P, since H is an Euler subgraph, a vertex has the same parity in P as in G. In any
component of a graph, there must be an even number of odd vertices; hence any
odd vertex in P is connected to another. Remove a path connecting a pair of odd
vertices from both P and G to obtain subgraphs P and G. P is an odd-vertex
pairing for G since its removal leaves H. Any vertex has the same parity in P as

G. In going from P to P, the number of odd vertices has been reduced by two.
Repeating the process eventually yields an odd-vertex pairing P with no odd ver-
tices for a multigraph G. Since any vertex has the same parity in G as P, G is
Euler. Since P was assumed to be minimal, Gi H and P (V,) (i.e., no edges).
Then P is the disjoint collection of paths with the odd vertices of G as endpoints,
using each once as endpoint. The sum of the path lengths is minimum since P is
minimum.

MAXIMUM CUT OF A PLANAR GRAPH 223

Now suppose P is a collection of edge-disjoint paths with odd vertices as
endpoints, using each endpoint once as endpoint, and with minimum sum of path
lengths. Remove P from G, one path at a time. Denote by H the subgraph remaining
after P has been removed. The removal of each path leaves the endpoints even and
does not alter the parity of intermediate vertices. Since any vertex odd in G appears
once as an endpoint, it is even in H, and so P is an odd-vertex pairing. P is minimum
since the sum of path lengths is minimum.

4. Odd-vertex pairings. The task of pairing odd vertices so as to minimize
the sum of the lengths of the paths pairing them is easily posed as a maximum
matching problem as observed in [3].

Given a multigraph G, a minimum odd-vertex pairing P for G is obtained as
follows. Let Gc be the complete graph with vertices corresponding to the odd
vertices of G. With each edge e (u, v), associate the weight IV- d(u, v) where
d(u, v) is the length of the minimum length path connecting u and v and W
+ max {d(u, v)lu, v odd in G}. Let M be a maximum matching of Gc. Then M
defines a minimum odd vertex pairing as follows. For each edge e (u, v) in M,
include in P the edges of any minimum length path connecting u and v in G.

The problem is now in a form for which there exists an algorithm [2] for its
solution. It is an algorithm which is good in the sense that the amount of time it
requires is a polynomial function of an input parameter (the number of vertices in
this case).

5. An example. To illustrate the process of translating a solution to the
maximum matching problem into a solution to the maximum cut problem, we
use an example (Fig. 1) in which the matching problem is solved by inspection.
A minimum odd-circuit cover may be found by determining a minimum odd-
vertex pairing of the geometric dual Go (Fig. 2). In turn, this may be found by
determining a maximum matching for the complete graph on the odd vertices
of Go (Fig. 3). Since the weights here are 1 or 2, any complete matching with all
edge weights 2 is a maximum matching (Fig. 4). A minimum odd-vertex pairing
for Go is obtained by taking a minimum path connecting u and v for each edge
(u, v) in the maximum matching. In this case each minimum path is single edge (u, v).

a

a

e

FIG. 1. Planar graph G FIG. 2. Dual of G,

224 F. HADLOCK

a c d g h
a 2 2 2 2 2
c 2
d
g
h 2

FIG. 3. Edge weights for complete graph G on odd vertices of GD

M ((a, d), (c, g), (h, i))

FIG. 4. Maximum matching for Gc

P ((a, d), (c, g), (h,

FIG. 5. Minimum odd-vertex pairing for GD

FIG. 6. Minimum odd circuit cover for G

Their collection forms an odd-vertex pairing (Fig. 5). The corresponding minimum
odd-circuit cover for G consists of the marked edges (Fig. 6). Its complement is
a maximum cut.

6. Conclusions. Finding a maximum cut of a planar graph is a special case,
as remarked earlier, of a problem on a list [8] of combinatorial optimization
problems, including the traveling salesman problem and the problem of vertex
coloring a graph with the fewest number of colors, if any of these problems have a
polynomial bounded algorithm, all do. In this paper, the existence of a polynomial
bounded algorithm for a special case (planar graphs) of one of these problems may
aid in defining special cases ofthe others for which polynomial bounded algorithms
exist. At the same time, an attempt to extend this approach to the general case
might lend insight as to why a polynomial bounded algorithm does not (as is
widely believed) exist for the general case.

MAXIMUM CUT OF A PLANAR GRAPH 225

REFERENCES

[1] J. EDtONOS, Paths, trees, andflowers, Canad. J. Math., 17 (1965), pp. 449-467.
[2] , Maximum matching and a polyhedron with 0,1-vertices, J. Res. Nat. Bur. Standards Sect.

B, 69B (1965), pp. 125-130.
[3] S. GOODMAN AND S. HEDETNmMI, Eulerian walks in graphs, this Journal, 2 (1973), pp. 16-27.
[4] F. H,DLOCK, The minimal 2-coloration problem, Proc. 3rd Southeastern Conf. on Combinatorics,

Graph Theory, and Computing, F. Hoffman, R. B. Levow, R. S. D. Thomas, eds., Utilitas
Mathematica, Winnipeg, Canada, 1972 pp. 221-241.

[5] ., Optimal graph partitions, Proc. 4th Southeastern Conf. on Combinatorics, Graph Theory,
and Computing, F. Hoffman, R. B. Levow, R. S. D. Thomas, eds., Utilitas Mathematica,

Winnipeg, Canada, 1973, pp. 309-328.
[6] F. HARARV, Graph Theory, Addison-Wesley, Reading, Mass., 1969.
[7] S. JorrNsoN, Approximation algorithmsfor combinatorial problems, Proc. 5th Annual ACM Symp.

on Theory of Computing, Austin, Tex., 1973, pp. 38-49.
[8] R. KARl’, Reducibility among combinatorial problems, Complexity of Computer Computations,

R. E. Miller and J. W. Thatcher, eds., Plenum Press, New York, 1972, pp. 85-103.

SIAM J. CoMPtrr.
Vol. 4, No. 3, September 1975

COMPLETE REGISTER ALLOCATION PROBLEMS*

RAVI SETHIf

Abstract. The search for efficient register allocation algorithms dates back to the time of the first
FORTRAN compiler for the IBM 704. The model we use in this paper is a single processor with an
arbitrarily large number of general registers. The objective is to use as few registers as possible, under the
constraint that no stores into memory are permitted. The programs under consideration are sequences
of assignment instructions. We show that, given a program and an integer k, determining if the program
can be computed using k registers is polynomial complete. It should be noted that k can be any integer.

Key words, register allocation, program optimization, polynomial complete, straight line program,
basic block, dag

1. The machine model. Despite the fact that register allocation has been of
interest to compiler writers since the time of the first FORTRAN compiler for the
IBM 704 [2], there are few algorithms available for producing optimal allocations.
In this paper we will demonstrate that register allocation is a member of a class of
problems for which there is no known nonenumerative solution.

For the purposes of introduction, the machine model in this paper consists
of a single processor, a memory and an arbitrarily large number of registers.
Instructions are of two types:

(i) Load register j--take a value from a specified location in memory and
place it in register j; all other registers are unchanged.

(ii) reg j - 0(reg il, reg i2)--the result of applying the operator 0 to the con-
tents of registers and 2 is placed in register j; all other registers are
unchanged. Registers ix, i2 andj need not necessarily be distinct.

The absence of input-output instructions leads to the assumption that all
initial values are already in memory. All registers are initially empty.

The absence of control flow and test instructions means that the programs
that can be computed using the above model are sequences of assignment in-
structions. Such programs have been referred to as straight line programs [1]
or basic blocks [2].

As an aside, we note that single expressions are a special class of straight line
programs. Algorithms for determining the minimal number of registers needed
to compute expressions which have no common subexpressions, may be found
in 3], I8], 9], 103. The algorithms operate in linear time and can handle algebraic
properties like associativity and commutativity.

Another restriction on the instruction set in the model is the absence of
stores, which transfer a value from a register into memory. Straight line sections
encountered during compilation tend to require a small number of registers.
Hence the objective, as it will be in this paper, is to limit the number of registers
used, while not permitting stores.

2. Graphical representation of programs. Graphical representations of
programs are intuitive, and perhaps best introduced by an example.

Received by the editors February 1, 1973, and in revised form May 13, 1974.
]" Pennsylvania State University, University Park, Pennsylvania 16802. This work was supported

in part at Princeton University by the National Science Foundation under Grant GJ-1052.

226

COMPLETE REGISTER ALLOCATION PROBLEMS 227

Example 2.1. Consider the evaluation of the polynomial a + bx + cx2,
using the expression a + (b + c* x)* x. The "dag" corresponding to this ex-
pression is given by Fig. 1.

A directed graph G is a pair (V, B) where Vis a set of nodes, or vertices. Elements
ofB are called branches, or edges, and are pairs ofnodes. Informally, nodes represent
values relevant to a program, and a branch (x, y) indicates that node y must be
computed before node x. Given a branch (x, y), node x is called a direct ancestor
of node y, and y is called a direct descendant of x. A sequence XoX Xk, k > O,
where for all i, =< =< k, (xi_ , xi) is a branch, is called a path oflength k. S is said
to befrom xo to Xk. If S is a path from x to y, then x is said to be an ancestor of y,
and y is said to be a descendant of x.

In keeping with intuitive understanding that a branch (x, y) implies that y
must be computed before x, it follows that a path from x to y means that y must
be computed before x.

A path of length greater than 0 from a node x to x is called a cycle. A directed
acyclic graph (abbreviated dag), is a directed graph with no cycles.

The graph in Fig. is a dag. An algorithm to construct the dag for a straight
line program may be found in [1]. For our purposes, we will assume that a straight
line program is specified by giving its dag representation.

2

b

FIG. 1. A dag for the expression a + (b + c*x)*x. The integers give the registers into which nodes
are computed

We need to identify nodes that correspond to initial values in a straight
line program a node with no descendants is called a leaf A node with no ancestors
is called a root. Register allocation for a special kind of dag has been considered
in [3], [8], [9], [10]: a tree is a dag with a single root, in which each node except
the root has a unique direct ancestor.

Since we assume that a straight line program is specified as a dag, we will
modify our notion of "computation" so that it is defined in terms of dags, rather
than in terms of a machine model. Instead of computing a value into a register,
we will think of placing a "stone" that identifies a register onto the node represent-
ing the value. Computing a straight line program then corresponds to placing
and moving "stones" on the appropriate dag.

228 RAVI SETHI

Game 1. Let D be a dag. Let there be an infinite supply of stones, where stones
may be thought of as registers. A move in Game is one of the following:

1. place a stone on a leaf in D, or
2. pick up a stone from a node in D, or

if there are stones on every direct descendant of a node x in D; then
3. place a new stone on x, or
4. move a stone to x from one of the direct descendants of x.
The definition above has been adapted from one in [11], [12]. In terms of

the machine model, step in the definition of Game corresponds to loading
an initial value into a register. Step 2 does not have an instruction counterpart.
It can be viewed as declaring that the register in question can now be used to hold
a new value. Steps 3 and 4 correspond to the operation reg j 0(reg il, reg i2).
In step 3, j is not in the set {il, 2}. In step 4, j is either or i2.

An important difference between the instruction in the machine model and
steps 3 and 4 is that steps 3 and 4 refer to all the possibly many direct descendants
of a given node x. While the instruction in the machine model is in terms of binary
operations, for pedagogical reasons it will be convenient to allow a node in a dag
to have a finite but arbitrarily large number of direct descendants. Restricting
the number of direct descendants to two does not change the complexity of the
register allocation problem.

Example 2.2, Consider the dag in Fig. 1. A sequence of moves in Game
using 3 stones is given in Table 1. In order to relate the moves to the machine
model, the corresponding machine instructions have also been given. In Example

TABLE

Node that

stone is placed Stone Move Instruction

C 2 load, reg 2 c

x 3 load, reg 3 x
2 4 reg 2 reg 2 * reg 3

b load, reg b
t2 2 4 reg 2 reg + reg 2
t3 2 4 reg 2 reg 2 * reg 3
a 3 2, load, reg 3 a

t4 3 reg reg 3 + reg 2

2.2, initially there were no stones on nodes in the dag. Moreover, a stone was
placed on each node exactly once. In 4, a "computation" will be a sequence of
moves in Game that place a stone exactly once on each node, starting with no
stones on any node, and ending with a stone on each root in the dag. This notion of
"computation" arises during code generation while compiling.

It will be shown in 4 that given a dag and an integer k, determining if there
is a "computation" of the dag that uses no more than k stones is "polynomial
complete". (The term "polynomial complete" will be defined in 3.)

COMPLETE REGISTER ALLOCATION PROBLEMS 229

Walker and Strong [11], [12] consider register allocation within the context
of flowchartable recursions. They permit recomputation of values as necessary.
The following examples shows that permitting recomputation of values may reduce
the number of stones used in a "computation".

Example 2.3. Consider the expression b + c O(a, (b + c)/d, e), represented
by the dag in Fig. 2. Table 2 is a computation of the dag using 3 stones.

FIG. 2. A dagfor the expression b + c O(a, (b + c)/d, e)

TABLE 2

Node that

stone is

placed

Stone Move Instruction

b 2 load, reg 2 b
c 3 load, reg 3 c
tl 2 4 reg 2 reg 2 + reg 3
d 3 2, load, reg 3 d
t2 2 4 reg 2 reg 2/reg 3
a load, reg a
e 3 2, load, reg 3 e
t3 3 4 reg 3 0(reg 1, reg 2, reg 3)
b 2 2, load, reg 2 b
c 2, load, reg c

2 4 reg 2 reg 2 + reg
t4 2 4 reg 2 reg 2 reg 3

Note that b + c is computed twice. If the recomputation of b + c is not
permitted, then at least 4 stones will be used.

A "computation" in 5 may recompute values as necessary, i.e., a node
may have a stone placed on it more than once. A result similar to that in 4 will
be shown for the model of computation in 5.

230 RAI SETHI

When no node in a dag is recomputed, an allocation for the dag may be viewed
as a function from nodes to registers. It should be clear that not all functions
from nodes to registers are allocations. For example, it would not do to assign
all nodes to the same register. A somewhat less trivial example is given by Fig. 3.
It will be shown in 6 that the problem of determining if a function from nodes to
registers is an allocation is "polynomial complete". Thus, not only is it difficult to
find a good allocation, it is difficult to verify that a function is an allocation.

FIG. 3. Suppose each node has to be computed &to the reg&ter given by the integer at the node. Then
there is no viable order of computation for the values in the dag. Ifx is computed.first into register 1, then
w cannot be brought into the same register. Ify is computedfirst, the value of v is lost, so x cannot be
computed

In order to appreciate why the last result mentioned is interesting, consider
the coloring problem, which may be stated as follows: given an undirected graph
G, a coloring of G is a function from nodes in G to colors, such that no two nodes
joined by an edge in G may have the same color. Given an integer k, determine a
coloring of G that uses no more than k colors.

While it is known [7], that the coloring problem is polynomial complete,
given a function from nodes to colors, it is easy to check ifthe function is a coloring
of the graph. All that needs to be done is to check that no two nodes joined by an
edge are assigned the same color.

3. Polynomial completeness. Let E be some alphabet. Let P be the class of
languages accepted by polynomial time bounded deterministic Turing machines,
and let NP be the class of languages accepted by polynomial time bounded non-
deterministic Turing machines. P is clearly a subset of NP. It is not known if
P NP.

Just as languages accepted by Turing machines are defined, it is possible to
define the "function computed" by a Turing machine. See [6], [7], for instance.

Let FI be the class of functions from E* into E* computed by polynomial
time bounded deterministic Turing machines. Let L and M be languages. L is
said to be reducible to M, if there exists a function f FI, such that f(x) is in M
if and only if x is in L. L is called [73 "(polynomial) complete if L is in NP, and
every language in NP is reducible to L. Either all complete languages are in P, or
none of them is. The former alternative holds if and only if P NP."

Demonstrating that all languages in NP are reducible to a given language
L is facilitated by a theorem due to Cook [4]. Informally, Cook showed that
acceptance of any language in NP is reducible to determining if a formula in the
propositional calculus is satisfiable. We will have occasion to deal with this
problem in some detail.

COMPLETE REGISTER ALLOCATION PROBLEMS 231

DEFINITION. There is a set {xl, x2, x,} of variables. If x is a variable, then
the symbols x and 2 are called literals, x is called a complement of 2, and 2 is called
a complement of x. A clause is a subset of the set of literals. A clause C {Y l, Y2,.., y,} will often be represented by C y V Y2 V V y,,.

If C1, C2, "’", C, are clauses, then C, the conjunction of the clauses, will be
represented by C1 A C2 A A Cm. C will also be referred to as an m-clause
satisfiability problem over n variables.

C is said to be satisfiable if there exists a set S which is a subset of the set of
literals, such that:

1. S does not contain a pair of complementary literals,
2. S fq Ci: fori 1,2,..., m.
If the set S exists, then a literal y in S will be said to be true, or have value 1,

and the complement of the literal will be said to be false, or have value O. If a
literal in a clause is true, the clause will be said to be true.

It is easy to associate a language with the set of satisfiability problems.
Following Cook [4], each variable can be represented by some element in
followed by a number in binary notation. Note that there may be an arbitrarily
large number of variables. The complement of a variable can be represented, say,
by the symbol followed by the representation of the variable. The other con-
nectives are V and A. When no confusion can occur, the term "satisfiability
problem" will be used to refer to the corresponding string, generated as outlined
in this paragraph.

THEOREM (Cook). If a language L is in NP, then L is reducible to the set of
satisfiability problems.

Proof. See [4].
Just as satisfiability problems were defined, it is possible to define satisfiability

problems in which each clause has exactly three literals.
THEOREM (Cook). If a language L is in NP, then L is reducible to the set of

satisfiability problems with exactly three literals per clause.
Proof The proof is immediate from the result for satisfiability problems with

at most three literals per clause [4].
The approach in the following section will be to show that the problem on

hand can be associated with a language L in NP, and that the set of satisfiability
problems with exactly three literals per clause is reducible to L.

4. Reduction to register allocation.
DEFINITION 4.1. A computation of a dag D is a sequence of moves in Game

that starts with no stones on any node, places a stone on every node exactly once,
and ends with stones on all the roots of the dag D. A node is said to be computed
when a stone is placed on the node. A computation of D is said to use k stones
if during some move in the computation there are k stones on nodes in D, and
during every other move there are no more than k stones on nodes in D.

When this notion of computation has to be identified, we will use the term
4-computation (the 4 refers to 4).

DZFINITION. Let C be an m clause satisfiability problem over n variables with
exactly 3 literals per clause. Then C will be referred to as a (3, m, n) satisfiability
problem.

232 RAVI SETHI

Consider a (3, m, n) satisfiability problem C. A solution of C may be found
nondeterministically as follows. Consider variable x l. Select a value for x from
the set (true, false). Alternatively, select one of x and x to be assigned the value
true. Then consider the variable x2, etc. Once truth values have been assigned to
all n variables, consider clause consisting of literals y, Y12 and Y3. If all of
YI, Y2 and Y13 are false, then stop. Otherwise consider clause 2, etc.

We can construct a dag D such that a computation of D simulates the above
solution of C. D will consist of n + m stages, where stages through n assign
truth values to the variables, and stages n + through n + m test to see if each
of the m clauses is satisfiable.

Let us consider stage i, where I =< < n. This stage refers to the variable xi. The
flowchart in Fig. 4 summarizes the actions performed in stage i; the dag in Fig. 5
gives the nodes and edges relevant to the stage. Stage has a node z such that all
nonleafnodes in the stage are ancestors ofnode zi. Thus none of the nonleaf nodes
in the stage can be computed until node z is computed. Stage also has two nodes
x and i, which represent the variable x and its complement, respectively.

It will turn out that when node z is computed, there are exactly n +
stones in hand. Now both xi and require n- + stones to be computed.
Moreover, both xi and are direct descendants of the very last node to be com-
puted. Thus, a stone placed on either x or will remain on the node in question
until the very last step. It follows that computing either x or i ties up one stone,
leaving n stones--too few to compute the other one of the pair, x, . We
want to pass exactly n stones to the next stage, which is stage + 1. If one of
x and is indeed computed, there is no problem. We have to take care of the case
in which neither xi nor i is computed.

Consider the nodes u and fii in Fig. 5. Both u and fi are direct descendants
of the initial node. As its name implies, the initial node will be the very first nonleaf
node to be computed, since all other nonleaf nodes will be ancestors of the initial
node. Thus before stage is reached, stones will have been placed on nodes u
and. As long as nodes u and fi have an uncomputed direct ancestor, the stones on
u and fi must remain on them. Recall from Definition 4.1 that a stone cannot be
placed on a node more than once.

If neither xi nor is computed, then the stones on u and i cannot be moved,
and we have to place a new stone on w, leaving n stones in hand.

Suppose x has been computed. Then w is the only direct ancestor of u that
has yet to be computed. So we can move the stone from u to w, and never need to
place a stone on ui again, for all the direct ancestors of u would then have been
computed. Once again we have n stones in hand. The case when is computed
instead of x is very similar.

Later in this section we will show that when wi is computed, there are exactly
n stones that can be picked up. And when w is computed, at most one of x
and has been computed.

In case the reader is concerned about the fact that one of x and i has not
been computed, at a later stage (when all the clauses have been shown to be true),
the uncomputed nodes will be taken care of.

Now let us see how we can verify that the values "assigned" to the variables
by stages through n lead to all the clauses being true. Consider clause j given by

COMPLETE REGISTER ALLOCATION PROBLEMS 233

Start stage by computing

node z

Select one of the
three exits from this
point

Compute node x
using

n-i /1 stones

Lose a stone

Yes

Compute node ’i
using

n-i+l stones

Lose a stone

Lose a stone

End stage by
computing node w

FIG. 4. Flowchart depicting the possibilities while computing the part of the dag that assigns truth
values to variables. Stage is started with n stones in hand

YjI V Yj2 V Yj3. It is easy to check that the expression yl V ;jlYj2 V ;jl;j2Yj3
has the same truth value asy V Y2 V Yj3. In addition, ify V YY2 V jI;j2Yj3
is true, then exactly one of the three terms is true. Figure 6 represents the portion
of the dag D that checks to see if clause j is true. If the clause is true, then from the
above discussion, exactly one of f, f2 and f3 will be left with c as the only
uncomputed direct ancestor. The stone at the appropriate f can then be moved to

234 RAVI SETHI

xi to

to ’i

from zi/

direct descendant of final node
(not shown)

direct descendant of initial node
(not shown)

FI. 5. The subdag that assigns truth values to x and by computing at most one of them. Ira
stone is ever placed on the direct descendant ofa final node, it remains there until the last step. The com-

putation starts by placing stones on all direct descendants of the initial node

cj. If the clause is false, the computation will be unable to proceed for want of an
extra stone.

Finally we need to show how the remaining nodes in stages through n can
be computed if all clauses are true. Node d indicated in Fig. 7 is a direct ancestor
ofnode c,,. From the discussion above on clauses, node c,, will be computed without
need for an extra stone only when all clauses are true. Node d has n + direct
descendants bo, b l, "", b,, all with stones on them. As soon as c,, is computed
a stone can be moved to d from say bo, and the other n stones can be picked up.
These n stones will be enough to compute any nodes in the dag that remain to be
computed.

REDUCTION 1. Let C be a (3, m, n) satisfiability problem over the variables
xl, x2, ..., x,, where clause i, for all i, 1 =< __< m, has literals Yx, Yi2 and Yi3. The
reduction constructs a dag D and determines an integer k. The value of k depends
only on n and m, and will be equal to 5n / 3m + 1.

The dag D will be divided into a prologue, n + m stages and an epilogue. We
first give the nodes and edges within the stages.

STAGE i, 1, 2, ..., n (see Fig. 5).
Nodes" ri, zi, xi, 2i, ui, i, wi, and

tu, ;u,J O, 1,..., n + 1.

COMPLETE REGISTER ALLOCATION PROBLEMS 235

Edges" (zi, ri)
(w, ,),
(tij, zi), (ij, zi),J 1, 2, ..., n + 1,
(riO, tij), (iO, [ij),J 1, 2, ..., n / 1,
(x,, to), (x,, u,), (, ,o),
(w,, u,), (w,,

STAGE n + i, 1,2,..., m (see Fig. 6).
Nodes" c, fl fi2,
Edges" (ci, fq), j 1, 2, 3.
Edges between stages"

(z, w_ 1), 2, 3, n,
(c,, w.),
(ci, ci-1), 2, 3, m.
Recall that each clause has exactly three literals, and that each literal
y, 1 =< _< m and 1 =< j __< 3, is either the variable x or 21 for some
l, 1 __< __< n. For the definition of the next set of edges, ify Xl, then
we use the symbol y in the definition of the edges to refer to node Xl
in stage l, and the symbol yij to refer to the node l. Otherwise if
yj 2, we use the symbol y to refer to the node l, and the symbol
j to refer to Xl.

See Fig. 6 for the following edges"
(Yq, fq),(q, fu), 1, 2,..., m,j 1, 2, 3, j + 1,..., 3.

from cj/

from.jl j2 Yj3

frm.jl Y,J2 /
from

fjl 2

cj

to cj_

0 direct descendants of fina..__Jl node (not shown)

direct descendants of initial node (not shown)

FIG. 6. The subdag that checks if clause j is true

Once node c,, in stage n / rn is computed, we need to ensure that there are
enough stones to compute any nodes that remain uncomputed. Once node d with
descendants bo, b 1, "’", b, is computed, n stones can be picked up (see Fig. 7).

236 RAVI SETHI

final

LI
b bnu

n m3 al a2 an
FIG. 7. Nodes and edges in the prologue and epilogue. All other nodes and edges have not been shown

EPILOGUE.
Nodes" d, ha, b l, "", b,, final.
Edges" (d, c,,),

(d, bi) O, 1,..., n.
The final node will be an ancestor of all the other nodes in the dag. Its
direct descendants are shown in Fig. 7.
(final, zi), (final, xi), (final, 2i), (final, wi), 1, 2,..., n,
(final, ci), 1, 2, m,
(final, d).

The prologue has been kept to the last since all leaves will be descendants of
the initial node. The purpose ofthe initial node is to force stones to be placed on all
leaves before any nonleaf nodes are computed. With the addition of leaves a 1, a2,.., a,, the initial node has 5n + 3m + 1 direct descendants, making it easy to
show that at least 5n 4- 3m + 1 stones are required to compute D.

PROLOGUE.
Nodes’initial, a l, a2, "", a,.
Edges (see Fig. 7)"

(initial, r), (initial, u), (initial, fi), 1, 2, ..., n,
(initial, fij), 1, 2, ..., m,j 1, 2, 3,
(initial, b), 0, 1, ..., n,
(initial, a), 1, 2, ..., n,
(z 1, initial).

COMPLETE REGISTER ALLOCATION PROBLEMS 237

DEFINITION. A stone is said to be available or free, if it is not on any node, or it
is on a node x, and all the direct ancestors of x have been computed.

LEMMA 4.2. Let C be a (3, m, n) satisfiability problem, and let D be the dag
constructed by Reduction with input C. If C is satisfiable, then D can be computed
using 5n + 3m + stones.

Proof. From the prologue in Reduction 1, the initial node has 5n + 3m +
direct descendants. Thus at least 5n + 3m + stones are required to compute D.

Given 5n + 3m + 1 stones, place them on the direct descendants of the
initial node. Such a step is possible since all descendants of the initial node are
leaves. From the prologue, n of the leaves, viz., a l, a2, an, have the initial
node as their only direct ancestor. Thus a stone can be moved to the initial node
from a l. Once the initial node is computed, node z can be computed in the next
move, since z has only two direct descendants--the initial node and r l, both with
stones on them.

The moment z is computed, n stones become available. These are the stones
that were initially on al,a2, ’’’, an. Let us now refer to Fig. 5. With n stones
available, we can compute one of x and 1, as called for by the solution of the
satisfiability problem. In fact, as Fig. 5 indicates, we can progress through stages
through n computing x or as appropriate. When w, is computed, there are no
more stones available.

At this point, there are stones on all direct descendants of node cl. Refer to
Fig. 6; since the satisfiability problem is satisfiable, each clause is true, so it is
possible to move the stone from one off11, fl 2 and fl 3 to c 1" We can now progress
through the stages corresponding to the clauses, computing c just as c was
computed.

When c is computed, node d (Fig. 7) becomes ready to be computed. Comput-
ing node d makes n stones on nodes b 1, b2, "", b, available. These n stones can be
used to compute any nodes that have yet to be computed.

The lemma follows.
LEMMA 4.3. Let D be the dag constructed by Reduction for a (3, m, n) satisfi-

ability problem C. Let D be computed using 5n + 3m + 1 stones. Then for all
j, <= j <= n, just after w is computed,

(a) for all i, 1 <= <= j, at most one of x and 2i has been computed, and
(b) n -j stones are available.
Proof. From the construction ofthe dag D, the first moves in any computation

will be to compute the initial node, and then node z 1. As in Lemma 4.2, when node
z is computed, n stones become available. We will now prove the lemma by induc-
tion on j.

Basis :.j 1. From Fig. 5, with n stones available it is not possible to compute
both x and 1. A stone placed on either xl or 1 must remain on the node until
the last step. If x1(1) is computed, then the stone at ul(fil) can be moved to
and given the fact that a stone has been left at x1(1), there are n- stones
available. If neither x nor 1 is computed, the stones at u and fil cannot be
moved, and a new stone must be placed on w 1, again leaving n stones available
when w is computed.

For the inductive step, note that the only node that can be computed just
after wj_ is computed is z. With n j + stones available, none of the elements

238 RAVI SETHI

of the set {xl, 1, "’", xj_ 1, ff- that remain to be computed can be touched.
Thus we can only compute nodes in stage j with n j + stones available. As in
the basis, there will be n j stones available when w is computed.

LEMMh 4.4. Let D be the dag constructed by Reduction for a (3, m, n) satisfi-
ability problem. If D is computed using 5n + 3m + stones, then, at all moves
between (and not including) the moves at which w, and d are computed, there are no
stones available.

Proof. From Lemma 4.3, there are no stones availablejust after w, is computed.
We will prove by induction on the number of moves that take place after w, is
computed that the only nodes computed between w, and d are elements of the set
{Cl, c2, "", c,,}, and that there are no stones available at any move.

Since no stones are available initially, none of the elements of the set {x
-., x,, ft,} that remain to be computed can be touched. All of them require one

or more stones. Thus the only node that can be computed is cl. Note that in the
expression YI V 11Y12 V .11Y12Y13, regardless ofthe values assigned to Y11, Y12
and y 13, only one ofthe terms can be true. Thus, as in Fig. 6, just one offl 1, fl 2 and
f13 can be left with c as the only remaining uncomputed direct ancestor. Thus the
stone at the node faj, can only be moved to cl. Since c is a direct descendant ofthe
final node, the stone at Cl does not become available.

The inductive step is very similar to the basis.
LEMMA 4.5. Let D be the dag constructed by Reduction from a (3, m, n) satisfi-

ability problem C. If D can be computed using 5n + 3m + stones, then C is

satisfiable.
Proof. From Lemma 4.3, for all j, < j < n, at most one of xj and 2j has been

computed just after w, is computed. If xj has been computed, assign the value
true to the variable x in C. Otherwise, assign the value false.

Since cl, c2, "", c,, are computed without any extra stones, for all cj, just
after w, is computed, one of fl, fj2 and fj3 is left with cj as its only remaining
uncomputed direct ancestor. As in Fig. 6, at least one literal in clause j must be
true. C is therefore satisfiable.

Problem 1. Given a dag D and an integer k, does there exist a 4-computation
of D that uses no more than k stones. Note that the integer k is part of the input.

LEMMA 4.6 Problem is in NP.
Proof. If the integer k is greater than or equal to n, the number of nodes in the

dag D, then the dag can be computed by placing a distinct stone on each node.
Therefore, suppose k < n.

Given the dag D, and the integer k, let Tbe a nondeterministic Turing machine
that generates a sequence of n pairs, (il, Xl), (i2, X2), (in, Xn), <= <= k, and
xj is a node in D. The integers can be represented in binary notation, and the nodes
by the symbol x followed by an integer in binary notation. The length of the
sequence will be O(n log n).

Intuitively, the pair (i, x) may be thought of as specifying that the stone is
placed on node x.

The Turing machine then scans the sequence generated to see if there is a
computation of D that corresponds to the sequence. The time taken by Tis clearly
polynomial in n, and independent of k.

THEOREM 4.7. Problem is polynomial complete.

COMPLETE REGISTER ALLOCATION PROBLEMS 239

Proof. Given a (3, m, n) satisfiability problem, Reduction constructs a dag
with O(n2 + m) nodes. It is easy to see that dag D can be constructed in polynomial
time. The theorem follows from Lemmas 4.2-4.6.

Reduction 1 constructs a dag in which some of the nodes have large numbers
of direct descendants. We will informally indicate how the dag constructed by
Reduction can be modified so that each node has at most two descendants.

In the prologue, the only node we have to be concerned about is the initial
node. The purpose of the initial node is to force stones to be placed on certain
leaves. A tree of the sort in Fig. 8 would serve a similar purpose. Node zl would
then become the direct ancestor of the root of the tree replacing the initial node.

FIG. 8. Construction used to replace some nodes of high out-degree like the initial node, by a binary
subdag. The high degrees of these nodes is used to force stones to be placed on certain leaves

In stage i, for =< =< n, the reason for providing nodes tio and io with
n- + 1 direct descendants is to force a computation of nodes to and io to
require n + nodes. A dag of the form of the "pyramid" represented in Fig. 9
has been shown in [5] to require as many stones as it has leaves. Nodes rio and o
can be replaced by "pyramids" with n + 1 leaves each.

FIG. 9. A "pyramid" subdag that requires as many stones for computation as it has leaves. Used to

replace high out-degree nodes where the high degree forces a high register requirement

Nodes x and 2 have a number of direct descendants, forcing stones to be
held at certain leaves, until x or is computed. Both nodes x and 2 can be
replaced by trees like the one in Fig. 8. As long as the leafmarked in Fig. 8 becomes
a direct ancestor of rio or io, as appropriate, the other leaves can represent the
other direct descendants of x and ff.

240 RAVI SETHI

Nodes d and the final node would be implemented much like nodes xi and ffi.
It remains to specify how the stages representing the clauses would be imple-

mented. The answer may be found in Fig. 10. Since the modifications above add a
polynomial number of nodes in the dag constructed by Reduction 1, restricting
Problem to dags in which each node has at most two direct descendants can be
shown to be polynomial complete.

from

fro

from c
j+l

to c.
j-I

0 direct descendants of f_JJ3_ql node (not shown)

direct descendants of initial node (not shown)

FIG. 10. Clause-checking using binary operators

5. Permitting recomputation. The reduction in the last section relied heavily
on the ability to hold stones at designated nodes. If recomputation is permitted,
the reductions of the last section have to be suitably modified.

DErINITION 5.1. A computation of a dag D is a sequence of moves in Game 1,
that starts with no stones on any node, places a stone one or more times on every
node and ends with stones on all the roots ofthe dag D. A node is computed when a
stone is placed on the node. A computation of D is said to use k stones if during
some move there are k stones on nodes in D, and during every other move there are
no more than k stones on nodes in D.

When this notion of computation has to be identified, we will use the term 5-
computation.

Example 5.2. Consider the dag in Fig. 11. In order to compute node b, m
stones must be placed on the nodes al, aa, "", a,,. In order to compute node d,
stones must be placed on nodes in the set C {cl, ca, "", cm}. Ifthere are exactly
m stones that may be used, once stones are placed on all nodes in the set C, none
of the nodes in C may be recomputed. In order to recompute a node in C, there
must be a stone on b. Since it takes m stones to compute b, recomputing a node in b
is tantamount to starting anew.

Clearly, treating d as the "initial" node, and elements of C as "leaves", we
can ensure that no "leaves" are recomputed.

Example 5.2 showed how the high "stone requirements" of some nodes
ensured that these nodes would be computed exactly once. We can extend the idea
so that, as in Fig. 12, we can force stones to be held at nodes z, x, and wjust as
in the last reduction.

COMPLETE REGISTER ALLOCATION PROBLEMS 241

cm

a a2 am

FIG. 1. If m stones are to be used, recomputing cx, C2, or c is tantamount to starting anew

0 direct descendants of final node (not shown)

direct descendants of initial node (not shown)

FIG. 12. A mod!fication of the dag in Fig. 5. A construction (not shown) as in Fig. 11 forces the
direct descendants of the initial node to be computed exactly once. The moment the stone at a node
is moved, none of the direct ancestors of the node may be recomputed

REDUCTION 2. Let C be a (3, m, n) satisfiability problem over the variables
xl, x2, "", x,, where clause i, for all i, =< =< m, has literals Yil, Yi2 and Yi3. The
reduction constructs a dag D and determines an integer k. The value of k depends
only on n and m, and will be equal to 8n + 3m + 1.

242 RAVI SETHI

The dag D will be divided into a prologue, n + m stages and an epilogue. We first
give the nodes and edges within the stages. The major changes from reduction are
in stages 1, ..., n and the prologue.

STAE i, 1, 2, ..., n (see Fig. 12).
Nodes" ri, zi, gi, ,i, xi, i, l’li, ffli, hi, wi, and

tij, ij, vij,J 0, 1, n + 1.
Edges" (zi, ri),

(tij, zi), (ij, zi), (vij, zi),J O, 1, n + l,
(tij, gi), (iij, ,i), (vij, hi), J O, l, n + l,
(xi, tij), (i, ij), (wi, vij),J 0, 1, n / l,
(x,, u3, (i, ,),
(v,,._,+ ,, u,), (v,,._,+,, ,).

STAGE n + i, 1,2,..., m (see Fig. 6).
Nodes" ci, fil, fi2, fi3.
Edges" (ci, fij),J 1,2, 3.
Edges between stages"

(zi, wi-1), 2, 3, n,
(c,, w.),
(ci, ci-1), 2, 3, m.
Recall that each clause has exactly three literals, and that each literal
Yij, __< =< m and _<_ j < 3, is either the variable x, or ffl for some
1, __< n. For the definition of the next set of edges, if Yij Xl then
we use the symbol Yi in the definition of the edges to refer to node xt
in stage l, and the symbol ij to refer to the node ff. Otherwise if
yij ff, we use the symbol y to refer to the node fit, and the symbol
pj to refer to x,.

See Fig. 6 for the following edges"
(Yij, fj), (fij, fu), 1, 2,... m,j 1, 2, 3, j + 1,..., 3.

Once node c,, in stage n + rn is computed, we need to ensure that there are
enough stones to compute any nodes that remain uncomputed. Once node d with
descendants b0, b l, ..’, b, is computed, n stones can be picked up.

EPILOGUE.
Nodes" d, bo, b 1, "’", b,, final.
Edges" (d, c,,),

(d, bi),i =0,1, ..., n,
The final node will be an ancestor of all the other nodes in the dag.
(final, zi), (final, xi), (final, Xi), (final, wi), 1, 2, n,
(final, rio), (final, io), (final, rio), 1, 2, n,
(final, ci), 1, 2, m,
(final, d).

The prologue has been kept to the last since all leaves will be descendants of the
initial node. The purpose of the initial node is to force stones to be placed on all
leaves before any nonleaf nodes are computed. With the addition of leaves al, a2

.., a, the initial node has 8n + 3m + direct descendants making it easy to show
that at least 8n + 3m / stones are required to compute D.

PROLOGUE.
Nodes" initial, a, a2, an, pivot, el, e2, esn+ 3m+ 1"

COMPLETE REGISTER ALLOCATION PROBLEMS 243

Edges" (Zl, initial),
(initial, gi), (initial, gi), (initial, hi) 1, 2, ..., n,
(gi, pivot), (,i, pivot), (hi, pivot), 1, 2, ..., n,
(initial, ri), (initial, ui), (initial, 0), 1, 2, ..., n,
(r, pivot), (u, pivot), (0, pivot), 1, 2, ..., n,
(initial, fj), 1, 2, ..-, m,j 1, 2, 3,
(fj, pivot), 1, 2, ..., m,j 1, 2, 3,
(initial, hi), O, 1,..., n,
(bi,pivot), 0, 1,..., n,
(initial, ai), 1, 2, ..., n,
(ai, pivot), 1, 2, ..., n,
(pivot, ei)., 1, 2, ..., 8n + 3m + 1.

LEMMA 5.3. Let C be a (3, m, n) satisfiability problem, and let D be the dag
constructed by Reduction 2 with input C. If C is satisfiable, then D can be computed
using 8n + 3m + stones.

Proof. The proof is similar to the proof of Lemma 4.2.
LEMMA 5.4. Let D be the dag constructed by Reduction 2 for a (3, m, n) satisfi-

ability problem C. Let D be computed using 8n + 5m + stones. Then for all j

<= j <= n, just after w is computed,
(a) for all i, <= <= j, at most one ofx and i has been computed, and
(b) n j stones can be picked up withoutforcing the computation to start anew.

Proof. We will show that nodes on which stones were held in Reduction
also hold stones in this reduction.

First note that all 8n + 3m + stones must first be placed on the nodes
el,e2,’", e8n+3m+ 1" Their direct ancestor, the pivot node, can then be com-
puted. The pivot node has 8n + 3m + 1 direct ancestors, all of which must have
stones on them for the initial node to be computed. As in Example 5.2, a stone can-
not be left on the pivot node. Thus none of the direct ancestors of the pivot node
may be recomputed. Which just says that none of the nodes that were leaves in
Reduction may be recomputed.

When node z is computed, as in Lemma 4.3, n stones become available. We
will now prove the lemma by induction on j.

Basis" j 1. The first node to be computed is z l. Notice what happens when
one of xl, 1 or wl is computed. (See Fig. 12).

Suppose the next node to be computed is Xl. Since xl has n + direct
descendants, there must be n + stones on to,..., l,n. Only n stones were
available before z was computed. We want to be able to say that only n stones
can be picked up after z is computed. Note that r cannot be recomputed. Thus
if the stone at r is moved to z, then z cannot be recomputed. Since Z has
uncomputed direct ancestors, a stone will be held on one of r and z l, leaving n
stones in hand.

The (n + 1)st stone for txo, ..., tin must therefore have come from gl. But
then to,..-, t, cannot be recomputed. Therefore once a stone is moved to

xl, xl cannot be recomputed. Since tlo is also a direct descendant of the final
node, two stones must remain on to and x until the final node is computed.

Now note that we can no longer compute 1 with the n- stones that
remain.

244 rthw SZTH

In order to compute W1, move the stone from u to U l,n, the stone at h to
V lo and place the n stones on v x, "", v 1,,-1. No other situation is possible
(stones cannot be distinguished). Once W is computed, stones must remain on
v l0 and w l, leaving n stones.

The rest of the proof follows that of Lemma 4.3.
LEMMh 5.5. Let D be the dag constructed by Reduction 2 from a (3, m, n)

satisfiability problem C. If D can be computed using 8n + 3m + stones, then C
is satisfiable.

Proof. From Lemma 5.4, when node w, is computed there are no stones free.
Stages n + 1, ..., n + m, which check if each clause is satisfiable, are therefore
just as in Reduction 1. The point here is that the moment a stone is moved from
some nodef to c, c cannot be recomputed sincefj cannot, and the stone therefore
remains on ci. The lemma follows.

Problem 2. Given a dag D and an integer k, does there exist a 5-computation
of D that uses no more than k stones? Note that the integer k is part of the input.

THEOREM 5.6. The satisfiability problem with exactly 3 literals per clause
reduces to Problem 2 in polynomial time.

Proof. The dag D constructed by Reduction 2 from a (3, m, n) satisfiability
problem has O(n2 -+- m) nodes. It is easy to see that dag D can be constructed in
polynomial time. The theorem follows from Lemmas 5.4 and 5.5.

6. Validating register allocations. In this section we consider a seemingly
simpler problem in register allocation. Suppose no value is computed more than
once. Then, for any computation, a register can be associated with each node (see
Example 2.2). In other words, each computation defines a function from nodes to
registers. From Fig. 3, the converse--for each function from nodes to registers,
there exists a computation--is not true. We are interested in determining if given
a function from nodes to registers there exists a computation that computes nodes
into those registers.

DEFINITION. Let Q xl, x2, X, be a sequence of nodes in a dag. Node u
is said to appear before node v in Q, if for some i, j, =< < j =< n, u is xi and v is

x. Node v is said to appear after node u in Q. If a node u appears before node v,
and v appears before node w in Q, then v is said to appear between u and w in Q.
The term occur may sometimes be substituted for "appear".

DEFINITION. Let Q x l, x2, "", x, be a sequence of nodes in a dag D. Q is
called a complete sequence of nodes in D if every node in D appears exactly once
in Q.

DEFINITION. Given a dag D, let L be a function from nodes in D into the set
of names. L will be called an allocation for D. The pair (D, L) will often be referred
to as a program dag, or just program.

Suppose a value is in a specified register. It should be retained in the register,
at least as long as it is needed. It will be needed until all its direct ancestors have
been computed.

DEFINITION. Given a program (D, L), let Q be a sequence of nodes in D.
(Q, L) is said to be consistent if for all nodes u, v and w in D, if

(i) u is a direct descendant of w, and
(ii) v appears between u and w,

then L(u) 4: L(v).

COMPLETE REGISTER ALLOCATION PROBLEMS 245

DEFINITION. Let Q be a complete sequence of nodes in a dag D. Q is called
a realization of a program (D, L) if (Q, L) is consistent, and for all nodes u and v
in D, if u appears before v in D, then v is not a descendant of u.

Completeness of a sequence ensures that an attempt will be made to compute
every node. A realization also forces descendants to be computed before their
ancestors. Consistency ensures that the value of a node will be retained in the
appropriate register, as long as it is needed.

Example 6.1. Consider the dag D in Fig. 1. A computation for this dag is
given in Example 2.2. The example implicitly specifies a function L from nodes
into stone labels. For convenience, L is given below.

node c x tl b t2 t3 a t4

stone 2 3 2 2 2 3

(a)

The sequence of nodes in (a) is a realization of (D, L), that corresponds to the
program in Example 2.2.

c x t2 t3 t4

2 3 3 2 2 2

(b)

Consider the sequence Q in (b). Q is complete, since it contains all the nodes in D.
Moreover, descendants appear before their ancestors in Q. However, Q is not a
realization of D, since (Q, L) is not consistent--the value of node x is needed to
compute tl, but placing a into register 3 destroys the value of x before it can be
used.

Problem 3. Given a program dag (D, L), does (D, L) have a realization?
REDUCTION 3. Given an m-clause satisfiability problem over n variables

x l, x2, "", x,, where for all i, =< m, clause has exactly 3 literals, Yil, Yi2
and Yi3, construct a program dag (D, L) as follows"

1. For all k, __< k __< n, construct two leaves Sk and rag, corresponding to the
literals Xk and k. Let L(Sk) L(rak) Sk.

2. For all i, j, __< __< m, __< j __< 3, construct nodes Pij, qu, ru and ?i, as
in Fig. 13, and edges (qij, Pu), (Pu, ru)" Let L(pu)= Pu, L(qu)= Qij and

L(ru) L(?u)= Ru. Also construct the edges (ql, ?2), (q/E, i3) and
(qi3,il)

F # Ril rilril Fi2Ri ri2 ri3

FIG. 13. The subdag corresponding to a clause

246 RAVI SETHI

The subdag created in Fig. 13 corresponds to clause i. The nodes rij and
correspond to the literals yj and yj.

3. For all i, <= < m, clause consists of the literals YI, Yi2 and Yi3. For all
j, =< j =< 3, since yj is a literal, there exists a k, __< k N n, such that yij
is either Xk or ffk. If yj-- xk, we use the symbol yj to refer to node
and the symbol .ij to refer to node k. Otherwise, if yj ffk, we use the
symbol yj to refer to node gk and yj to refer to node

For all i, j, =< __< m, =< j _<_ 3, construct the edges (rij, yij) and (?ij, .j).
LEMMA 6.2. Let (D, L) be the program constructed by Reduction 3 for a (3, m, n)

satisfiability problem. If the conjunction of clauses is satisfiable, then (D, L) has a
realization.

Proof. We will construct a realization for (D, L).
1. Initially the sequence Q is empty. As a convention, nodes may be added

to Q on the right only. Do step 2 as follows for k 1, 2, ..., n.
2. If the literal xk is true for the conjunction of clauses to be satisfiable, then

add sk, all direct ancestors of s and k to Q. Otherwise, add gk, all direct ancestors
of gk, and sk to Q.

Note that all direct ancestors of s and gk are elements of the set {rj, ?jI =<
< m, _< j =< 3}. Each element of this set has only one direct descendant. More-
over, by construction, for all i, j, < =< m, =< j N 3, both ri and ?j cannot
both be direct ancestors of the same node. Therefore only one of rij and ?j has
been added to Q. Since L(rij is equal only to L(?), (Q, L) must so far be consistent,

3. For all i,j, __< =< m, =< j < 3, if rij has been added to Q, then add pj
and ?i to Q. Note. that pij is the unique direct ancestor of rij, and that for all nodes
x in D, if x 4: p, then L(x) v L(pij).

4. At this stage, note that for all i, j, < __< m, __< j =< 3, ?j has been added
to the list, but that rj may not have. For all i, <= N m, do step 5 below.

5. Consider clause i, given by YI V Yi2 / Yi3. Since the conjunction of
clauses is satisfiable, clause must be true. Without loss of generality, let Yil be
true. We will show that rl appears in Q before

Since Yil is a literal, for some k, 1 =< k __< n, Yil is either xk or k. If Yil is
then, by construction, r is a direct ancestor of sk. Since YI is true, Xk must be
true, so from step 2, above, sk and ri are added to Q.

If, on the other hand, Yil is 2k, then, by construction, r is a direct ancestor
of gk. Since y is true, ffk is true, and gk and r are.added to Q by step 2.

Since both Pi and i2 have been added to Q, node q can now be added to
the sequence Q. Once qia is added to Q, L(i2 (which i2 shares with ri2 can be
used for ri2 unless, of course, ri2 is already in Q. In either case, qi2 can now be
computed, and similarly q3.

LEMMA 6.3. Let ul, u2, v and v2 be nodes in a dag D such that for 1, 2,
u is a direct ancestor ofv Let L(u 1) L(u2) and L(vl) L(v2). Let Q be a realiza-
tion of (D, L). Then v appears before v2 in Q if and only if u appears before u2

(see Fig. 14).
Proof. Suppose u appears before u2, but that v2 appears before v. We will

show that a contradiction must occur.
Since Q is a realization of (D,L), descendants must appear before their

ancestors. Since v is a descendant of u l, it follows that the nodes appear in the

COMPLETE REGISTER ALLOCATION PROBLEMS 247

u U u2 U

V v

FIG. 14. u is computed before u if and only if v is computed before I)

order/)2,/)1, b/l, I’/2. Since U2 is a direct ancestor of/)2, and L(vl) L(/)2), (Q, L)
cannot be consistent. Hence Q cannot be a realization of (D, L), a contradiction.

The converse follows similarly. [3
LEMMA 6.4. Let (D, L) be the program constructed by Reduction 3for a (3, m, n)

satisfiability problem. Let t) be a realization of (D, L). Thenfor all i, <= <_ m there
exists a j, <= j <= 3, such that rij appears before ?ij in Q.

Proof. Suppose the lemma is false. Then there exists an i, 1 <= <_ m, such
that for allj, 1 =< j _<_ 3, ?ij appears before riin Q. We will show that a contradiction
must occur.

Note (in Fig. 13) that L(?j) L(rj). Thus, for (Q,L) to be consistent, any
direct ancestors of ?j must appear before rj in Q. Note also that rij, being a
descendant of qj, must appear before qj in Q. We therefore conclude that"

ql before r2,

ri2 before qi2

qi2 before ri3

ri3 before qi3

qi3 before ri

r before q.

Thus Q cannot be a realization of (D, L), a contradiction.
LEMMA 6.5. Let (D, L) be the program constructed by Reduction 3for an (3, m, n)

satisfiability problem. (D, L) has a realization ifand only ifthe conjunction ofclauses
is satisfiable.

Proof. The "if" part is provided by Lemma 6.2. So we only need to show that
if (D, L) has a realization, then the conjunction of clauses is satisfiable.

Let Q be a realization for (D, L). For all k, =< k __< n, if sk is computed before
k, assign the value true to x; otherwise assign the value false to x.

Suppose this assignment of values is such that the conjunction of clauses is
not satisfied. Then we will show that a contradiction must occur.

Since the .conjunction of clauses is not satisfied, there must be at least one
clause such that all the literals in the clause are false. Let clause be such a clause.

From Lemma 6.4, there exists a j, <_ j =< 3, such that rj appears before
Without loss of generality, let j be 1. For some k, 1 =< k __< n, rl either has s or
g as direct descendant.

Case 1. sk is a direct descendant ofril. Since rl appears before ?1, from Lemma
6.3, s appears before g. Thus x is assigned the value true. By construction, the
literal YI must be x. Hence YI must be true, a contradiction.

248 RAVI SETHI

The other case follows similarly.
LEMMA 6.6. Problem 3 is in NP.
Proof. The proof is straightforward.
THEOREM 6.7. Given a program (D, L), the problem ofdetermining if (D, L) has

a realization is polynomial complete.
Proof. The construction of Reduction 3 can clearly be performed in poly-

nomial time. The theorem follows from Lemmas 6.2-6.6. [-]

7. Practical significance. Fortunately, the dags used in the reductions in
this paper tend not to occur in practice. In most programs, straight line sections
tend to be fairly small. The practical significance of the results that have been
presented is twofold: (i) since the dags that occur in practice tend to be simple,
it would be worthwhile to study register allocation for restricted classes of dags;
(ii) if the dags are small enough, then efficient enumerative techniques might be
worth considering.

Acknowledgments. Interest, suggestions and criticism by John Bruno,
Neil Jones, Ray Strong and Jeff Ullman are greatly appreciated.

REFERENCES

[1] A. V. AHO AND J. D. ULLMAN, Optimization of straight line programs, this Journal, (1972),
pp. 1-19.

[2] J.W. BACKUS, ET AL., The Fortran automatic coding system, Proc. Western Joint Computer Conf.,
vol. ll, 1957, pp. 188-198; also in Programming Systems and Languages, S. Rosen, ed.,
McGraw-Hill, New York, 1967, pp. 29-47.

[3] J. C. BEATTY, An axiomatic approach to code optimization for expressions, J. Assoc. Comput.
Mach., 19 (1972), pp. 615-640.

[4] S. A. COOK, The complexity of theorem-proving procedures, 3rd Ann. ACM Symp. on Theory
of Computing, Shaker Heights, Ohio, May 1971, pp. 151-158.

[5] ,An observation on time-storage tradeoff, 5th Ann. ACM Symp. on Theory of Computing,
Austin, Texas, May 1973, pp. 29-33.

[6] J. E. HOPCROFT AND J. D. ULLMAN, Formal Languages and their Relation to Automata, Addison-
Wesley, Reading, Mass., 1969.

[7] R. M. KARP, Reducibility among combinatorialproblems, Complexity ofComputer Computations,
R. E. Miller and J. W. Thatcher, eds., Plenum Press, New York, 1972, pp. 85-104.

[8] I. NAKATA, On compiling algorithms for arithmetic expressions, Comm. ACM, l0 (1967), pp.
492-494.

[9] R. SETHI AND J. D. ULLMAN, The generation of optimal codefor arithmetic expressions, J. Assoc.
Comput. Mach., 17 (1970), pp. 715-728.

10] P. F. STOCKHAUSEN, Adapting optimal code generation for arithmetic expressions to the instruction
sets available on present-day computers, Comm. ACM, 16 (1973), pp. 353-354.

[11] S. A. WALKER, Some graph games related to the efficient calculation of expressions, IBM Res.
Rep. RC 3628, Yorktown Heights, N.Y., Nov. 1971.

[12] S. A. WALKER AND n. R. STRONG, Characterization offlowchartable recursions, short version,
4th Ann. ACM Symp. on Theory of Computing, Denver, Colo., May 1972, pp. 18-34.

SIAM J. COMPUT.
Vol. 4, No. 3, September 1975

WORST-CASE ANALYSIS OF A PLACEMENT ALGORITHM
RELATED TO STORAGE ALLOCATION*

ASHOK K. CHANDRA AND C. K. WONG"

Abstract. In this paper, a discrete minimization problem arising from storage allocation considera-
tions is studied. Owing to the complexity of finding an optimum solution, a heuristic is proposed and its
performance is analyzed. The worst-case ratio of the cost by this algorithm to that by the optimum
algorithm is shown to lie between 1.03 and 1.04, implying that this algorithm produces a solution
within 4 per cent of the optimum. A generalization of this problem to a class of cost functions is also
considered. The worst-case ratios for these functions tend, in the limit, to that of the cost function
studied by Graham in his classical paper [1].

Key words, approximate solution, discrete minimization, storage allocation on disk packs, arm
contention

1. Introduction. In a time-sharing environment, different programs can
simultaneously attempt to access different data sets on the same disk pack, causing
arm contention. In Appendix A, an abstract model is proposed which leads to
the following discrete minimization problem.

Given a sequence of positive real numbers x >= x2 >=-">_ x,, partition
them into m parts, m >= 2. The parts will henceforth be called rows. Let qj be the
sum of all numbers in row j. Find a scheme for assigning the xi’s to rows so as to
minimize the cost function

(1) C(’=- E qj2..
j=l

Variations of this problem also arise in other situations. For example, Cody
and Coffman [2] studied the problem of placing a set of records on the sectors of
a drum to minimize the average latency time and were confronted with essentially
the same problem. And Garey, Hwang and Johnson [3] in their study of packing
circuits on cards attacked another variation of this problem by means of dynamic
programming.

Graham in his classical paper [1] studied the same partitioning problem but
with a different cost function"

(2) C)= max(q1,..., qm).

He proposed a simple algorithm S and discovered that the ratio of the cost of this
algorithm to that of the optimal algorithm is bounded by 4/3 1/(3m).

Like Graham’s problem, our problem, too, does not seem to have any easily
computable optimal solution--both problems are NP-complete in the sense of
Karp [4]. It is reasonable, therefore, to analyze the performance of nonoptimal
heuristic algorithms. A natural candidate is the algorithm S (2). For our cost

* Received by the editors April 26, 1974, and in revised form August 20, 1974.
? Computer Sciences Department, IBM Thomas J. Watson Research Center, Yorktown Heights,

New York 10598.
This is sometimes called "P-complete" in the literature. We are using, here, the terminology

suggested by Knuth [5]. The proof of NP-completeness involves a straightforward reduction from
Karp’s PARTITION problem, and is omitted.

249

250 ASHOK K. CHANDRA AND C. K. WONG

function (1), it has the significance that it goes through the sequence x 1,

assigning each x to a row (without backing up) so as to minimize the increase in
cost at each step.

As it turns out, the algorithm S performs even better for the cost function
(1) than for (2). In fact, we show in 3 that S never costs over about 4 more than
the optimal algorithm. And there exist examples where S costs about 3 ?/o more
than optimal.

In 4 we analyze the case where there are just two rows.
Section 5 extends these results to the more general class of cost functions of

the form

(3) C(" q
i=1

where e is a real number, e > 1. For each such cost function we consider the
least upper bound of the ratio of the cost of algorithm S to that of an optimal
algorithm, and find that in the limit as e , the least upper bound is the same
as that for the cost function (2).

2. Description of the algorithm S. In this section we describe the algorithm S
and present Graham’s result 1].

Given a sequence of positive real numbers x xl,x2, "", x,, where

xl >= x2 >= >= x,, to partition them into mrows, the algorithm S is the following:
(i) Initialization. Set P l, P2,"" ,Pm to O, -- 1.
(ii) Placement step. If > n, the partitioning is complete. Otherwise, let j

be the index of a row for which p is the minimum of all p’s. Put x in
row j, and set pj - pj + x.

(iii) Repeat. ,-- + 1, go to step (ii).
Note that the algorithm S is nondeterministic since in step (ii) there may be

several values ofj for which pj is minimal. For our cost functions the choice ofj
does not matter, and we will, unless implied otherwise, resolve ties by choosing
the smallest value for j.

Let P be any partitioning of x into m rows, and let C)(x, S) and C)(x, P)
be the costs (2) of S and P. Graham showed that

C)(x, S) 4
(4) C)(x, P) =< 3 3m"

The bound can, in fact, be achieved if n 2m + 1, and

(5)
Xzi-1 Xzi 2m- i, i= 1,...

X2m+ m.

5 2

FIG.

WORST-CASE ANALYSIS 251

For example, when m 2, the optimal partition P is shown in Fig. 1, and

s) 7

C)(x, P) 6"

3. The cost function C{’’. In this section, we consider the cost function (1)
and obtain lower and upper bounds for the least’ upper bound of the ratio of the
cost of S to that of an optimal partition.

DEFINITION. Given any sequence x of numbers, and partition P of x into m
rows, the sum of numbers in row i, =< =< m, is denoted by

(6) qi(x, P)

and the cost is

(7)

(Sa)

(8b)

(9)

and

c(m)(x, P) (qi(x, p))2.
i=l

DEFINITION. Let P be any partition of x into m rows let

r(m)(x P)= c(m)(x’_ S)
c(m)(x, p)’

z(m) 1.u.b. r(m)(x, P).
x,P

The main result of this section can be stated as follows.
THEOREM 1. For all m > l,

37
for m even5g

83
form=3

37

36 36m’ for m odd and m > 5,

25
(10) r(m) <

24"

In particular, for large m, "iS
(m) lies between about 1.03 and 1.04. The upper

bound implies that the algorithm S is at most 4 off optimum.
In order to obtain the lower bound, we have only to modify the examples

given in 2 for m 2 and 3. Thus, for m even, we take m/2 copies of the sequence
3, 3, 2, 2, 2. The resulting ratio will be 37/36. For m 3, we just take the sequence
5, 5, 4, 4, 3, 3, 3, whose ratio will be 83/81. For other odd m, m >- 5, take one element
of size 6 and (m 1)/2 copies of 3, 3, 2, 2, 2, with resulting ratio 37/36 1/(36m).

The lower bound can be tightened slightly by considering more elaborate
examples and by using the worst case for m 2, as will be discussed in 4. For
example, the lower bound for even values of m is improved from (37/36) 1.0278
to 1.0285. The present, examples, however, have the virtue of simplicity.

252 ASHOK K. CHANDRA AND C. K. WONG

The following trivial lemma is useful later.
LEMMA 1. Given nonnegative numbers ql, "", qm, q’i,qj such that qi + qj

q’ -t- qand Iq- ql >= Iq’ ql, we have
2 2q2 +... + q/2 +...

_
qj +... + q,, >= q2 +... + (q,i)2 +... + (q)2 +... + q2m.

If no confusion is likely, we will not distinguish a partitioning algorithm from
the resulting partition.

We now consider the following auxiliary double minimization problem M"
Given an integer >_ 0, a sequence x x l, ..., x of positive numbers and

a nonnegative number c, let P be any partition of x into rn rows yielding row sums
r, ..., r,,. Let b b,..., b= be any sequence of nonnegative numbers such
that Y’.’-I bi c. Define the cost as

(11) C(x,P,c,b) (r + bi)
i=1

(12) M’" Let C(x, P, c) be the minimal C(x, P, c, b) for all such b.

(13) M"" Let c(m)(x,) be the minimal C(x, P, c) for all partitions P of x into
m rows. In the sequel the superscript (m) will be omitted.

The word "minimal" above is in the sense of "greatest lower bound".
The minimization problem M is to find the value C(x, c) for a given x and c.
In the minimization M’ we can imagine that c corresponds to some plastic

sheet of area c, which can be continuously stretched, shaped or broken up, and
put in the right of the solid blocks of size r in the rows (see Fig. 2).

rm-1 bm-1

FG. 2 Y
From Lemma 1 it is easy to prove the following.
LEMMA 2. Given x, a partition P of x into m rows and a positive2 number c,

there exists a sequence b* b, ..., b*m for b, satisfying the constraints in M, that
minimizes C(x, P, c, b) and has the following properties:

(i) r + b.*, rj + b for all b.*, b > O. Let this common value be y.
(ii) If r < y, then b.*, > O.

When c 0 the minimization of C(x, P, c, b) in M’ is trivial.

WORST-CASE ANALYSIS 253

The value y will also be referred to as the boundary value of P (see Fig. 2).
Note that conditions (i), (ii) define b* uniquely. We extend this definition to
c 0, then b* is the sequence of m zeros.

LEMMA 3. Given x, P, c where c > O, and let i, j <= m. Suppose the numbers in
row (in partition P of x) are further partitioned into two (possibly empty) parts
whose sums total u and v, and let w, x be similar sums for row j and suppose u > w
and v >_ x. Then let P’ be the partition obtainedfrom P by transferring all numbers
corresponding to vfrom row to row j, and all numbers corresponding to xfrom rowj
to row i. Then C(x, P,) > C(x, P’, c).

Proof. Let b* be the sequence that minimizes C(x, P, c, b) as in Lemma 2.
We have the following cases (see Fig. 3)"

p p’

u

case(i)

ly case(iii)(a)

case (ii)

o

case (iii)(b)
F. 3

(i) b’ > 0, bj*. > 0. Clearly the boundary values of P, P’ are the same and
C(x, P, e) C(x, P’, e).

(ii) b3 0, b’ 0. Again the boundary values are the same, and as
[(u+v)-(w+x)l_>_l(u+x)-(w+v)], by Lemma 1, C(x,P,c)
> C(x, P’, c).

(iii) b’ 0, b’ _<_ (u + v) (w + x). Without loss of generality, we assume
that u + x > w + v. There are two subcases"

254 ASHOK K. CHANDRA AND C. K. WONG

(a) b’ =< (u + x) (w + v). Again by Lemma 1, C(x, P, c, b*) >= C(x, P’, c, b*)
and hence C(x, P, c) > C(x, P’, c).

(b) b>(u+x)-(w+v). Let b’ be the same as b* except that
=1/2 (w + v + b’-(u + x)), b)= b]- b’i; then by Lemma 1, C(x, P, c, b*)
> C(x, P’, c, b’) and hence C(x, P, c) > C(x, P’, c).

We now return to the question of finding an upper bound for r("). Clearly
the algorithm S is optimal when n =< m. Given a sequence of positive numbers

xl >= x2 >= >= x,, n >= m, we will apply the algorithm S to part of the sequence
in the following way"

(i) Place xi in row for < __< m.
(ii) Place Xm+k in row rn k + 1, for k 1,2,..., as long as k __< rn and

Xm+k >= 1/2Xm-+ 1" Otherwise stop.
Suppose the subsequence thus placed is x’= xl,’", Xm+o, ko >= O. We

have the following property"

(*) The sum ofany two numbers in the subsequence x,,-o+ Xm-o+ 2, "’’,Xm+ko
is not smaller than any one number in the subsequence.

Let S’ denote the partition ofx’ as above (see also Fig. 4). Let e . +o + x.

Xm_ko+l

X

x 2

Xm’JXm/l

.--- Xm+ko

C

FIG. 4

Then the minimization problem M for x’, c has a solution that agrees with S’.
This can be restated as follows.

LEMMA 4.

(14) C(x’, c) C(x’, S’, c).

Proof. Suppose P is a partition of x’ such that C(x’, c) C(x’, P, c). We will
show that by a sequence of cost-preserving transformations similar to those in
Lemma 3, P can be transformed into S’ one row at a time.

First transform P into Po such that in Po no row has three or more elements"
if any row, say row i, has three or more elements, there must be a row, say row j,
which has either no element, or just one element x where rn- ko + __<l
__< rn + ko. Then by property (*) above and Lemma 3, all but two elements can
be transferred from row to row j. This process must eventually stop to give Po.

WORST-CASE ANALYSIS 255

For any i, 0 <= < m, Pi is now transformed as follows into Pi+ such that"
(i) C(x’, Pi, c) > C(x’, P+I, c); (ii) in P+I the first + rows are identical with
those in S’; and (iii) every row in P+ has at most two elements. Without loss of
generality, we can assume that xi+ is in row + of P (by permuting the rows).

Case (i). <= m ko 1. If row + contains only xi+ 1, P is the desired
partition P+ otherwise row + 1 contains another element Xk, and there must
exist a row, say row j, j > + 1, with at most one element. Then Xk can be moved
to row j (Lemma 3) to give the desired

Case (ii). > m ko 1. All rows numbered + and greater must contain
exactly two elements. If row + 1 contains xi+ and Xzm-, we have the desired

P+ otherwise row + contains x+ and some Xk, and some row j (j > + 1)
contains xt and X2m_ i. But x+ >--_ x, Xk >= X2m- i, SO Xk and x2,.- can be inter-
changed (Lemma 3) to give P + 1. This completes the proof of Lemma 4.

Define

(15) K(m) 1.u.b.
Pl ,"" ,Pro
Pl

(p,) (p’,)
i=1 i=1

where ,--1 P, "=1 P’, each pi, p’ >__ O, and max {p,} <__ -3
a min {p}.

LFMMA 5. For any x, let x’, c be defined as above. Then

c(m)(x, S)
(16) 1.u.b. _< K(")

C(x’, c)

Proof. Assume (16) is false, and let m be the smallest number of rows for
which this is so. Let x x l, "", x, be a vector such that

(17)
c(m)(x, S) K(m)>
C(x’, c)

Clearly c > 0. Let ko, y, S’, b* also be defined as above. Let rl,’", rm be the
sums of numbers in the rows for partition S’ of x’, and q l, "’", qm the sums for
partition S of x.

Case (i). For some j, rj > y. We have a contradiction as follows. S agrees with
S’ for xl, ..., Xm+ko. Further, min {qi} <= Y, so that S will not place any additional
element in row j, and hence rj q. If we now consider the vector x which is
the same as x except that the elements in row j are removed, and we consider m
rows, then all rows in S, S’ remain the same, but with row j removed, so that

c(m-1)(x1, S) C(m)(X, r K(m)
C(m l’(Xtl, c) C-= i)--x- - .j2. >

i.e., we have a smaller counterexample.
Case (ii). For every j, rj <= y. Now max {qi} >= Y, and for any row, once the

row sum exceeds or equals y, the algorithm S will place no additional x in this
row. Thus

max {q,} min {q,} <= x’ < Xm+ko + 1,

256 ASHOK K. CHANDRA AND C. K. WONG

where x’ is the last number placed in the row with final sum max {qi}. By con-
struction,

x,,+ko+ < 1/2 min {ri} __< 1/2 min {q,}.

Therefore, max {q} __< 23- rain {q} and (17) cannot be true--again a contradiction.
LEMM, 6. (") =< 25/24.
Proof. Let x’, c be defined for x as above. Then

z(m) 1.u.b.
c(m)(x’ S) C(")(x, S)

,,,e C5P) --< 1.u.b.,, C(x’, c)

since C(")(x, P) >_ C(x’, c) for all x, P. Thus Zero)_<_ K") (by Lemma 5), and it
remains only to show that Kera) _< 25/24. Consider the continuous minimization
problem M*:

Find a piecewise continuous and monotonically nonincreasing function
q(t), 0 <= <= m such that

(i) q(O) =< -q(m),
(ii) q(t)dt s (s is some constant),

(iii) .’ q2(t)dt is maximized.

If q,(t) is a solution, then

q2,(t) dt(18)
Km)

s2/rn
It is easy to show that q.(t) must satisfy

3x, O<=t <k,
q,(t)=

2x, k< <=m,
where x, k are parameters to be determined (Fig. 5).

m

FIG. 5

By condition (ii), k (s 2mx)/x and j’’ q2,(t) dt 5sx 6mx2, which has
maximum value

25 s2 5s
when x

24 m 12m"
K(m) 25/24 follows by using (18).

The upper bound on T(m) can be sharpened by computing Km) for specific
values of m. Thus z(3) < K(3) 51/49 and z(4) =< K(4) 26/25.

WORST-CASE ANALYSIS 257

4. The case ofm 2. Unlike the general case of rt"), the value of "U(2) has been
determined.

THEOREM 2. rt2) 1.0285, and is achie/)ed by a sequence of the form y, y, z, z, z,
where z 7(1 + 5x)y.

Proof. In order to maximize the ratio Ct2)(x, S)/Ct2(x, P) we can assume that
the elements of x sum to 1. We first show that in order to maximize Ct2(x, S)/
Ct2(x, P) we need only consider those x, P where (i) Ct2(x, P) _<_ Ct2)(x, S), and
(ii) x, >_ Iq(x, S) q2(x,

The former is trivial. Also as Ct2(x, P) r2 + (1 r)2, where r max qx(x, P),
qe(X, P)}, is a monotonically increasing function of r in 1/2 _<_ r < 1, from (i) we see
that

max {ql(x, P), q2(x, P)} < max {q(x, S), q2(x, S)}.

To prove (ii), suppose we are given P, x x, ..-, x,, satisfying (i) such that
x, < Iql(x, S) q2(x, S)I. Suppose qx(x, S) > q2(x, S) (the case q2(x, S) > qx(x, S)
is similar). Then x, must be in row 2 (of partition S). Let x’ x,..., x,_.
Clearly qa(x’, S) ql(x, S), qz(X’, S) qz(x, S) x Arbitrarily, let x, be in row
2 of P, and let P’ be the partition for x’ that agrees with P over x’. For notational
convenience, let u qz(x, S),/) qz(X, P). Then we claim that

C(2)(K S) C(2)(x, S)
C(2)(x’, p’) C(2)(x, p)’

i.e., that

If we let

then

(1 u)2 -- (u Xn)2 (1 /)2 A_ /,/2

(1 -/))2 _+_ (/)_ x.)Z >= (1 /))z _+_

C l(X (1 u)2 -+-(u x)2
t(x)

C2(X) (1 /))2 _[_ (V X)2’

dt 2(C,(x)(v- x)- C2(x)(u x))
dx (C2(x))2

But as v >__ u >_ x, and Ca(x) >= C2(X), we have dt/dx >__ O. We can make the sum
of all numbers in x’ equal to by scaling up all numbers by the same ratio. Hence,
given any x, P satisfying (i) but not (ii), we can successively remove the smallest
elements from x until (ii) is also satisfied, and we obtain an example for which the
ratio of the cost of S to that of P is at least as large as for x.

We now show that we need only consider those x, P where (iii) x contains
exactly 5 elements.

The algorithm S is optimal for any x with no more than 4 elements. The cost
C(2)(x, P) is a monotonically increasing function of the difference Iq(x, P) qz(x, P)[
of the row sums, henceforth called the gap in P, and there is an example, viz.,
x 1/4, , , , , for which this difference is - for S and zero for optimal P. Thus
any x, P for which the ratio ofthe costs is larger, must have [ql(x, S) qz(x, S)[> ,

258 ASHOK K. CHANDRA AND C. K. WONG

and by condition (ii), x, > -; but this is possible only when n _<_ 5 since x,, <__ 1/n.
Given anyx=xl,x2, ,Xs, withxi >xi andx > we havexl <1/2+1

It follows that the sum of any three of the xi’s is greater than that of the other two.
The optimal partition P must have x, x2 in one row and x3, x4, x5 in the other.
There are two cases (see Fig. 6) as follows.

S

CASE ()

s P

CASE)(a)

.x’, ’1 ,,,1 ’ ’ 5

CASE(i)(c)

CASE i)

FIG. 6

Case (i). xx + x4 > X2 + X3 Since x5 > , we have X2 + X3 Av X > 1/2
> x + x4. S is therefore as shown in Fig. 6. Let P be the optimal partition (with
x, x2 in one row and x3, x, x5 in the other), and let the ratio C(2)(x, S)/C(2)(x, P)
be T.

(a) Let xl x2 gl, (x + x,) (x2 + x3) g2. Then gl >__ g2 since
x3 >= x4. For any e, 0 < e __< 1/2g2, replacingx by x’ x e, x 2 by x2 x2 + e
will result in a larger gap in S but will have no effect on the gap in P. Thus it has
a larger T.

Increasing e to 1/2g2, we have in the resulting configuration x’l + x, x + x3.
(b) Ifwenowreplacex’byx X’l e, xzbyx2 x2 + e,x,byx4 x4 + ,

and x3 by x3 x3 e, where e > 0 and x >= x2, z will remain unchanged. Thus,
we increase e to (x’ x2)/2 resulting in a sequence x, x2, x3, x4, x5 such that
X1 X2, X3 X4

WORST-CASE ANALYSIS 259

(c) Finally, replacing x5 by x; x5 + 2e, x, by x] x,- e, and x’3 by
x3 x3 e, where e > 0 and x =< x3, will increase the gap in S by 2e and leave
the gap in P unchanged.

Thus, increasing e to (x’3 xs)/3 will result in a sequence Xl, x2, x4, x3, xs
such that xl Xz,X4 Xa xs.

Case(ii). xl + x4 <= x2 + x3. S and P are as shown in Fig. 6. Replacing x3 by
x x3 e and x4 by x, x4 + e, where 0 < e _< ((x2 + x3) (Xl + x4))/2,
will increase z. Therefore, we increase e to ((x2 + x3) (xl + x4))/2, resulting in

This is similar to thea sequence xl,xz,xa,x4,x5, with Xl + x4 x2 + x3.
Case (i)(a) above.

In conclusion, the maximum value of z is achieved by a sequence of the form
y, y, z, z, z, and the determination of this value is trivial.

5. Other cost functions. The Theorems 1, 2 stated above for the cost function
C(m) also apply, with minor modifications, to the more general class of cost func-
tions C and C(m) > 1"

(19a) C)(x, P) max qi(x, P),

(19b) CT)(x, P) (q,(x, P))"
i=

For these cost functions, we define z)(x, P), ff)(x, P), z), zm) as in (8a), (8b)---see
Appendix B. Graham [1] studied the case of C and showed that z)= 4/3

1/(3m). In this section we consider the case of C"). It is clear that when e 2,
we have essentially the case of Ct"), and

(20)

For the class Ct), the optimization problem is nontrivial in that the following
is NP-complete (in the sense of Karp [4]) for every pair of integers rn, e > to
decide if, for a given sequence x of rational numbers and a rational c, there is a
partition P such that cm)(x, P) =< c. The proof is easy and is omitted.

Below we use (m mod m’) to mean m m’ [m/m’J.
THEOREM 1’. For any integer rn > and real number > 1,

(21) L-(m) >= maX(m, [,J((4m’ 1)" + (m’- 1)(3m’ 1)) + (mmodm’)(3m’)

(22) m)__<

m(3m’)"

2.3 3.2

(a 1)/

When 2 these simplify to (9), (10) after using (20).
Proof. The lower bound (21) is constructed by taking a sequence x consisting

of (m mod m’) numbers of magnitude 3m’, and [m/m’J copies of the sequence
2m’- 1,2m’ 1,2m’ 2,2m’ 2, ..., m’,m’,m’.

The upper bound is obtained as in the proof of Theorem 2. We can show that

(23) r: < max ;(q(t))" dtl 1/

m(s/m)

260 ASHOK K. CHANDRA AND C. K. WONG

where q(t) is a piecewise continuous monotonically nonincreasing function in
0 =< =< rn such that q(0) =< -q(m) and j’’ q(t)dt s. The right-hand side of (23)
gives the upper bound (22).

In the limit as oo and m is constant, the lower and upper bounds are
4/3 1/(3m) and , respectively (for the lower bound the maximum is obtained
for m’= m).

THEOREM 2’. r2) is achieved by a sequence of the form y, y, z, z, z where y/2
<z<y.

In the limit as oo, (z/y) - and z2) 67-.
The proof of Theorem 2’ is almost identical to that of Theorem 2.
Table 1 lists the lower and upper bounds (21), (22) for some values of , m,

and the values ofz2) obtained from Theorem 2’. The zZ),s are given in percentages,
obtained by 100(r2) 1);so are the bounds.

TABLE

1.0
1.5
2.0
2.5
3.0
4
5
6
7
8
9
10
15
20
25
50
100

Lower bound

Upper bound z2}(%)
z’l()) 10 25

0 0 0 0 0 0 0
1.03 .69 .60 .56 .69 .67 .71
2.06 1.38 1.23 1.11 1.38 1.32 1.42
3.10 2.05 1.86 1.65 2.05 1.97 2.11
4.13 2.70 2.50 2.18 2.70 2.60 2.77
6.17 3.95 3.78 3.19 3.95 3.80 4.04
8.17 5.09 5.05 4.15 5.09 4.90 5.19
10.10 6.12 6.27 5.19 6.12 6.05 6.23
11.94 7.05 7.42 6.36 7.05 7.18 7.16
13.69 7.86 8.49 7.52 7.86 8.23 7.98
15.33 8.59 9.48 8.64 8.79 9.21 8.70
16.87 9.22 10.38 9.71 9.71 10.10 9.33
23.08 11.45 13.72 14.08 14.08 14.08 11.52
27.35 12.70 15.71 16.92 16.92 16.92 12.76
30.38 13.48 16.97 18.78 18.78 18.78 13.53
37.89 15.06 19.57 22.65 24.15 24.12 15.08
42.82 15.86 20.89 24.64 27.04 27.82 15.87
50.00 16.67 22.22 26.67 30.00 32.00 16.67

For any x, P we have lim C"(x, P)= C(x, P). In view of this, and the
similarity between z" and z as - , in.Theorems 1’, 2’, the following may be
anticipated.

THEOREM 3.

WORST-CASE ANALYSIS 261

Proof. Since z") is bounded for all e, it must have lower and upper limits _/, i,
respectively"

(25) lim _tin)

(26) i= lim zm).

It suffices to show that

(27) > r
and

(28) =<).
To show (27), we use the fact, stated in 2, that there exists an x and partition P such
that z z)(x, P). For all ,

(qi(x, S))Ot
z(m) >= z(m)(x, p) i:

_- (qi(x, P))Ot

As e , (1/m)/r , proving (27).

m/ax qi(x, S)Ot

Suppose (28) is false. By definition of i, for every 6, o > 0 there exists an
> o such that zm)> 6. Choose 6 such that 6 >) + 6. Then for

all >__ o, rm) >) + 6. Choose a sequence of triples (j, xj, Pj), j 1, 2,
such that --, o and for all j, z)(x, P) > z + 8. Then

m1/OtJ’(om>(Xj, Pj)-- ml/Ot’r < ml/OtJ(T.(a.)(Xj, Pj) ().

But this is a contradiction for some large enough aj since is independent ofj.
This concludes the proof of the theorem.

6. Conclusions. This paper adds one more example to the rapidly growing
body of literature [6]-[14] dealing with near-optimal algorithms. For most cases,
the computation to obtain solutions is prohibitively large and heuristics become a
necessity. It is relevant, in such cases, to evaluate the performance ofthese heuristics.
The heuristic studied in the present paper performs very well for our particular
problem. One would conjecture that this algorithm with minor modifications
might perform as well for the following variation of the present problem. Given a
set of mk positive numbers, partition them into m parts of k each so that the corres-
ponding cost functions (1), (2) and (3) are minimized. This problem corresponds to
the physical situation offully packed storage and bounds on the performance ofthe
heuristic are still under investigation.

262 ASHOK K. CHANDRA AND C. K. WONG

Appendix A. An application. We use the following abstract model: suppose
we have m disks of large capacity; n data sets are to be allocated to these m disks.
Assume that each data set is associated with a number xi, 0 < xi < 1, which is
its access probability. Therefore, we have n independent Bernoulli trials simul-
taneously in progress. The time axis is discretized, and at each point, the sequence
xl, "’", x, completely characterizes the access pattern of the entire collection of
data sets. Simultaneous access to the same disk causes conflict. The problem is
to formalize the notion of conflict and to find a placement of the n data sets such
that conflict is minimized. Depending on the physical situation, there are many
ways to define conflict, and we mention only one very simple way here.

Suppose data sets Dg,,..., Dk are placed in disk i. Suppose their access
probabilities are x,,..., xik. We can imagine that there are k windows; with
probability xj, the jth window will display the number 1, and with probability

xij, it will display 0. We define conflict in disk i, Ci, as the expected number of
pairs of l’s. Therefore

c, -5j,l
Xij tj

j=l j=l

If we define total conflict C = C, then

(29) C x,j - ,.
i=1 j=l i= j=l

For a given sequence {x}, <= <= n, the second term is a constant. Therefore,
minimization of (29) reduces to minimization of the first term.

If the capacity of a disk is large relative to n, we can assume that we can place
as many data sets as desired on one disk. Then the problem of minimizing total
conflict is exactly the problem we mentioned in 1.

If such an assumption is invalid, we then have to consider the bounded
problem as mentioned in 6.

Appendix B. Notation and definitions.
x ordered sequence of numbers x l, x2,

Y

P,Q
S

qi(x, P)

.., x, such that

X1 > X2 > > Xn > O.
ordered sequence of numbers (like x).
number of rows.
partition of an ordered sequence of numbers into m rows.
algorithm (2). This symbol also denotes the partition resulting
from this algorithm.
sum of numbers in row of partition P of x (number of rows rn is
implicit) (3;(6)).

c(m)(x’ P) E (qi(x, p))2 (3; (7)).
i=1

C(")(x, P)
1/

(qi(x, P)) (5).
i=1

WORST-CASE ANALYSIS 263

C)(x, P) max qi(x, P) (5).

zt")(x, P) Ct")(x, S)/Ct")(x, P) (3; (8a)).

"r")(x, P) C")(x, S)/C’)(x, P) (5).

z)(x, P) C)(x, S)/C)(x, P) (5).

zt") 1.u.b. zt’)(x, P) (3; (8b)).
x,P

z’’) 1.u.b. %(x, P) (5).
x,P

"r 1.u.b. Zoo(X, P) (5).
x,P

C(x, P, c, b) (3 (11)) (m is implicit).
C(x, P, c) (3;(12)) (m is implicit).
Ct")(x,) (3 (13)).
C(x, c) (3; (13)) (m is implicit).
/" (3; (1)).

REFERENCES

[1] R. L. GRAHAM, Bounds on multiprocessing timing anomalies, SIAM J. Appl. Math., 17 (1969),
pp. 416-429.

[2] R. CODY AND E. G. COFFMAN, Record allocation for minimizing expected retrieval costs on drum
type storage devices, Tech. Rep. 147, Computer Science Department, Penna. State Univ.,
College Park, February, 1974.

[3] M. R. GAREY, K. F. HWANG AND D. S. JOHNSON, Economic aspects of designing standard library
jbr circuit cards, Tech. Rep., Bell Labs., to appear.

[4] R. M. KARP, Reducibility among combinatorialproblems, Complexity ofComputer Computations,
R. E. Miller and J. W. Thatcher, eds., Plenum Press, New York, 1972, pp. 85-103.

[5] D. E. KNUTH, A terminological proposal, SIGACT News 1974, 6 (1974), pp. 12-18.
[6] R. L. GRAHAM, Bounds on multiprocessing anomalies and relatedpacking algorithms, Proc. Spring

Joint Computer Conf., Atlantic City, N.J., 1972, pp. 205-218.
[7] M. R. GAREY, R. L. GRAHAM AND J. D. ULLMAN, Worst-case analysis of memory allocation

algorithms, Proc. 4th Ann. ACM Symp. on Theory of Computing, Denver, Colorado, 1972,
pp. 143-150.

[8] D. S. JOHNSON, Approximation algorithms for combinatorial problems, Proc. 5th Ann. ACM
Symp. on Theory of Computing, Austin, Texas, 1973, pp. 38-49.

[9] C. K. WONG, C. L. Lu AND J. APTER, A drum scheduling algorithm, Lecture Notes in Computer
Science, vol. 2, K. Indermark, ed., Springer-Verlag, Berlin, 1973, pp. 267-275.

[10] C. L. LIu, Optimal scheduling on multi-processor computing systems, Proc. 13th Ann. IEEE Symp.
on Switching and Automata Theory, College Park, Maryland, 1972, pp. 155-160.

[11] J. NIEVERGELT AND C. K. WONG, On binary search trees, Information Processing 71, North-
Holland, Amsterdam, 1972, pp. 91-98.

[12] C. K. WONG AND D. COPPERSMITH, A combinatorial problem related to multimodule memory
organizations, J. Assoc. Comput. Mach., 21 (1974), pp. 392-402.

[13] R. M. KARP, A. C. MCKELLAR AND C. K. WONG, Near-optimal solutions to a 2-dimensional
placement problem, IBM Res. Rep. RC 4740, IBM T. J. Watson Res. Center, Yorktown
Heights, N.Y., 1974; also in this Journal, to appear.

[14] P. C. YUE AND C. K. WONG, Near-optimal heuristics for the two-dimensional storage assignment
problem, IBM Res. Rep. RC 4729, IBM T. J. Watson Res. Center, Yorktown Heights, N.Y.,
1974; also in Internat. J. Comput. and Information Science, to appear.

SIAM J. COMPUT.
Vol. 4, No. 3, September 1975

IMPROVED DIVIDE/SORT]MERGE SORTING NETWORKS*

R. L. (SCOT) DRYSDALE III" AND FRANK H. YOUNG,

Abstract. This paper develops sorting networks using the divide/sort/merge strategy. These
networks require

(0.25)N(log2 N) (0.386)N(log2 N) + O(N)

comparison-interchanges to sort a list of length N. This is an improvement of order N(log2N) over the
best networks previously reported. (Using different methods, Van Voorhis [8] has improved upon these
results.)

Key words, networks, sorting networks, sorting algorithms, divide/sort/merge stra.egy

1. Introduction. In this paper we develop an improved divide/sort/merge
algorithm for nonadaptive sorting. Equivalently, we develop improved sorting
networks using the divide/sort/merge strategy. Our algorithm is an extension of
procedures due to Batcher 1], Green [4] and Van Voorhis [6], [7]. We first discuss
some necessary preliminaries.

We will adopt the convention that a sorting algorithm operates on the contents
of a linear array (or list). The operation consists of a succession of "comparison-
interchanges" at the conclusion ofwhich the contents ofthe list should be ordered,
with smaller numbers in lower numbered locations of the list; c(b), 1 < b _< N,
will denote the contents of position b of the list, and [a’b] will denote the com-
parison-interchange which compares c(a) with c(b) and interchanges them if
and only if c(a) > c(b).

We will frequently make use of the "zero-one principle"" if a sorting network
sorts all possible sequences of O’s and l’s into nondecreasing order, then it will
sort any arbitrary sequence of numbers into nondecreasing order. For a proof,
see Knuth [5, p. 224].

To sort a list oflength 2k, (k even) by Batcher’s "odd-even merge", one initially
sorts the first and second halves of the list. Since the contents of the odd (and even)
numbered locations in each half are sorted after this initial step, the process of
sorting the contents of all the odd (or even) numbered locations can be done by
merging two sorted lists. It will be helpful to visualize the list as a k 2 array where
the first (second) column is the odd (even) numbered locations in ascending order.
At the conclusion of the sorts and merges referred to above, the rows and columns
of this k 2 array are sorted. However, the list is not completely sorted.

After the initial step of the sort, each half of the array has at most one row
with both a zero and a one. After the merge step, there are at most two such rows.
Thus the portion of the array which is (possibly) out of order is any square (2 2)
subarray. Such an out-of-order square will be row and column sorted and, when
it exists, it will be called the square ofuncertainty.

Received by the editors August 21, 1973 and in revised form March 27, 1974.
]" Department of Computer Science, Stanford University, Stanford, California 94305. This research

was performed while this author was a student in the Honors Program at Knox College, Galesburg,
Illinois.

J; Department of Mathematics and Computer Science, Knox College, Galesburg, Illinois 61401.

264

IMPROVED DIVIDE/SORT/MERGE SORTING NETWORKS 265

If the square of uncertainty starts with the ith row, then the comparison-
interchange [2i’2i + 1] may be needed to order the list. Since the square of un-
certainty could begin in any row except the last, Batcher’s sort will be completed
by the additional comparison-interchanges [2i’2i + 1], __< < k. Note that
Batcher’s sort is completed by first finding a sort for the (row and column sorted)
square of uncertainty and then performing this sort in all possible positions of
the square of uncertainty.

Green [4] extended Batcher’s algorithm by dividing the original list (of length
4k, with k a multiple of 4) into 4 parts. First each of these parts is sorted. Then
(viewing the list as a k x 4 array) each column is ordered by merging its 4 sorted
parts. Now the array has at most 4 rows of mixed 0’s and l’s, i.e., there may be a
4 x 4.square of uncertainty somewhere in the array. Green developed a sort for
this (row and column sorted) square which takes 21 steps. Green’s sort is concluded
by performing this 21-step sort in all possible positions ofthe square ofuncertainty.
Green’s 21-step sort is constructed so as to insure a large amount of overlap when
it is done in successive positions.

In this paper we develop methods for sorting 2 x 2 squares which are row
and column sorted. These sorts provide the necessary final step for a divide/sort/
merge procedure where the original list is divided into 2 lists. Our method
reduces to Batcher’s when r and to Green’s when r 2.

2. Description of the sort. Our sorting networks will operate on lists of
length 2" which we will view as if they are 2 x 2 arrays, 2r __< n. The element
in position (s, t) of the array is at position (s 1)2 + in the list; c(s, t) will denote
the contents of position (s, t). The ith subarray ofwidth 2" will refer to the positions
in 2" successive columns where the number ofthe last column is i. 2". Two columns

and 2 are corresponding columns (of subarrays of width 2") if t2 (mod 2").
Two positions are corresponding positions if they are in corresponding columns
and in the same row.

We now define sets of comparison-interchanges, Sw,k, where __< w _<_ r and

=< k _<_ r. When w > k,

Sw, {[(s, t).(s + 2w-, 2)]},

where is a column in the,right half of a subarray of width 2w. When w < k,

Sw,k {[(s, t)’(s + 1, 2k + 2

where is a column in the right half of the ith subarray of width 2 where -_- 0
(mod 2k-w) together with

{[(s, t) (s + 2 1)3},

where is a column in the right half of the jth subarray of width 2 where j 0
(mod 2k- w).

The comparison-interchanges in Sw,k form regular geometric patterns when
applied to an array. Figures and 2 depict these patterns when the original array
is 2 x 2. Figure shows the action of Sw,k, W >= k, on a subarray of width 2’.
Figure 2 shows the action of Sw,k, w < k, on a subarray of width 2k which has

266 R. L. DRYSDALE AND FRANK H. YOUNG

been rearranged so that it is an array of width 2w. In each case the region labeled A
is compared with the region labeled B.

2

2

FIG.

2w-k

2r+k-w

2

2

FIG. 2

We shall call a comparison-interchange in Sw,k special when it is of the form
[(s, t)’(s, + 2 1)], where (s, t) is in the left half of a subarray of width 2k and
(s, / 2 1) is in the right half of a subarray of width 2k.

We also define three types of comparison-interchanges which we later
eliminate.

Type 1. The special comparison-interchanges in Sw,k in the first + 2(2 k i)
rows and the last / 2(i l) rows in the ith subarray of width 2k.

Type 2. Comparison-interchanges in Sw,k between two positions in the first
(last) row which both lie in an odd (even) numbered subarray of width 2k- 1.

Type 3. When k __< r 1, the comparison-interchanges in Sw,k between two
positions in the second (next to last) row which both lie in the first (last) subarray
of width 2k- 1.

Note that each type of comparison-interchange defined above is between
positions which are in the same row. Hence they only occur in Sw,k when w < k.

We now define Sw,k to be Sw,k minus any comparison-interchange of types 1,
2 or 3 which occur in it.

We let G, Sr,kS 1,k SI,k and G, Sr,k 51,k.
THEOREM. GIG G will sort a 2 2 array which has been row and

column sorted and whose square ofuncertainty is of size 2 2.
The somewhat lengthy proof of this theorem comprises 4 of this paper.
When n >__ 2r, the sorts and merges that begin the divide/sort/merge strategy

leave an array which satisfies the conditions of this theorem. For a discussion of
methods which will adapt the divide/sort/merge strategy to arrays of arbitrary
length, see Van Voorhis [6], [7].

IMPROVED DIVIDE/SORT/MERGE SORTING NETWORKS 267

3. Numerical results. We now count the number of comparison-interchanges
required to sort a list of length 2", n a multiple of r, using a 2’.-way divide/sort/merge
strategy.

The number of comparison-interchanges in Sw,k is 2’.-1(2"-’. 2w-k) when
w >__ k, and is (2" u-k2w)/2 when w < k. Thus the total number of comparison-
interchanges in GGz G is

k12"-2’-k2w
g.,’. 2"- 1(2"-’. 2w-k) +

w=l k=l k=l w=l 2

We have g,,’. r22 2a’. + 2r+ 1.

Denoting the number of Type comparison-interchanges by i, we have

ki12r-k+12r-k2w-1,
k=l w=l

k-1

t2 2 2’.- k(2k- 1)2w- 1,
k=l w=l

r-1 k-1

3 2 Z Z 2k-w-1 1)2w-1"
k=l w=l

(22r (r 5)2These yield -k- 2)/3 2r, 2 (r2 5r + 8)2r-2 2, 3

+ 2(r + 1). Thus the total number of comparison-interchanges in G].-. G is
g,,’. g,,’. tl t2 t3, and we have

(1) g,,’. r22"-1 (22’.+2 + 5)/3 (rE 3r 14)2-2 2r.

The procedure described in the Introduction leads to a pair of recursion
relations. Letting p,,’. denote the number of comparison-interchanges required
to merge 2’. sorted lists of length 2"-’. and p,*,’, denote the total number required
to sort 2" locations by the 2-way divide/sort/merge strategy, we find that

(2a)

(2b) Pn r,r

Solving (2a) and (2b) for fixed r gives

(3a) p,..’.- (n -+- a.)r2"-1 + C.(2’. 1) -1

(3b) p.*.’. (n2 + (2a’. + r)n + b’.)2"-2 C’./(2". 1)2,

where a and b’. are constants determined by the boundary conditions and

C (22r+2 -F 5)/3 + (r2 3r 14)2’.-2 + 2r.

Using p.. 0 as a boundary condition, we can restate (3b) as

(4) p.*.’. In2 + (2a’. + r)n + 4C’.(2r- 1)-212"-2 C’.(2’. 1)-2.
The value of a’. can be determined by setting p’.*,’. S(r), where S(r) equals the num-
ber of comparison-interchanges required to sort 2 locations by any strategy.
This gives us

a (S(r) C.(2’. 1)- 1)r- 121 r.

268 R.L. DRYSDALE AND FRANK H. YOUNG

From (4) we see that the number of comparisons required to sort N locations
by the 2 way divide/sort/merge strategy is

(.25)N(log2 N)z ZrN log2 N + O(N), where Zr -(2a, + r)/4.

For Batcher’s odd-even merge, S(1) and we have Z1 .25. For Green’s
4-merge, S(2) 5 and Z2 1/2.

The value of Z, depends on which 16-sort is chosen. Green’s 4-merge gives
S(4) 61 and Z4 89/240 .37083. But Green [4] also developed a special
16-sort requiring only 60 comparison-interchanges. Using this 16-sorter gives
S(4) 60 and Z, 371/960 .3864583. The best results previously known are
due to Van Voorhis [6], [7], whose values for Zr as r approach .357- without
Green’s 16-sorter and .372 + with it. To sort a 256 position list, Batcher’s procedure
requires 3,839 comparison-interchanges, Green’s requires 3,725, Van Voorhis’
requires 3,673 and ours requires 3,657.

[Subsequent to the submission of this paper, Van Voorhis 8] developed an
improvement of his previous sorting networks. Van Voorhis’ new networks
require (.25)N(log2 N)2 (.395)N log2 N + O(N) comparison-interchanges to
sort a list of length N. These new networks require 3651 comparison-interchanges
to sort a 256 position list.]

Van Voorhis notes that with his merge strategy the most efficient networks
occur when r is a power of 2. It thus would seem likely that the size of Z, for our
networks would increase as r increases. However, Z8 .384896, and this slow
decrease appears to continue. We conjecture that as r increases, there exist other
comparison-interchanges which can be eliminated.

It is interesting to note that the number of comparison-interchanges in the
2"-way divide/sort/merge 2"-sorter network that uses G] G is identical to the
number in Batcher’s 2"-sorter based on the odd-even merge. The improvement is
due entirely to the eliminations.

The reader interested in comparing these results with the best known results
for adaptive sorting should see Ford and Johnson [3].

4. Proof of theorem. We assume throughout this section that we are sorting
a 2 2 array, n > 2r, which is already row and column sorted and which has
a square of uncertainty of size 2 2r. Note that these conditions are satisfied
if we perform the first steps of the 2-way divide/sort/merge strategy on the array.
The theorem to be proven states that G]G G is a sufficient final step for the
divide/sort/merge strategy.

LEMMA 1. Each Sw,k preserves the order in the columns ofthe array.
LEMMA 2. Ifw >= k and w > max(v, j), then Sw, and S, preserve the order of

each other.
LEMMA 3. After S,1 is applied to the array, then corresponding positions in the

two subarrays ofwidth 2 are ordered.
Proof Suppose there exists a pair of corresponding positions which is out of

order. There are four ways this could arise. Three would contradict the ordering
of the columns, and the other would require too many mixed rows.

LEMMA 4. After Sr, lSr,z... Sr,k is applied to the array, the left subarray of
width 2 has between 0 and 22-k- more O’s than the right subarray ofwidth 2 1.

IMPROVED DIVIDE/SORT/MERGE SORTING NETWORKS 269

Proof The upper bound follows since St,k compares all except 2r-1. 2r-k

positions in the left subarray with a position in the right subarray. The lower
bound follows from Lemma 3.

LEMMA 5. G]G2 G sorts the array.
Proof We use induction on r, noting that G is the final part of Batcher’s

sort. We have
r-I S G- Srr_lGrr-IG.GAG2"’" Gr Sr, aG r,2 2

Sr, leaves each subarray of width 2’- with a 2 x 2’- square of uncertainty.
Thus by Lemma 2 and the induction hypothesis, each of these subarrays is sorted
by GG G_ . In addition, Lemma 4 implies that there are between 0 and 2
more O’s in the left subarray of width 2r- than in the right subarray after
G G_ x. Thus the number ofrows with mixed 0’s and l’s following G G_
is no more than three. S,r reduces this to no more than two, and the rest ofG sorts
these two rows in a Batcher-like manner.

COROLLARY 1. After GxG2 Gk, each subarray ofwidth 2k is sorted.
LEMMA 6. After GxG2 Gk, each of the first (and last) 2r-k rows is sorted.
Proof It suffices to show that if c(s, 2- + 1)= 0, then c(s, 2-) 0 for

s __< 2-k. Suppose that this fact is not true for some r and k. Choose the smallest
possible such r and the smallest possible k for that r (k < r). Then after applying
G]G2 Gk, we have a row s, s __< 2"-k, such that c(s, 2 + 1) 0 and c(s, 2)

1. Because s =< 2"-k, c(s, 2-x) before applying G[,. Therefore, since by
assumption G] GT,_a leaves the first 2"-k+ rows sorted, c(s, 2- + 1)=
before GT,, which implies c(s + 2r-k, 1)= 0 before GT,. Choose the smallest m
(1 <_ m < 2-k) such that c(s + m, 2 m2k-) 0 before GT,. (This rn exists
because, by Corollary 1, c(s + 2"-k 1, 2k- a) 0 before G,.) If the contents of
this position were still zero after S,k, then the rest of G, would move a 0 into
(s, 2). To avoid this contradiction, (s + m 2"-k, 2" m2k-) must exist
and contain a before G,. Thus, since by assumption the first 2’-k+x rows are
sorted, c(s + m- 2-k, 2- m2k- + 1)= before G,. In addition, c(s + m- 1,
2 (m 1)2k-) 1, which implies that c(s + m, 2 m2k- _1_ 1) by
Corollary 1. Therefore c(s + m- 2-k, 2- m2k- + 1)= after Sr,k. But this
implies that the rest of G, will move the zero from (s, 2 + 1), contradicting our
assumptions.

LEMMA 7. After G] Gk 1Sr,k Sk,k, the first + 2(2r-k i) and the last
+ 2(i- l) rows of the i-th subarray of width 2k are sorted.

Proof Lemma 6 shows that after G]... G,_I, the first 2-k+a rows are
sorted. After G] Grk_lSr,k Sm+l,k, where r > m >_ k, the first 2r-k+a

(i 1)2m-k+ rows of the ith subarray of width 2 are sorted since they are
always compared with ordered rows. The proof will be completed if we show that
Sk,k cannot produce an unordered row in the first 2r-k + (2i l) rows. Suppose
such an unordered row exists after Sk, Then there must exist three rows of mixed
O’s and l’s within the first 2r-k + 2(i 1) rows of the ith subarray of width 2k

before Sk,k (i.e., after Sk+I,k). Similarly, suppose there exist 2m+x + mixed
rows within the first 2r-k+1 (i 1)2m+l rows of the subarray of width 2k+m

before Sk+.,k. Then there must exist 2m+2 + mixed rows within the first 2r-k+1

(j 1)2m-k+ 2 rOWS of the jth subarray of width 2k+m+ (where j [(i + 1)/2])

270 R. L. DRYSDALE AND FRANK H. YOUNG

before Sk/m+ 1,k" Clearly as m approaches r- k, a contradiction is inevitable.
At some point there will not be enough rows available.

COROLLARY 2. Type and Type 2 comparison-interchanges are redundant and
may be eliminated.

Type 3 comparison-interchanges differ from the other types in that there exist
configurations where a Type 3 comparison-interchange will actually perform an
interchange. Suppose the contents of two positions in the second row of the first
subarray ofwidth 2k- are out oforder after G] G,. Then Lemma 6 and Lemma
5 imply that before G,, c(1, 2k- 1) c(2, 1) 0 and c(1, 2k) (2, 2k- x) c(3, 1)

1. After G,, the first 2k positions in the first row contain 0, and c(3, 1)= 1.
Since by Lemma 6 the first row is sorted and by Lemma all columns are sorted, we
have O’s occurring only in the first two rows of this subarray. Because k < r,
G, / exists and will complete the sort by first moving the first portion ofthe second
row to the first row and then ordering it. Thus we have shown the following lemma.

LEMMA 8. Type 3 comparison-interchanges are unnecessary and can be eliminated.
Finally, the theorem follows immediately from Lemma 5, Corollary 2 and

Lemma 8.

REFERENCES

[1] K. E. BATCIER, Sorting networks and their applications, Proc. AFIPS Spring Joint Comp. Conf.,
32 (1968), pp. 307-314.

[2] R. L. DRYSDALE III, Sorting networks which generalize Batcher’s odd-even merge, Senior Honors
paper, Knox College, Galesburg, II1., 1973.

[3] L. R. FORD AND S. M. JOI-INSON, A tournament problem, Amer. Math. Monthly, 661 (1959), pp.
282-296.

[4] M. W. GREEN, Some improvements in non-adaptive sorting algorithms, Proc. 6th Princeton Conf.
on Information Sciences and Systems, 1972, pp. 387-391.

[5] D. E. KNUa’I-I, Sorting and Searching, The Art of Computer Programming, vol. 3, Addison-Wesley,
Reading, Mass., 1973.

[6] D. C. VAN VOORHIS, A generalization of the divide/sort/merge strategy for sorting networks, Tech.
Rep. 16, Digital Systems Lab., Stanford Univ., Stanford, Calif., 1971.

[7] --, Large[g, d] sorting networks, Tech. Rep. 18, Digital Systems Lab., Stanford Univ., Stanford,
Calif., 1971.

[8] --., An economical construction for sorting networks, Working paper 16/A45 no. l, IBM
System Development Div., Los Gatos, Calif., 1974, also published in Proc. NCC, 1974.

SIAM J. COMPUT.
VOI. 4, NO. 3, September 1975

NEAR-OPTIMAL SOLUTIONS TO A 2-DIMENSIONAL
PLACEMENT PROBLEM*

R. M. KARP/f A. C. McKELLARz[: AND C. K. WONG

Abstract. We consider the problem of placing records in a 2-dimensional storage array so that
expected distance between consecutive references is minimized. A simple placement heuristic which
uses only relative frequency of access for different records is shown to be within an additive constant
of optimal when distance is measured by the Euclidean metric. For the rectilinear and maximum
metrics, we show that there is no such heuristic. For the special case in which all access probabilities
are equal, however, heuristics within an additive constant of optimal do exist, and their implementation
requires solution of differential equations for which we give numerical solutions.

Key words, near-optimal algorithms, placement problems, heuristics, storage applications, expected
distances, Euclidean metrics, rectilinear metrics, maximum metrics, Lp metrics

1. Introduction. The problem of positioning records in a linear storage
medium in such a way that the expected access time is mio.imized has been
thoroughly studied [1]-[5]. The solution is to place the most frequently accessed
record and then repetitively to place the next most frequently accessed record
alternating between the position immediately to the left of those already placed
and the position immediately to the right.

In this paper, we consider a generalization of this problem in which the
storage medium is an infinite 2-dimensional rectangular array of storage cells,
and it is desired to minimize the expected Euclidean distance between consecutively
referenced records. It is quite easy to construct examples to show that it is not
sufficient to know only the ordering of records by frequency of access in order
to construct the optimal solution. Thus there is no hope of finding as elegant an
algorithm for this 2-dimensional case as for the 1-dimensional case.

The problem we consider is a special case of the quadratic assignment
problem which arises for example in various circuit placement problems [6].

In this paper we consider an heuristic which operates only on the relative
frequency with which records are accessed and show that the resulting placement
is within an additive constant of optimal. This asymptotically optimal heuristic
consists of placing the most frequently accessed record and then filling "shells"
of storage cells which are equidistant from the center with a set of next most
frequently accessed records.

We then consider the problem ofreplacing Euclidean distance with rectilinear
distance, and with distance defined to be the maximum of the difference in the
x-coordinates and the difference in the y-coordinates. In each case, we show that
there is an analogue of the "shell" heuristic which is within an additive constant
of optimal when the access probabilities are equal. However, a shell no longer

* Received by the editors March 7, 1974, and in revised form September 11, 1974.
f Department of Electrical Engineering and Computer Sciences, University of California at

Berkeley, Berkeley, California 94720. This work was performed while this author was visiting at IBM
Thomas J. Watson Research Center.

:1: Computer Sciences Department, IBM Thomas J. Watson Research Center, Yorktown Heights,
New York 10598.

271

272 R. M. KARP, A. C. MCKELLAR AND C. K. WONG

consists of the set of storage locations equidistant from the center, but rather
consists of the set of cells on a contour given by the solution of a differential
equation for which we have only been able to obtain numerical solutions. We use
these results to show that, in general, there is no heuristic for the maximum and
rectilinear metrics which operates only on the relative frequency of access and
produces solutions within an additive constant of optimal.

2. Formulation of the problem. Consider a set of n records x, , x, which
are referenced repetitively, where with probability p the reference is to x and
consecutive references are independent. We adopt the convention that the records
are numbered such that p >= P2 >= -> P,. We wish to place these records into an
infinite 2-dimensional rectangular array of storage cells such that the expected
distance between consecutively referenced records is minimized, i.e., we wish to
minimize

(1) I) p pjdj
i=1 j=l

where dij is the distance between record and record j. We will regard the storage
cells as points with integral coordinates in the Euclidean plane, and adjacent
cells are assumed to be at unit distance from each other.

Figures l(a) and l(b) give two examples ofoptimal placements. These examples
show that it is not sufficient to know the relative frequency ofaccess to minimize D
one must have more detailed knowledge of the probabilities of access.

P3
Pl

P4

PZ

(Pl’ P2’ P3 ’P4 (0.33, 0...52, 0.31,0.04) (Pl ’P2 ’Ps’P4)= (0"70 ,0.15, 0.10,0.05)

FIG. 1. Optimal placement depends on probabilities rather than only on relative frequency

However, in case optimal solutions are not absolutely essential, one may
want to use the simple heuristic mentioned in the Introduction, namely, filling
"shells" of storage cells which are equidistant from the center with a set of records
with next largest probabilities. This algorithm depends only on the ordering of
the probabilities of access and is referred to as the "shell" algorithm from now on.

In the next section, we will show that the expected distance between consec-
utively referenced records resulting from the "shell" algorithm is within an
additive constant of that resulting from an optimal placement algorithm.

3. Analysis of the algorithm. Define

Ai Pi- Pi+I, =< < n,

2-DIMENSIONAL PLACEMENT PROBLEM 273

and

so that

Pi= Ar and rat= pi=l.
r=i r=l i=1

Hence D can be rewritten as

i= r=i j=ls=j

Interchanging the orders of summation yields

where
r=l s=l

i=1 j=l

The effect of this transformation has been to replace the probabilities by a
set of n variables among which there are no ordering constraints. Furthermore,
the effect of the placement algorithm has been localized to a term, E, which is
independent of the access probabilities. For given r and s, there is a placement
dependent only on the relative frequency of access which minimizes E. However,
that placement is incompatible with the placement for some other values of r and s.
For example, the shape of Fig. l(a) minimizes Es with r 3, s 4, whereas
Fig. l(b) is optimal for r 1, s 4. Thus, in general, it is not possible to enlarge
an optimal solution for n points to an optimal solution for n + points in a
straightforward way, which explains why our problem is more difficult than the
1-dimensional case.

Let D(opt), E(opt)denote the values produced by an optimum placement
algorithm (i.e., one which minimizes D) and D(shell), E(shell) denote the values
produced by the "shell" algorithm. We shall show that

(2) E(shell) __< Es(Opt) + crs

where c is a constant independent of r, s. As a consequence,

(3) (shell) __< D(opt)+ c AAsrS D(opt)+ c.
r=l s=l

We were unable to find a straightforward proof of (2), and so we consider
the continuous analogue of Es for which it is relatively easy to find the optimal
solution.

Since dj dji, without loss of generality, we can assume r =< s. The problem
is then to find two regions COo and COl with areas r and s, respectively, and COo
such that the integral

(4) fxfyd(X,y)
.01

274 R. M. KARP, A. C. MCKELLAR AND C. K. WONG

is minimized, where x, y denote points in o1, oo, respectively, and d(x, y) is the
distance between points x and y. The following definition formalizes an obvious
geometric property.

DEFINITION. Let o be any region and L any straight line dividing the plane
into A and B. o is said to have the covering property with respect to L if either
I(A f3 o) (B f’l o) or I(B f3 o) (A f3 o), where I(A f’l o) means the mirror
image of A f) o with respect to L. I(B f-I o) is similarly defined. (See Fig. 2.)

t_

\\

FIG. 2. Region with covering property with respect to L

LEMMA 1. If o, o(a)o** c o) form a minimal solution for (4), then o,
have the covering property with respect to any straight line L. Furthermore, if L
partitions the plane into A and B, and if I(A o) (B o’), then I(A

(B f’l a)). Similarly, if I(B o) (A o), then I(B f’l o) (A o).
The lemma can be obtained easily by applying the technique used by

Bergmans [5]. The present Appendix A contains a proof.
LEMMA 2. Any region which has the covering property with respect to any straight

line must be a disk.
Proof. Let C be the center of mass of the region. (See Fig. 3.) Suppose there

exist points , fl on the boundary such that d(, C) < d(fl, C). Draw a straight line L
through C, bisecting the angle 0 C fl and meeting the boundary at 7.

t_

FIG. 3. Illustration for proof of Lemma 2

Let L’ be a straight line through /cutting the region into two parts with equal
areas o, 092. By the covering property, o1, 02 should be symmetric images of
each other with respect to L’. In particular, L’ should go through C, hence L, L’
coincide. Thus , fl are symmetric with respect to L, a contradiction.

2-DIMENSIONAL PLACEMENT PROBLEM 275

LEMMA 3. The minimal solution to (4) consists of two concentric circles.
Proof. Let co, co’ form an optimal solution and co c 09. By Lemmas I and 2,

they must be circles. It remains to show that they are concentric. Suppose it is
not the case. Let Co, C1 be the centers of co, 09]’. Let L be the perpendicular
bisector of the line segment CoC (see Fig. 4). With respect to L, the second part
of Lemma is violated, hence a contradiction.

L

FIG. 4. Illustration for proof of Lemma 3

Let ErCsnt denote the optimal value of (4), i.e.,

Ent--x
where co, col are concentric circles with areas s, r respectively. We will compare
this with the "shell" algorithm and the optimal placement algorithm.

If we look at the first r and s points (r =< s) in the configuration resulting from
the "shell" algorithm, and compute the function .r_)=lS dj, we obtain
Ers(shetl). Suppose we replace each point by a unit square with center at this point;
then we have two regions coo, co with areas r, s, respectively, and coo C co a. Let

E, (shell) d(x, y).
tDO

We define the continuous analogue of the optimal placement in the same way
and let contE (opt) be the value ofthe integral in (4) evaluated over the corresponding
regions.

We will show that

E,s (shell) + xrsE,(shell) __< cont

by Lemma 4, that

Ers (shell) < + (2 + 8 rs

by Lemma 6, that

Econt < contE, (opt)

276 R. M. KARl’, A. C. McKELLAR AND C. K. WONG

which is obvious, and that
cont %E, (opt) _<_ E,(opt) + rs

by Lemma 5. Combining these results yields the following theorem.
THEOREM. Ers(shell)

_
Ers(opt) + (4x/ + 8x/)rs. Consequently, /(shell)

__< (opt)+ (4x// + 8x/).
LEMMA 4. E,(shell) =< cont %E, (shell) + rs.

Proof. Only notice that for any x in the square of and any y in the square ofj
(see Fig. 5),

x/ x// d(x,y) +dij <- d(x, y) + -- + --Y

FIG. 5. Illustration for proof of Lemma 4

Although we are showing that the continuous case is bounded by the discrete
case, similar argument shows that the following lemma holds.

LEMMA 5. cont %E,. (opt) __< E(opt) + rs.
Next we will prove the following result.

6. ooot oootErs (shell) < + (2 + 8 rs.

Proof. On the regions O9o, o) for the continuous version of the "shell"
algorithm, we superimpose the two concentric circles co3, co’ with areas r, s,

(Do

co o

Inner dsk

Union of all unshaded regions i the inner armulus

Union of all shaded regions in the inner annulus

Union of all shaded regions in the annulus
5 Union of all unshaded regions in the annulus

F]o. 6. Illustration for proof of gemma 6

2-DIMENSIONAL PLACEMENT PROBLEM 277

respectively, such that their centers 0 coincide with the point where the record x
is located as shown in Fig. 6. (09’ is not shown in the figure.)

Let us look at 090 and 09. In Fig. 6, the region 090 09 is shaded in one
direction and the region 09 090 is shaded in another. Let d denote the radius of
the largest circle centered at 0 inside 09o. Let a x//-r/n be the radius of 09. Let d
denote the radius of the smallest circle centered at 0 outside 090 Then

d =<d+V/ and d<=a<=d <=d+x//.
To see this, let c be the center of the square farthest away from 0. Let dc be its

distance from the center. Then d =< dc + x/2 and d => dc x//2. The first
is obvious. To show the second one, assume the contrary; it follows that there
exists an empty square, the distance ofwhose center to 0 is less than de, a contradic-
tion to the "shell" algorithm.

Let us classify the regions inside the circle with radius d into 5 classes as
denoted in Fig. 6. Therefore, regions 1, 2, 3 will form the region 09, regions 4, 5
will form the outer annulus A, and regions 2, 3 will form the inner annulus B.
Also, area of region 3 equals that of region 4.

To obtain an upper bound on area 4 and hence on area 3 we note that

area 4 min (area A, area B).

But min (area A, area B)is maximized when d -2.d x// and area A area B.
This occurs when dl- a 1/2(x//- 2a + x//4a - 2). In this case, area A

area B rcx//2a2 1. Therefore

(6) area 3 area 4 < nx/a- xr.
Let ,us ,do,exactly the same thing for 09 and 09, and call the correspondi.9_g

regions 1,2,3 14’, 5’, A’ and B’. Also let the radius of 09’ be b. Therefore b
Thus

Ers (shell)=
24 ’2’4’

23 ’2’3’

cont t +fl f -f, f2-f fE,.s (shell)- _rsEcnt
24 ’4.’ 24 23 ’3’ 123 1’

f1 3 f ,3,+ f, fl,- f3fl,

area 2’4’= area 2’3’ __< rb2 rr(b V/-)2 2x- 2zr

area 124 r.

278 R. M. KARP, A. C. MCKELLAR AND C. K. WONG

Hence

f =< r(2x- 2rt)(a + b + 2x/
24 d2’4’

r(2- 2rt)(+ + 2x/
-<_ (2x/ + 6x/c-)rs.

So bound we use polar coordinates (p’,O’)for points in 1’ and
(p, 0) for points in A. (Recall that A is an annulus with inner radius a and outer
radius d).

Let d(p, O, p’, 0’) denote the distance from point (p, 0} to (p’, 0’). Let the radius
of 1’ be d’.

For each point (p, 0) in A, let

Ip,o d(p, O, p’, O’)p’ dp’ dO’.
’=0 ’=0

It is easy to show that (i) Io, depends on p only, and (ii) if p < 3, then I,,o < I,o.
Therefore

and

Similarly,

Thus

Therefore

Io,o <= d(dl O, p’, O’)p’ dp’ dO’,
’-0 ’=0

p dp dO I
---0

__< (area 4) d(dl O, p’, O’)p’ dp’ dO’.
,=0 ’=0

> (area 3) d(d, O, p’, O’)p’ do’ dO’.
,=0 ’=0

f4 f-, fa f =<(area, 3,x/ (area 1’,__< x/s= 2x//rcrs.

E (shell)- F,cnt < (2 + 8 rs

4. Other metrics with uniform distribution. The proof in the preceding section
goes through practically unchanged for other metrics, although the constants
change. The stumbling block is in finding the optimal solution to the continuous
problem. In this section we consider the special case in which all access probabilities
are equal. Thus we have

A, and A 0, _< < n.

2-DIMENSIONAL PLACEMENT PROBLEM 279

Hence we are concerned only with E,, in (2) and need only find the optimal
continuous solution for the case r s n. In this section we state this continuous
problem in a more general form and characterize its optimal solution for two
metrics of practical interest.

Let (Xl, Yl), r/= (x2, Y2) be any two points in the Euclidean plane.
We shall consider the following family of metrics

mp(, r/)= (IX x2lp -Jr-lYl Y2IP) TM,
_

p 5
By p we mean m(,r/)= max(Ix x21, lYl Y21). For a fixed p and a
fixed R, we need to find the solution to the following minimization problem"

(7) mino,n f; mp(, q)

where f is the set of all closed regions in the Euclidean plane with area R.
The following is a necessary condition for an optimal region.
LEMMa 7. Let 09o be an optimal region. Let be a point on the boundary of o9o

Define

(8) P() f,-o mp(, r/).

Then P(a) is a constant for all on the boundary.
Proof. Let fl be another point on the boundary (see Fig. 7). Let e be a region

at inside 09o and/3# a region at fl outside Oo. Assume that/3 and/3# both have
area/3. Let the new region obtained by removing/3, from o)o and adding/3# to
coo be o9. Then o9 has area R.

Noting that terms 5, 6, 8 and 9 are of order/3z, we have

1=2 q-- 0(/32)

=2(/3f. ,nv(,:.q)-: I.00

m.(/h,)) + o(:),

where /3, fl,e/3# are determined by the mean value theorem and --, ,
/h--’ # as e --,0.

280 R. M. KARP, A. C. McKELLAR AND C. K. WONG

By optimality,

Therefore

FG. 7. Illustration for proofofLemma 7

eo 8

f, mp(o,) | mp(fl, r/) 0,
lt

as required.
The two cases of interest are p 1, the rectilinear metric, and p , the

maximum metric. For each of these metrics, we can use Bergmans’ [5] methods
of proof to show symmetry with respect to horizontal and perpendicular lines
as well as lines at 45 and 135

We want to find the curve f(x) valid in the first quadrant as shown in Fig. 8.
Then, by symmetry, we can complete the figure. Because of symmetry about a
line at 45, f(f(x))= x. Consider any point (u, v f(u)) in the first quadrant,
and, without loss of generality, let u =< v. Then (v, u) is also a point on the curve,
as is (- v, u).

y

V U

-CI

FIG. 8. Computation of a shell for the maximum metric

2-DIMENSIONAL PLACEMENT PROBLEM 281

For the maximum metric, (8) can now be written as

P= (u x) dy dx + (u x) dy dx
"y= --f(x) =x-u+v

(9) + (x u) dy dx + (v y) dx dy
y= -x+v+u -f(y)

+ (v y) dx dy + (y) dx dy,
--ux=y+u--v

where the areas in Fig. 8 are numbered to correspond to the terms in (9). Performing
all integrations not involving f and collecting terms yields

P 2(u x)f(- x) dx + (u x)f(ixl) dx + (x u)f(x) dx

+ (v f(- + (v f(ll + + vu

We apply the condition of Lemma 7 by requiring that dP/du 0. Carrying out
the differentiation and collecting terms again yields

2f(- x) dx + f(lxl) dx f(x) dx + 2f’(u) f(- x) dx

(10) + f’(u) f(x]) dx + f’(u)(f2(u) u2) 0.

Let the total area surrounded by the curve be R. Then the area in one quadrant
is R/4. In view of the identity

R/4 + uf(u) f(x) dx + f(x) dx,

(10) can be converted to

(11) (R + 2(f2(u)- u2))f’(u) + 8 f(x)dx 4uf(u) O.

Referring to Fig. 9, it is quite easy to obtain for the rectilinear metric

P= 2 (x + y + v) dy dx + 2 (x + y + u) dxdy
y f(x) f(y)

+ (x+u+y+v) dydx,

which after simplification becomes

e 4 (x + v)f(x)dx + 4 (y + u)f(y)dy + 4uv(u + v).

282 R. M. KARP, A. C. McKELLAR AND C. K. WONG

Y

(-u,v / (u,v)

x

(-u,-v) v)

FIG. 9. Computation of a shell for the rectilinear metric

Differentiation with respect to u and applying Lemma 7 yields

f’(u) f(x) dx + f(x) dx + uf(u)f’(u) + uf(u) O.

As before, let R be the total area. Noting that

f(x)dx f(x)dx
4

and that

we have

(12)

4 =,f(x)dx + f(x) dx + uf(u)

f’(u) f(x) dx + uf(u) + f(x) dx O.

We have not been able to obtain closed form solutions for (11) or (12).
Numerical solutions were obtained and are shown in Fig. 10 for the case R 4,
i.e., the area in each quadrant is 1. For other values of R, the shape is obtained
by linear scaling.

A priori, one might have been tempted to guess that the square and diamond
were optimal shapes for the maximum and rectilinear metrics, respectively,
since each has the property that every point on the boundary is equidistant from
the center. Instead, the shape has turned out to be quite close to a circle in each
case, although it is true for the maximum metric that the circle is distorted toward
the shape ofa square, and for the rectilinear metric, distortion is toward a diamond.

2-1)IMENSIONAL PLACEMENT PROBLEM 283

1.0

0.5

0.0
0

ETRIC

RECTILINEAR -- \
METRIC "’

0.5 1.0

FIG. 10. First quadrant oJ’optimum shells comparedfor maximum and rectilinear metrics with a total
area, R 4

5. Nonexistence of heuristics for the general case. In contrast to the Euclidean
case, we will show that for the maximum and rectilinear metrics there is no
heuristic which operates only on relative frequencies and which is within an
additive constant of optimal.

It follows easily from the methods in 3 that the optimal solution to the
discrete problem is within an additive constant of the optimal solution for the
corresponding continuous problem.

Given a continuous solution with total area n, we define a scaled solution
with total area by shrinking each area by a factor of 1In and increasing the
probability per unit area by a factor of n. Let D,(opt) be the expected distance
for the solution with total area n. Then the expected distance Dl(opt) for the
scaled version is given by b,(opt) Ol(opt), and the scaled solution is also
optimal.

Consider the case

q
2<=i<_n,p =p and Pi= n- 1’

where p + q 1. Then for the corresponding continuous problem,

O(opt) 2pqa + q2b + O(1/V/-),
where a is the average distance between a point with weight np and a point with
weight nq/(n- 1) and b is the average distance between points with weight
nq/(n 1). Thus

O,(opt) x//- q(2pa + qb)+ O(1).

The optimal solutions were obtained in 4 for the case p 1/n. Asymptotically
for large n, the shapes of these optimal solutions are the shapes which minimize b.

284 R.M. KARP, A. C. McKELLAR AND C. K. WONG

On the other hand, the shape which minimizes a (again asymptotically for
large n) is the diamond for the rectilinear metric and the square for the maximum
metric. Thus there is no single shape which simultaneously minimizes a and b.
Thus as p varies from 1In to 1, the shape of the optimal solution varies from the
shapes given in 4 to the diamond or square.

Suppose that there was a heuristic operating only on relative frequencies
for the discrete case. Then for any value of n, this heuristic essentially provides a
template for position of the n records, and the shape of this template is inde-
pendent of p. The continuous analogue of the solution provided by this template
would have to be within an additive constant ofoptimal. But this is a contradiction,
since as argued above, given any shape there is a value of p so that the solution
deviates from optimal by a quantity proportional to x/.

For the Euclidean metric, of course, the circle simultaneously minimizes
a and b.

6. Concluding remarks. This paper adds another example to the growing body
of literature [7]-[18] which deals with near-optimal solutions which are compu-
tationally more efficient than any known algorithm for creating optimal solutions.

It was surprising to discover that of the three metrics studied, only the
Euclidean metric permits a heuristic dependent only on relative frequencies
which is within an additive constant of optimal. One wonders if there are other
nontrivial metrics with this property.

Algorithms which compute exact solutions appear to be prohibitively
exhaustive. Thus it would be interesting to explore other criteria for goodness of
a heuristic, e.g., within a fixed percentage of optimal, in the hope that good
heuristics would then exist for all metrics. It would also be interesting to study
heuristics which use the exact access probabilities but in nonexhaustive ways.

Finally, we remark that the constant in the theorem of 3 is probably much
too large, and we do not have any guess as to the least upper bound.

Appendix A. Proof of Lemma 1. Suppose the lemma is not true. Without loss
of generality, we can assume that there exists a straight line L such that one of the
following cases would occur:

I A N oo’ 75 B N oo’ I A N o’ 75 B N
I(A N oo’) (B N o’), I(A N oo’) (B N oo),

(A.1)
(A.2)
and

(a.3) I(A N o";) (B N o’), I(A N o) (B N o),
where means "does not contain". We will show that (A.1) leads to a contradic-
tion. The other two cases can be similarly dealt with. Note that case (A.1) does not
rule out I(B n co’) (A n oo), I(B n o) (A n co). But the assumption that
the lemma is not true takes care of the objection.

Figure 11 is an illustration of (A.1).
Denote the region HAF by (, AKGF by /, KMG by (d’, GNF by (g’, BJCE

by 9, JDC by , CPE by ’, IQR by and QBER by g. We will show that

2-DIMENSIONAL PLACEMENT PROBLEM 285

FIG. 11. Figure for proof of Lemma

hence a contradiction.

/LL-L,L,/LL-L,L LL-L,L
-LL-LL,+LL-L,L LL-L,L.
For each point y in M, let y’ in ’ be its image with respect to L. Let x be a

point of a. By properties ofthe Euclidean metric, d(x, y) > d(x, y’), for x, y not on L.
Therefore, it follows that

and similarly for other pairs of integrals. Thus the result follows.

286 R. M. KARP, A. C. McKELLAR AND C. K. WONG

REFERENCES

[1] G. H. HARDY, J. E. LITTLEWOOD, AND G. POLYA, Inequalities, Cambridge University Press,
Cambridge, England, 1952.

[2] D. D. GROSSMAN AND H. F. SILVERMAN, Placement of records on a secondary storage device to

minimize access time, J. Assoc. Comput. Mach., 20 (1973), pp. 429-438.
[3] V. R. PRATT, An N log N algorithm to distribute N records optimally in a sequential access file,

Complexity of Computer Computations, R. E. Miller and J. W. Thatcher, eds., Plenum
Press, New York, 1972, pp. 111-118.

[4] P. C. YUE and C. K. WONG, On the optimality of the probability ranking scheme in storage applica-
tions, J. Assoc. Comput. Mach., 20 (1973), pp. 624-633.

[5] P. P. BERGMANS, Minimizing expected travel time on geometrical patterns by optimal probability
rearrangements, Information and Control, 20 (1972), pp. 331-350.

[6] M. HANAN AND J. M. KURTZBERG, A review of the placement and quadratic assignment problems,
SIAM Rev., 14 (1972), pp. 324--342.

[7] R. L. GRAHAM, Bounds on multiprocessing anomalies and related packing algorithms, Proc. Spring
Joint Computer Conf. 1972, pp. 205-218.

[8] M. R. GAREY, R. L. GRAHAM, AND J. D. ULLMAN, Worst-case analysis of memory allocation
algorithms, Proc. 4th Ann. ACM Symp. on Theory of Computing, 1972, pp. 143-150.

[9] C. L. LIu, Optimal scheduling on multi-processor computing systems, Proc. 13th Ann. Symp. on
Switching and Automata Theory, 1972, pp. 155-160.

[10] D. S. JOHNSON, Approximation algorithms for combinatorial problems, Proc. 5th Ann. ACM
Symp. on Theory of Computing, 1973, pp. 38-49.

Ill] J. NIEVERGELT AND C. K. WONG, On binary search trees, Information Processing 71 (Proc. of
IFIP Congress), North-Holland Publishing Co., Amsterdam, 1972, pp. 91-98.

[12] C. K. WONG AND D. COPPERSMITH, A combinatorial problem related to multimodule memory
organizations, J. Assoc. Comput. Mach., 21 (1974), pp. 392-402.

[13] C. K. WONG, C. L. LIu, AND J. APTER, A drum scheduling algorithm, Lecture Notes on Computer
Science, vol. 2, Springer-Verlag, Berlin, 1973, pp. 267-275.

[14] H. S. STONE AND S. H. FULLER, On the near-optimality of the shortest-latency-time-first drum
scheduling discipline, Comm. ACM, 16 (1973), pp. 352-353.

[15] J. RSSANEN, Boundsfor weight balanced trees, IBM J. Res. Develop., 17 (1973), pp. 101-105.
16] A. K. CHANDRA AND C. K. WONG, Worst-case analysis ofa placement algorithm related to storage

allocation, this Journal, 4 (1975), pp. 249-263.
_17] P. C. YUE AND C. K. WONG, Near optimal heuristics for an assignment problem in mass storage,

Internat. J. Computer and Information Sciences, to appear.
18] M.C. EASTON AND C. K. WONG, The effect ofa capacity constraint on the minimal cost ofa partition,

J. Assoc. Comput. Mach., to appear.

SIAM J. CoM,trr.

Vol. 4, No. 3, September 1975

MANAGING STORAGE FOR EXTENDIBLE ARRAYS*

ARNOLD L. ROSENBERGf

Abstract. Schemes which allocate storage for extendible arrays cannot utilize storage as efficiently
as can their nonextendible counterparts. Relative to formal notions of array scheme and (extendible)
array realization, a formal way of gauging efficiency of storage utilization by extendible array realiza-
tions is proposed; a lower bound of O(p (log p)n-), wherep is the array size and d the dimensionality,
is derived for this measure; and an extendible allocation scheme which achieves this lower bound is
exhibited. Certain seminorms on Euclidean spaces can be used to construct extendible array realiza-
tions. It is shown that for realizations so constructed, the lower bound on storage utilization efficiency
is O(pn). In the opposite direction, certain restrictions on the patterns of expansions of arrays can be
used to circumvent the lower bound: When arrays are constrained to expand according to some fixed
finite set of patterns, then one can devise extendible realizations which (a) utilize storage very efficiently
(O(p)) on arrays which conform to the patterns and (b) approach the general lower bound
(O(p. (log p)n- 1)) on arrays which do not conform. It is not known if this improvement is available for
infinite sets of patterns.

Key words, array, array realization, extendible array, storage utilization, storage allocation for
arrays

1. Introduction. Conventional schemes for storing arrays do not admit easy
dynamic extension of a stored array. In two dimensions, for instance, the familiar
"store-by-row" scheme admits easy adjunction of new rows but only awkward
adjunction of a new column. Such asymmetry in extendibility is not inevitable:
it is not hard to devise computed-access schemes for storing arrays, which are
readily extendible in all directions. (A scheme is said to use computed access if
it computes the address assigned to a given position of the array as a displacement
from the address of position (1, ...,).) As we showed in [4], arbitrary extend-
ibility in array realizations does not come without cost. The present paper continues
the study begun in [4] of the properties and limitations of extendible array realiza-
tions. The current research investigates the cost of extendibility in terms of
efficiency of storage utilization.

1.1. Summary of main results. For ease of exposition, we discuss only
two-dimensional arrays in this summary. Any individual array can be stored
without "gaps": one merely stores the array in a contiguous block of storage
locations of just the right size. An extendible array realization (according to our
worldview), however, is not storing an individual array; it is, rather, storing an
array and all its potential extensions. One cost of this flexibility is that extendible
allocation schemes must inevitably leave gaps when storing some arrays. How
big must these gaps be? We show that any extendible array realization must,
for each integer p, spread some array with p or fewer positions (an m n array
has p mn positions) over at least (p)= ’= [p/k] > (p/4). I-log2 p] storage
locations. We establish two positive results which take some of the sting out of
this lower bound. First, the lower bound is achievable: we present an extendible

Received by the editors August 8, 1973, and in final revised form September 18, 1974.

" Mathematical Sciences Department, IBM Thomas J. Watson Research Center, Yorktown
Heights, New York 10598. This research was supported in part by the Office of Naval Research under
Contract N00014-69-C-0023.

287

288 ARNOLD L, ROSENBERG

array realization which never spreads any p-position array over more than ’(p)
locations. Second, the lower bound can often be overcome! Say that one selects
a finite set of shapes for arrays. (An array shape is an infinite set of arrays specified
by a height function h and a width function w. The "shape" is then all arrays of
size h(n) x w(n) for some n. Thus, we have as a shape all square arrays (h w

2n[n]), or all 2n x 3n arrayS, or all n x n 2 arrays, etc.) Then one can find an
extendible array realization which spreads any p-position array of one of these
favored shapes over at most c.p storage locations, where the constant c is
(approximately) the number of shapes to be favored. In addition, this realization
can be designed to be "gentle" on arrays of unfavored shapes, spreading such a
p-position array over at most roughly c.p. log2 p locations. This realization is,
therefore, close to perfect where it counts most and close to minimax optimal
everywhere else. We do not know of any realization which favors a nontrivial
infinite family of shapes, in the sense that, for each shape Sg there is an integer ci
such that a p-position array of shape S is spread over at most ci’p locations;
it remains open whether or not such a realization exists.

1.2. Background and related work. Conventional schemes for storing arrays
are discussed at length in [2, 2.2.6]. Our treatment of extendibility in computed-
access array storage schemes follows the development in [4]. Here, array realiza-
tions are rendered extendible in a particular direction by having them allocate
storage (i.e., assign addresses for) an array which is infinite in that direction.
Arbitrary extendibility is then modeled by realizations of an orthant array, an
array whose set ofpositions is the set ofall positive integer d-tuples (in d dimensions).
The rationale behind this worldview is discussed in [4] and is summarized in 2.3.
This method of modeling extendibility makes the notion of pairing function
(= a one-to-one function from N N to N) very germane to our investigation.
Brief discussions of pairing functions frequent the literature of mathematical
logic and computability theory; a number of examples of such functions appear in
[3, pp. 182, 288ff.].

Extendibility in array realizations can be attained also by abandoning
computed-access allocation schemes in favor of either a linking strategy or a
hashing scheme. Linked allocation schemes for arrays are described in [2, 2.2.6].
We know of no systematic study of hashing-based schemes for storing arrays,
but an interesting empirical study ofsuch schemes is reported in]. The advantage
of computed access in array realizations is that such realizations afford one both
easy probing of the array (which is inevitably lacking in linked schemes) and easy
traversal along, say, rows and columns of the array (which is not present with
hashing schemes). The concomitants of easy traversal in extendible computed-
access realizations form the subject of an interesting paper by Stockmeyer [7].
In that paper, he considers the effect of easy traversal in extendible realizations
on other criteria for assessing the quality of array realizations, notably efficiency
of storage utilization.

2. Arrays and their realizations.
2.1. A formal notion of array. We need a formal notion of "array" which

emphasizes those aspects of arrays germane to the study of computed-access
realizations. In this context, the key to the structure of arrays resides in the

MANAGING STORAGE FOR EXTENDIBLE ARRAYS 289

familiar coordinate system which pictures a d-dimensional array as being
imbedded in the positive orthant of d-dimensional space, with array positions
laid on the lattice points. (Consider the name of position aij.) The domain from
which the contents of array positions are chosen is immaterial, providing that
we assume--as we always shall--that only one memory location need be assigned
to each array position. (The same scheme will allocate storage for an array of
integers, of literals, etc.) Thus, our formal notion of array takes the following
simple form. Let d be a positive integer.

DEFINITION 2.1. A d-dimensional array scheme (array, for short) is a set
A C1 x C2 x x Ca of positions; each coordinate set Ci is either the set N of
positive integers or the set N, {1,..., n} for some nN. When C C2

Ca N (i.e., A Na), then A is called the d-dimensional orthant array
and is denoted fn. For any array scheme A, position (1, ...,) A is called the
base position of A and is (ambiguously) denoted . (Context will assure unam-
biguity.)

Note that, in accord with convention, we demand "rectangularity" in our
arrays; that is, each A is the cross product of its coordinate sets. Anticipating our
formal notion of extendibility, we do not constrain our arrays to be finite. In
order to orient the reader for subsequent illustrations, we depict the array scheme
A N3 x N4 in Fig. 1. Note that the base position of A is in the southwest
rather than northwest corner of A in order to emphasize the imbedding in the
orthant.

FIG. 1. The array scheme A N x N4

Because of the questions studied in [4], we needed a more complicated notion of"array scheme"
there’this simplified notion suffices here.

290 ARNOLD L. ROSENBERG

2.2. Realizations of array schemes. We seek a formal notion of "computed-
access array realization". Informally, we wish to model those realizations which
determine the memory location assigned to each position 7r of an array as a dis-
placement from the location assigned to the base position , the displacement
being computed from the coordinates of 7r. To simplify our task, we view the
computer in which our array is to be stored as having an infinite random access
memory with locations indexed (or "addressed") by natural numbers. Our
formal notion of realization (or allocation scheme, or storage map) can, in this
framework, have the following simple form.2

DEFINITION 2.2. A realization of the array scheme A is a total one-to-one
function r:A N such that r(e) 1.

The normalizing condition "r(e)= 1"" is useful in the sequel but is not
indispensable for our investigation. There seems however, to be some aesthetic
merit in "beginning" all realizations with the base position.

Note. The existence of pairing functions guarantees that all array schemes
can be realized.

2.3. Extendibility in array realizations. At an intuitive level, we adjudge an
array realization to be extendible (in a given direction) if it can be "easily" con-
verted to a realization of any extension of an array (in that direction), all the while
"retaining its computational characteristics". While this statement can have no
precise meaning in view of the undefined terms, it should, nonetheless, convey to
the reader that we view extendibility as basically some kind of stability in the face
of certain changes in the environment. We home in on a formal notion of extend-
ibility by examining two sample realizations of the array A N3 N4.

Realization (Store by row). For (i, j) e N3 N4, r(i, j) 4(i 1) + j.
This realization is easy to compute. It uses storage well, storing the 12

positions of A in "locations" through 12. It is easy to extend along columns;
that is, it is easily converted to a realization of any superarray of A of the form
Nk N. The extended realization will remain easy to compute in fact, it will be
represented by the same linear form. Moreover, the new realization will also
utilize storage well, assigning locations through 12 to the original array A
(as did r) and locations 13 through 4k to the new positions. In contrast, the realiza-
tion is not easy to extend along rows. Consider, for example, converting r to a
realization of N3 Ns, i.e., A with an additional column. One is faced with two
undesirable alternatives (since r is not one-to-one on N3 Ns). One could store
the new column (positions (1, 5), (2, 5), (3, 5))in some arbitrary manner, but
then the "simplicity" inherent in r would be lost. Alternatively, one could retain
r’s simplicity by using the linear form 5(i- 1)+ j, a 5-column store-by-row
scheme, to store the extended array. This latter alternative, though, is hard to
implement, since it entails reallocating storage for all but the first row of A.
It is thus clear, even at this intuitive level, that r possesses a certain stability relative
to the adjunction of rows that it does not enjoy relative to the adjunction of
columns.

As with the notion of array scheme, our investigation in [4] demanded a more complicated
notion of realization than that used here.

MANAGING STORAGE FOR EXTENDIBLE ARRAYS 291

Realization 2 (G6del numbering). For (i,.j) N 3 x N4, rg,(i,.j) 2i- 13J- 1.
This realization is bad in almost every respect. It is hard to compute, requiring

a number ofmultiplications which grows with max i, .j}. It uses storage abysmally,
spreading A’s 12 positions over 108 storage locations. But, it is easily extended
along both rows and columns. If one extends A to any superarray Nm x N,,
the corresponding extension of rg, will retain rg,’s exponential form, will leave the
positions of A unmoved, and will retain rg,’s pattern of storage utilization. In
other words, rg, enjoys the stability which we are equating with "easy extend-
ibility".

Why is Realization 2 easily extendible? What makes Realization easily
extendible along columns but not along rows? Intuitively, it appears that the
answer is the same in both cases: the realization in question is a restriction (qua
functional restriction) of a realization of a superarray which is infinite in precisely
the directions of easy extendibility. The alternative to this explanation is to
envision some notion of "adaptive" realization which starts out small and grows
on demand. This is certainly one view of extendibility; however, it is hard to see
how such a growing realization can progress "uniformly" without some infinite
model to line up with. Since we are compelled at this time to proceed by intuition,
we shall adopt the "’infinite superarray" model. While this choice may detract
from the generality of our investigation, it cannot lead us astray finite restrictions
of infinite realizations are surely easy to extend along infinite directions. In
particular, this view of extendibility leads us to the following definition: a
d-dimensional extendible array realization is a realization of the d-dimensional
orthant array f.

A strategy for constructing extendible array realizations is presented in [4];
we briefly describe this shell strategy since it is useful in the sequel. For d N,
let s:N ---, N be any total function which is monotonic in all variables (for all
rC Nd and all 6 e (N U {0})d, s(n) =< s(n + 6)) 3 and which has finite preimages
(for all n e N, the set s-l(n) is finite, maybe empty). Call each set s-l(n) a shell,
and call s a shell index. Shell indexes, which often arise naturally in computational
situations, can be used to construct extendible realizations in the following simple
way: design r:Nd

---} N to linearize the partial order induced by s. (r linearizes
the shell index s if r(n) > r(n’) whenever s(n) > s(n’), for all re, rc’e Nd.) Thus,
r assigns locations, in order, to the shells s- 1(1), s- 1(2), and so on. The following
realizations, which are depicted in Figs. 2 and 3, respectively, illustrate the shell
strategy.

Realization 3 (Diagonal shells). For (i,j) N x N, rd(i, j)= 1/2(i + j- 1)
(i+j- 2)+ j.

This realization is constructed from the diagonal shell index sn(i, j) + j.
Realization 4 (Square shells). For (i, j) e N x N, r(i, j) (m 1)2 + m

+ j- i; m max(i,j).
This realization is based on the square shell index s(i, j) max (i, j).

As we noted in [4], s’s monotonicity removes one obstacle to efficient storage use since, for
instance, gaps needn’t be left while storing a row for later entries in that row.

292 ARNOLD L. ROSENBERG

FIG. 2. Realization 3" stored by diagonal shells

3. Efficiency of storage utilization.
3.1. A measure of efficiency and the lower bound. Few readers would dispute

our contention that Realization 2 (G6del numbering) utilizes storage very
inefficiently. We would probably retain the readers’ concurrence when we claim
that Realization 3 (diagonal shells) is more efficient in its management of storage
than is Realization 2. A comparison between Realization 3 and Realization 4
(square shells), however, is unlikely to lead to a clear-cut decision since they both
have the same order of worst-case behavior (although r has certain advantages
over rd which are discussed in 4). It is our purpose in this section to propose and
study a formal measure of efficiency of storage utilization by extendible array
realizations. The measure exposes the behavior of an extendible realization on
finite array schemes. We then ’diagonalize" over all realizations of fd to obtain
from our measure a minimax lower bound on efficiency of storage utilization by
d-dimensional extendible array realizations.

DEFINn:ZON 3.1. The spread function now defined associates an integer with
each extendible array realization r and integer p. For each realization r of a,
for each p N,

(p; r) max { r(n nd)[i= ni <= p

MANAGING STORAGE FOR EXTENDIBLE ARRAYS 293

FIG. 3. Realization 4"f stored by square shells

Informally, (p; r) is the highest "’address" that r assigns to any position of
an array scheme having p or fewer positions. (Recall that an array is a set of
positions, so that, e.g., A N,, N, has 1-[ni positions.) Since every
array realization maps e onto 1, the function 5e measures the extent to which r
spreads out p- or fewer-position arrays in memory. Obviously 5e is a measure of
worst-case behavior.

Returning to our informal discussion, one shows easily that, for all integers p:
c,(p.,rgn) 3P-l; 5e(p; rs)= p2; ,9(p; rd 0(p2).4 (Look at rgn, rd and rs on
row arrays, that is, arrays of the form N1 Np.) Minsky ([3, pp. 288ff.]) exhibits
pairing functions r with 5e(p; r) O(p +e) for arbitrarily small e > 0. How good
can an extendible realization be with respect to this measure of spread?

DEFINITION 3.2. For each dimensionality d N, for all p N,

d(P) min {O(p; r)lr realizes fd}"
The storage utilization function ’d represents a minimax lower bound on efficiency
of storage utilization by d-dimensional extendible array realizations.

’ By "g(n) O(f(n))" we mean that there exist positive constants K1 and K such that Kf(n)
< g(n) < K2f(n).

294 ARNOLD L. ROSENBERG

THEOREM 3.1. For all dimensionalities d N and all p

#e(p) [p/k ke_ 3 O(p (log p)a-).
(kl, ,ka- I)Na-

with H ki <= p

In particular, //2(P) > (P/4)[log2 P]. Moreover, for each d, a realization r of
exists for which (p; r) --- lld(p).

Proof. Let d N and p N 1) be arbitrary.
(a) @’a(P) >-- [P/l-] ki]. Let r be any realization of fd. Since r is one-to-one,

5(p; r) can be no smaller than the number of (hi,’", hd) Nd which are
positions of some d-dimensional array with p or fewer positions, i.e., which

hi]. Therefore, in the "column"satisfy 1-I hi =< P. But 1-[hi =< P iff ha <= [p/1-Ia2_
{h) {ha_) N of fa, there are precisely [p/1-L,ahi] such positions.
(Intuitively, this is saying that, due to the rectangularity ofarrays, all ofthe columns
{a} {ad- S with ai <= hi must each contribute as many positions
to an array as does the column in question.) It follows that (p; r)
>= k,...k_, _p [P/i-] ki]; hence the same inequality holds for ’d(P), the smallest
of the 5e(p; r).

2 4 6 8 I0 12 14 16

2 5 4 5 6 7 8

8

FIG. 4. The first eighteen hyperbolic shells for

Ix] denotes the integer part of real x.

MANAGING STORAGE FOR EXTENDIBLE ARRAYS 295

(b) la(p) <= .[pll-I ki]. We describe a family of d-dimensional extendible
array realizations which assign storage in as conservative a manner as possible.
We describe the two-dimensional case in some detail, being more sketchy in
the general case. The realizations in question assign storage in shells, first for
arrays having just one position (the array Na), then for arrays having exactly
two positions (the d arrays $1 Sa with some Si---N2 and all other
Sj N1), then for those with three positions (d more arrays), then four positions,
and so on; see Fig. 4. For each integer p, the shell that must be added to accom-
modate p-position arrays contains precisely 6d(p) (= the number of (n, ..., rid)
Nd with I-I ni p, the number of divisors of p for d 2) positions. To see this,

consider any d-element factorization of p, say p-m md. Now
x Nma is a p-position array;moreover,

N,,,, x... x Nm, {(m, ..., ma) U (U N,, x x N,,)

where the second union is over all tuples (a, ..., aa) with some ai mi-
and all other aj m. Of these positions, only position (ml, ..., ma) has not
been dealt with (i.e., assigned an address) in an earlier shell. Thus, the described
shells arise from the d-dimensional hyperbolic shell index Sh(m, "", ma) I-[mi.
One realization which linearizes this shell index is the following; see Fig. 5 for the
two-dimensional version.

FIG. 5. Realization 5’f stored by hyperbolic shells

296 ARNOLD L. ROSENBERG

Realization 5 (Hyperbolic shells). For (il, "", ia) Nd,
Hij-

rh(il,’’’,id)-- Od(k)
k= + (the position of (il, "’", id) among factorizations of I-I it

into d parts, in reverse lexicographic order).

The first term of !" is the number of positions in shells lower than (il, ..., id)’S
the second term (which when d 2 is the number of divisors of ii2 which do not
exceed i,z) determines (il, "’", ida’S position in its shell. It is easy to verify that
5(p; rh) rh(1, 1, p) ’= 6d(k) (the number of (h ha) Sd with

I-I hi <= p). Let kl, ..., kd_ be such that I-I ki <= p. As in part (a), the number of
points in question which reside in the "column" {kl} {kd_ 1} S of fd
is precisely [P/1--I ki]. Moreover, every position (hi, hd) with 1-I hi <= P must
reside in one of these columns. It follows that 5(p; rh) =< kl...k-l<-p [P/1--I ki];
hence, the same inequality must hold for #n(p), the smallest of the 5(p; r). The
expression given for r is rather cumbersome computationally. For the case d 2,
a computationally superior expression for r derives from the following lemma.

LEMMA 3.1. ([7, pp. 159ff.]). For all p N,

62(k)= [p/k] 2. [p/k]-[x,]2.
k=l k=l k=l

(c) d(P) O(p. (log p)a- 1). We establish the order of ld(p) by means of the
following lemma.

LEMMA 3.2. For all p N {1} and all e S {0},

[P/[-I k,] O(p. (log p)e).
klk2""ke <_p

Proof. We estimate the sum above and below using integrals.
Below.

1-Iki <=p Mki<-_p

[pile]

> Z (P/1-] k, 1)
kl,"’,ke

>- p 2 /I-I
ki,’",ke

fpl/e]+ dx dxe
p.

i,...,x, X1 Xe

Hki<_p

O(p. (log p)e).

P

[p/I] k,] <= Z P/1-I k, < Z P/I] k,
I-lki<-p k,’",ke

< K.p. f]’+l dxl dxe for someK>O
,...,x=l X1 Xe

O(p.(log p)e).

MANAGING STORAGE FOR EXTENDIBLE ARRAYS 297

Our claim (c) follows from parts (a) and (b) and from Lemma 3.2 with
e=d-1.

(d) 2(P) > (p/4)[log2 p]. The inequality [p/k] > (p/4)[log2 p] can be
verified using standard estimates. We shall not verify claim (d) this way, however,
since the claim will emerge as Corollary of Theorem 3.2.

This completes the proof of the Theorem.
The message of Theorem 3.1 can be encapsulated as follows.
COROLLARY. Let r be any realization of ’-2" For each integer p, there is an

array A with p or fewer positions such that max (r(A)) >= Fp/k] that is, r spreads
A’s positions over at least roughly p. log2 p locations.

3.2. Two special eases. We examine two special realization problems which
are interesting for different reasons. First, we investigate the problem of storing
only arrays whose sets of positions have cardinality a power of two. The storage
problem for these arrays will lend some insight into the occurrence of the logarith-
mic gaps predicted by Theorem 3.1. Second, we consider efficiency of storage
utilization by extendible realizations which linearize shell indexes arising from
norms on Euclidean spaces. (These are discussed briefly in [4, 4].) Many pairing
functions, for instance rs, and especially the polynomial ones, such as ra or the
excess-squares function re(i, j) (i + j)2 .+. j 4, can be viewed as arising from
norms. All of these pairing functions have a spread 5(p; r) which is O(p2). We shall
see in Theorem 3.3 that such a spread is inevitable with norm-based pairing
functions.

3.2.1, Powers of two. We define analogues of the spread and utilization
functions.

DEFINITIONS 3.3. For each realization r of "2 and each p N, define

S(p; r)= max {r(i,.j)l(i,.j <= some (m,n) with m. n
and

U(p) min {S(p; r)lr realizes f2 }.
Informally, (i, j) is in some p-position array precisely when (i, j) __< some

(m, n) with m-n p; thus, S(p; r) measures the extent to which r spreads out
arrays having exactly p positions.

Remarks. (a) For all realizations r of f2 and all p e N, S(p; r) __< 5e(p; r);
(b) for all p e N, g(p) <= ’2(P)"

THFOREM 3.2. For all k N, U(2k) > k. 2k- 1. Hence

lim sup > 0.
p p" log2 p

Proof. We employ the same counting technique as in part (a) of the proof of
Theorem 3.1.

Let r be any realization of f2. Since r is one-to-one, s(2k r) must be at least
as great as the number of (i,j) N2 which are positions of some 2k-position
array, i.e., which are =< some (2", 2b) with a / b k. In N x {1 }, there are 2
such positions. For b Nk, there are 2k-b such positions in "column" N x {c}
for all c in the range 2b-1 < C 2b. It therefore follows that s(2k; r)>__ 2

(a, b) __< (c, d) iff a __< c and b __< d.

298 ARNOLD L. ROSENBERG

/ kb= 2b- 12k-b (k / 2). 2k- 1. Since r was arbitrary, this lower bound must
hold also for u(2k), the minimum of the s(2k; r).

COROLLARY 1. For all p N, O//’2(p) > (p/4)[log2 p].
Proof. The result is clear for p < 4. We find the following inequalities for

p__>4"

2(P)->- U(2lgp) (since -’2 is monotonic nondecreasing
by definition)

> 2tlog pl- 1. [log2 p] (by Theorem 3.2)

> (p/4)[log2 p] (since [log2 p] > log2 p 1). []

Remark. /g’2 is a monotonic increasing function; U is not even nondecreasing.
The former assertion follows from Theorem 3.1 the latter follows from Theorem
3.2 and the easily verified fact that U(p) 2p whenever p is a prime.

Finally, we note that Theorem 3.2 ensures that the logarithmic gaps of
Theorem 3.1 appear even if one restricts attention to arrays whose height and
width are both powers of two.

COROLLARY 2. Let r be any realization of f2. For each integer k, there is
an array A N2a N2b with a + b k such that max (r(A)) > k. 2k- 1.

3.2.2. Norm-induced shell indexes. Natural shell indexes are often dictated by
external considerations (as was the hyperbolic index, and as will be the indexes
discussed in 4); however, one often encounters problem situations which offer
no hints about, how to construct a realization. In [4], it was suggested that one
could often look for inspiration to those functions on Euclidean spaces which, in
the continuous case, are used to determine the shapes of neighborhoods, namely
norms. We now show that realizations based on norm-induced shells must
exhibit materially inferior worst-case storage characteristics than that of Theorem
3.1. The results reported now were obtained jointly with Larry Stockmeyer.

DEFINITION 3.4. The shell index s :Nd - N is norm-induced (is an N-index) if
(a) for all re, p Na, s(rc / p) __< s(rr) + s(p); and
(b) for all r e Sa and n N, s(n. re) n. s(r).

Thus, s comes from a seminorm which is integer-valued at the lattice points.
THEOREM 3.3. Let r be any realization of fa which linearizes an N-index s.

For all integers p N, 5(p; r) > [(p 1)/d]a.
Proof. Let p N be arbitrary, and consider the position (p + d 1). e Nn.

Since s is an N-index, we have (by Definition 3.4(a))

s((p/d- 1).e)s(1,..., 1,p)/s(1,...,p, 1)/ /s(p,1,..., 1).

Hence for at least one of the positions rt on the right,

(1) s0z) > (l/d). s((p + d 1). e) >= s(([(p 1)/d] + 1). e).

This last inequality follows from Definition 3.4(b). Next, letting q [(p 1)/d],
note that, for all p e (Nq)d, we have

s(p) __< s(q. e) < s((q + 1). e) _<_ s(z).

These inequalities follow, respectively, from the monotonicity of s, from Definition

MANAGING STORAGE FOR EXTENDIBLE ARRAYS 299

3.4(b), and from the inequalities (1). Thus, at least qd [(p 1)/d]d positions of
fd reside in shells lower than that of ft. Since r linearizes s, we have r(n)
> [(p 1)/d]. Since r is in some p-position array, the theorem follows.

The diagonal and square shell indexes are both norm-induced; hence, their
linearizations’ spread behaviors are as good as possible in terms of growth rate,
among norm-induced realizations. We infer from the multi-dimensional versions
of these realizations that d(p) O(p) when only norm-induced realizations are
considered.

4. On favoring arrays of specified shapes. The results in 3 have a predomi-
nantly negative tone" sizable (and growing gaps are inevitable concomitants of
extendible array realizations. Yet the square shell" realization r (Realization 4)
gives some reason for optimism. Despite rs’s poor worst-case storagx utilization--
which, by Theorem 3.1, is materially worse than even the pessimistic lower
boundmr manages storage perfectly for square arrays; that is, for all n N,
r maps (N,)2 one-to-one onto N,2. Thus, when confronted with an algorithm
which uses successively bigger square arrays, one has access to an extendible
array realization which manages storage perfectly. This section is devoted to
showing that analogues to r can be devised for any fixed array "shape". Moreover,
any fixed number of such perfect-storage-managing shape-favorers can be
combined into an extendible realization which favors all of the shapes its con-
stituents do--and also approaches the minimax optimality of the hyperbolic shell
realization on arrays of unfavored shapes. This combined realization _is not free
of gaps even on the favored arrays, but the size of the gaps is bounded (multi-
plicatively, by approximately the number of shapes to be favored). We close the
section with an open question about the existence of realizations which favor
infinitely many shapes.

4.1. Realizations which favor a specific shape. We begin by formalizing the
notions of "array shape" and "storing an array compactly".

DEFINITIOrqS 4.1. (a) A d-dimensional array shape is a d-tuple of functions
S (hi, ..., hd), where each h is an unbounded nondecreasing total function
from N into N, such that for no n N do we simultaneously have all h(n)

hi(n + 1).7
(b) The array N,I N, has shape S if, for some k N, n hi(k

for all i.

The intention of Definitions 4.1 is that the formal analogue of "array shape"
is the specification of the infinite family of arrays having that "shape". The
specification is by means of the functions hi,..., hd, where hi(k specifies the
height along axis of the kth array having that shape. Thus, the shape (h ...,
specifies the infinite indexed family of arrays A1, A2, "’", where, for each n N,
A, Nhl(n Nha(.). The examples in Table should aid the reader’s
intuition. (Functions in the table are specified using 2-notation.)

DEFINITIONS 4.2. Let r be a realization of
(a) r stores the array A=N., x N., with bound b (beN) if

max (r(A)) __< b. I-] n.

When d 2, we denote the shape by S (h, w) for height and width.

300 ARNOLD L. ROSENBERG

(b) r is b-linear (b
_
N) on array shape S if r stores every array of shape S

with bound b.
(c) r is compact on array shape S if r is b-linear on S for some b N.

It is assumed, of course, that the array shapes of (b, c) are d-dimensional.

TABLE
Some array "shapes" and their formal analogues

"Shape" Shape Height Width

square 2n[n] 2n[n]
even side square 2n[2n] 2n[2n]
n (n+ 1) 2n[n] 2n[n+ 1]
n n 2n[n2] 2n[n]

Our earlier remark that r stores square arrays "perfectly" can now be
formalized: rs is l-linear on the shape (2n[n], 2n[n]). The existence of analogues
of r for arbitrary shapes can also be stated formally.

THEOREM 4.1. Let S (h -.., hd) be any d-dimensional array shape. There is
a realization r of fn which is 1-1inear on S.

Proof. We design r to linearize the following shell index s which exposes
the structure of the shape S. For (n l, "-’, rid) Nd,

s(nl, r/a) max {least k with hl(k __> nl; least k with h2(k >= n2;

;least k with ha(k >= rid}.
For each k N, denote by A the array scheme Nh(k Nha(k). Informally,
the first shell s- 1(1) is the set of positions of the array scheme A for k > l, the
kth shell s-l(k) comprises those positions of the array scheme Ak which are not
positions of the array scheme Ak_ 1. (See Fig. 6.) Any onto realization r which
linearizes s is easily seen to be l-linear on S. [3

In order to illustrate that the realization constructed in the previous proof
need not be computationally prohibitive, we remark that the following realization
r of f22 is l-linear on the shape S (h, w) let M s(i, j); then

r(i,.j) h(M). j 1) + h(M 1). (w(M 1) min {j, w(M 1)}) + i.

A derivation of r is given in the Appendix.
Remark. In [5 (the technical report underlying this paper), we used a more

general notion of shape than here, by insisting only that some h be unbounded
(so, for instance, all arrays of the form N1 N, would be a shape). The price of
this generalization is that the subsequent development gets very awkward;
for instance, Theorem 4.1 must be weakened to assert that r stores all but finitely
many arrays of shape S with bound 2. Since our main concern is with shapes as
defined here, we have opted for cleanliness rather than generality. Should the
reader be tempted to consider the more general notion of [5], we suggest that the
constants used to measure storage bound and linearity be allowed to be rational
rather than integral, for in the general case the constant 2 can usually be reduced
to + e for arbitrarily small e > 0.

MANAGING STORAGE FOR EXTENDIBLE ARRAYS 301

SHELL

,XES -/

(<h(k),w(k)’>

SHELL
SHELL 4

FIG. 6. A possible layout of shells from the array shape (h, w)

4.2. Compact handling of sets of shapes. Theorem 4.1 can be combined with
the following basic lemma to show that any finite set of shapes can be handled
compactly by some realization.

THE DOVETAILING LEMMA. Let r 1, r2, , rk be realizations of)d. There exists
a realization r of fd such that, for all rc Nd,

r(t) __</. min {r/(rc)ll Nk}.

Proof. Define r by

r(g) min {k. (rl(z) 1) q- III e Nk}.
Now, r is total since the r are; r is one-to-one since each r is, and since r uses a
distinct residue class modulo k to "’select" from each of the r/; also, r(e)- 1.
Intuitively, r is computed by giving each rt Nd the integers all of the r’s would
give it--adjusted so that each r uses only integers in the residue class (mod k)--
and then selecting the smallest integer as r(r0. 13

THEOREM 4.2. Let $1, Sk be array shapes. There is a realization r of
which is compact on all of the Si. Moreover, r can be chosen to spread any p-position
array which is not of any of the shapes S over at most O(p (log p)d- 1) locations.

Proof and discussion. The Theorem can be proved using Theorem 4.1 and the
Dovetailing Lemma. The most straightforward method of proof would take the
k realizations to be combined and would combine them according to the prescrip-
tion of the lemma’s proof. (We assume that Theorem 4.1 has been used to translate

302 ARNOLD L. ROSEN-BERG

82 83 84 85 86 87 88 89 90

65 66 67 68 69 70 71 72 73 92

50 51 52 53 54 55 56 57 74 93

37 38 39 40 4 42 43 58 75 94

26 27 28 29 30 31 44 59 76 95

17 18 19 20 21 32 45 60 77 96

I0 ii 12 13 22 33 46 61 78 97

14 23 34 47 62 79 98

8 15 24 35 48 63 80 99

16 25 36 49 64 81 i00

(a) L--square shell realization

>103 >103 >104 >104 >105 >105 >106 >106 >10 >10

>103 >10 >104 >104 >105 >105 >106 >106 >107 >10

768 >103 >10 >]04 >I0 >10 >105 >106 >106 >107

384 >103 >103 >10 >104 >104 >105 >105 >]-06 >106

192 576 >103 >103 >104 >104 >]05 >105 >106 >106

96 288 864 >10 >103 >i0 >104 >105 >105 >106

48 144 432 >103 >103 >104 >i0 >105 >105 >i05

24 72 216 648 >103 >103 >10 >104 >10 >105

12 36 108 324 972 >10 >10 >10 >i0 >10

ii 13 15 17 19

(b) L--stores "row arrays" 2-linearly

24 62 106 153 204 255 308 363 419 478

21 54 93 135 179 223 270 320 371 420

17 47 79 116]_54 193 235 277 321 364

15 39 68 98 129 164 200 236 271 309

l] 31 55 80 107 136 165 194 224 256

25 43 63 86 108 130 155 180 205

18 32 48 64 81 99 117 137 156

12 22 33 44 56 69 82 94 109

]9 26 34 40 49 57 65

I0]4 16 20 23 27

(c) rh--hyperbolic shell realization

FIG. 7. Three realizations to be dovetailed

MANAGING STORAGE FOR EXTENDIBLE ARRAYS 303

shapes into realizations and that the hyperbolic shell realization has been added
to the set to be combined, if desired.) If k realizations are so combined, then the
number of locations over which a p-position array is spread by the resulting
realization is k times the least number of positions it is spread over by any of
the k input realizations. In particular, if an input realization stores a given shape
c-linearly, then the resulting realization stores that shape ck-linearly. Often,
one might wish to favor some k shapes but to super-favor certain of them; that is,
one is unwilling to suffer the dilation factor of k for those certain shapes. One can
easily use the lemma to attain such differential favoring as follows. Take the
input realizations and represent them as the leaves of a rooted tree in such a way
that (i) each nonleaf of the tree has at least two sons, and (ii) the less favored a
realization is, the farther is its leaf from the root. Then, combine the realizations
according to the lemma from the bottom up, according to the usual rules for
evaluating such a tree. (A node "becomes" a realization, via the lemma, when all
of its sons "are" realizations; the realization it "becomes" is the one obtained by
combining its sons.) To illustrate these applications of the lemma, consider three
realizations r the square shell realization, r which stores row arrays 2-linearly,
and rh the hyperbolic shell realization which stores arrays in space roughly
p. log2 p (See Fig. 7.) The straightforward combination (rs, L, rh) would store
squares 3-linearly, row arrays 6-linearly, and all other arrays in space roughly
3p. log2 p. If one desires to super-favor rs, say, because most arrays of interest
will be square, then one could combine the realizations according to the (encoded)
tree (rs,(L, rh)). The realization so obtained would store squares 2-linearly,
row arrays 8-linearly, and all other arrays in space roughly 4p. log2 p. The layout
of storage under these sample schemes is illustrated schematically in Fig. 8.

As to the constant of linearity of the resulting realization, we see now that
we have some flexibility. However, the straightforward combination technique
demonstrates that, when k shapes are combined, the resultant constant of linearity
for each shape need never exceed k (or k + if we wish to be gentle on unfavored
arrays). This upper bound may not be optimal, but it cannot be more than a factor
of 2 from optimal. To wit, say that one wishes to favor k two-dimensional slapes
simultaneously. Assume that each shape contains a distinct 2k- 1-position array--
there are precisely k of them. Then, since U(2k- 1) > (k 1). 2k- 2, the constant
of linearity of the resulting scheme must exceed (k 1)/2 for some shape. We have
thus proved the following more detailed version of Theorem 4.2.

THEOREM 4.3. (a) Let $1,’", Sk be d-dimensional array shapes. There is a
realization r of fd which is (k + u)-linear on shape Si (i 1, k), where u or 0
according as r, respectively, does or does not achieve the O(p. (log p)-1) bound on

unfavored arrays.
(b) For each k, there exist array shapes $1, Sk such that any realization

which is compact on all S must be c-linear on one of them for some c > (k 1)/2.

4.3. On favoring infinitely many shapes. The construction used in proving the
dovetailing lemma can obviously not be used to combine infinitely many shapes.
Barring degenerate cases, we know of no realization which stores infinitely many
shapes compactly. We do not even know if such a realization exists.

Open problem. Is there an extendible array realization which is compact on

304 ARNOLD L. ROSENBERG

72 1.86 250 253 256 259 262 265 268 271

63 162 199 202 205 208 211 214 217 274

51 141 154 157 160 163 166 169 220 277

45 112 115 118 121 124 127 172 223 280

33 79 82 85 88 91 130 175 226 283

27 52 55 58 61 94 133 178 229 286

18 31 34 37 6 97 136 181 232 289

12 16 19 40 67 i00 139 184 235 292

4 22 43 70 102 20 147 171 195

1 8 14 20 26 32 38 44 50 56

(a) (r r,

96 165 167 169 171 173 175 177 179 181

84 131 133 135 137 139 141 143 145 183

68 i01 103 105 107 109 iii 113 147 185

60 75 77 79 81 83 85 115 i49 187

44 53 55 57 59 61 87 117 151 189

33 35 37 39 41 63 89 119 153 191

19 21 23 25 43 65 91 121 155 93

ii 13 27 45 67 93 123 157 195

3 5 15 29 47 69 95 125 159 197

17 26 34 42 50 58 66 74

(b) (rs, (rr, rh))

FIG. 8. The result of dovetailing and (a) equal weighting" (b) super-favoring rs

each of infinitely many array shapes? In order to bar trivial solutions, we require
that each shape in the collection specify infinitely many arrays specified by no
other shape. Perhaps this nontriviality condition can be weakened to the following:
given any two shapes in the collection, each specifies infinitely many arrays not
specified by the other. Any nontrivial solution to this problem would be interesting.

Appendix: A l-linear storage scheme for the shape <h, w>. We are presented
with an array shape (h, wT. From it we infer the shell index s presented in the
proof ofTheorem 4.1. We linearize the shells delineated by s by listing the positions
in each shell, in turn, "by columns". Note that the realization we arrive at is
computable--in the technical sense--whenever h and w are, and that it is not
exceedingly more difficult to compute than the worse of those two functions.

The general paradigm for constructing shell realizations is to represent r as

MANAGING STORAGE FOR EXTENDIBLE ARRAYS 305

the sum of two functions 2 and p, where, for each position n e N2,

2(rt) the number of positions in shells lower than rt’s;

p(rt) rr’s position in its shell.

(cf. the specification of the hyperbolic shell realization.) We show how to compute
r(7) 2(re) +/z(rc) for one fixed arbitrary 7 (i, .j).

Conventions. To avoid repetitive use of long formulas, let

M=s(Tt) and W=w(M- 1),
so that 7t lies just outside the array Nh(M- 1) X Nw.

Lower shells. For any shape S and any position 7t, 2(rt) will be the number of
positions in the largest array not containing ft. For our particular example,

2(rt) h(M 1). w(M 1),

using the convention that h(0) w(0) 0.
Current shell. To store the current shell s- I(M) by columns, we must take care

of the portion of the current shell which lies above lower shells and the portion
which extends all the way down to the axis. (Either of these portions can be empty,
but both cannot; see Fig. 6.) To ease our way into/(t), we separate these two
portions. Note that the former portion is characterized by j =< W and the latter
by j> W.

i-h(M- 1)+ (h(M) -h(M- 1)).(j- 1) if.j < W,

+ W. (h(M)- h(M 1)) + h(M). (.j- W- 1) if.j > W,

which simplifies to

f i- h(M) + (h(M)- h(M 1))..j if.j =< W,
/(t)

+ W. h(M 1) + h(M). (.j- 1) if.j > W,

which finally simplifies to

p(rt) + h(M). (j 1) h(M 1). min {.j, W}.
Alternatives to this/ function will readily occur to the reader. For instance,

one could store shell by "bands" in analogy to the square-favoring realization
(Fig. 3). In specific instances, a variety of strategies should be investigated, with
an eye toward simplifying traversal of rows and columns.

Acknowledgments. I am grateful to Shmuel Winograd for many insightful
suggestions and for asking whether "added information" might allow one to
overcome the p. log p bound of Theorem 3.1. Several discussions with Larry
Stockmeyer concerning this work were invaluable, especially those leading to
Theorem 3.3, to the current proof of the dovetailing lemma, and to the suggestion
to present the utilization function ’ via the spread function . Conversations with
several other colleagues, too numerous to cite individually, were helpful in
organizing the current presentation of this work. Special thanks are due the
referee for his many valuable suggestions and criticisms.

306 ARNOLD L. ROSENBERG

REFERENCES

[1] E.D.S. DE VILLIERS AND L. B. WIISON, Hash coding methods for sparse matrices, Tech. Rep. 45,
Computing Lab., Univ. of Newcastle on Tyne, 1973. See also, Hashing the subscripts of a
sparse matrL,c, BIT, 14 (1974), pp. 347-358.

[2] D. E. KNUTH, The Art of Computer Programming I: Fundamental Algorithms, Addison-Wesley,
Reading, Mass., 1968.

[3] M. L. MINSKV, Computation" Finite and Infinite Machines, Prentice-Hall, Englewood Cliffs, N.J.,
1967.

[4] A. L. ROSENBERG, Allocating storage for extendible arrays, J. Assoc. Comput. Mach., 21 (1974),
pp. 652-670.

[5] --, On storing extendible arrays of specified shapes, IBM Rep. RC-4450, Yorktown Heights,
N.Y., 1973.

[6] W. SIER,NSII, Elementary Number Theory, Panstwowe Wydawnictwo Nankowe, Warsaw, 1964.
[7] L. J. STOCKMEYER, Extendible array realizations with additive traversal, IBM Rep. RC-4578,

Yorktown Heights, N.Y., 1973.

SIAM J. COMPUT.
Vol. 4, No. 3, September 1975

RECURSION STRUCTURE SIMPLIFICATION*

H. R. STRONG, JR.,’ A. MAGGIOLO-SCHETTINI: AND B. K. ROSEN

Abstract. This paper discusses a family of algorithms for transforming a recursive program into
an equivalent program with a simplified recursion structure. The simplification is performed by
integrating copies of certain procedures into the bodies of other procedures. This procedure integration
process is analogous to macroexpansion, involving procedure calls rather than macro-operazors.

We measure the complexity ofthe recursion structure in terms of the calling graph of the program.
This is a directed graph with nodes representing the procedures of the program and arcs representing
the relation "calls". We say that the recursion structure is complex if there is a high degree of cross
linkage resulting in a small number of large strongly connected components in the graph; and we say
it is simple, if the strongly connected regions are small, preferably containing one node each.

One algorithm in our family is optimal in the sense that it finds a program with the same number
of procedures and the maximum number of strongly connected regions obtainable via macroexpansion
of procedure calls. We discuss suboptimal algorithms which require less running time, and we discuss
open problems related to finding simplification algorithms optimal with respect to a wide range of
transformations including the inverse of macroexpansion. In particular, we present a very simple
open problem concerning the decidability of the word problem for certain semigroups.

Key words, recursion, copy rule, calling graph, strongly connected component, covering problem

1. Introduction. We are concerned with the simplification of the recursion
structure of programs as a first step toward the systematic removal of recursive
procedure calls. There is now a somewhat extensive literature on the subject of
recursion removal. Some entry points into this literature include [2], [4], [11], 17].
It has been remarked in several places in this literature that a natural first step in
recursion removal is the decomposition of a recursive program into a system of
mutual recursions, i.e., recursive subprograms consisting of procedures (or
functions, etc.), each of which calls all the others directly or indirectly. Each of
these mutual recursions is then to be converted to an equivalent nonrecursive
subprogram, and all the subprograms are then recomposed to yield a nonrecursive
program equivalent to the original. However, this natural decomposition of the
program is not always best for further processing.

The complexity of recursion removal algorithms generally increases dramati-
cally with the number of distinct procedures in the mutual recursion. Moreover,
it is often possible to further decompose the program, reducing the size ofmutually
recursive components. One technique for further decomposition involves the
substitution of a modified version of a procedure body for a call in some other
procedure body in a way analogous to macroexpansion. In this paper, we present
an algorithm for the optimal use of such substitutions.

The reader will need no familiarity with recursive programming and only a
minimal familiarity with directed graphs to understand the algorithm. We do not

Received by the editors December 14, 1973, a, .t in revised form September 11, 1974.

" Computer Sciences Department, IBM Thomas J. Watson Research Center, Yorktown Heights,
New York 10598.

:I: Laboratorio di Cibernetica, 80072 Arco Felice, and Istituto di Scienze dell’Informazione
dell’Universit/, 84100 Salerno, Italy. The work of this author was done while visiting with the IBM
Thomas J. Watson Research Center.

Computer Sciences Department, IBM Thomas J. Watson Research Center, Yorktown Heights,
New York 10598.

307

308 H. R. STRONG, JR., A. MAGGIOLO-SCHETTINI AND B. K. ROSEN

discuss application of the algorithm to any specific programming language,
although some of our examples are presented in a pseudo-ALGOL

In 2 we present a definition of the problem. In 3 we describe a family of
algorithms aimed at its solution. Section 4 designates the optimal algorithm and
provides a proof that it does solve the problem. Suboptimal but faster members of
the family of algorithms are discussed in 5. In 6 we discuss a wider range of
program transformations with respect to which our algorithm is strictly sub-
optimal. Here we present a number of open problems and areas for investigation.
Finally, in 7, we treat one of the most concise and algebraically oriented of these
open. problems in more detail.

The algorithm presented here is essentially that of [13]. A preliminary
report of some of the work presented here appeared as [8].

2. Definition of the problem. No specific definition of the class of recursive
programs will be used here; our results are applicable to many different formaliza-
tions of recursion, including branched recursion equations [14], recursion with
embedded conditionals [9], program schemes with recursion [3] and high level
programming languages such as ALGOL 60 and PL/I. Any notion of "recursive
program" with some elementary general properties may be used.

We assume that each recursive program has associated with it a finite set
{f,g,h,...} of "procedures" and a relation "calls" among the procedures.
Thus some of the information expressed by writing a program can be displayed
in a calling graph with a node for each procedure and an arc from f to g whenever
f calls g. We will use to represent the calling graph of a program P. We wish to
transform a program in ways that preserve whatever the program computes
but that simplify the calling graph by increasing the number of strongly connected
components (while maintaining the same number of nodes). The resulting small
collections of mutually recursive procedures may be more amenable to recursion
removal techniques 15], 17] than the original components.

Only one kind of transformation is considered here" the ALGOL 60 copy rule
[10] and its analogues in other formalisms. Wherever a procedure g is called from
within the body of a procedure f, we may replace the call by an appropriately
modified copy of the body of g. (The main modification is to replace formals
by actuals. For call-by-value or call-by-reference it is also necessary to add
evaluations of the actuals or their addresses.) We do not consider the syntactic
details because all we need here is the following general property" for any program
P and any procedures f, g and P, we can form a program Q equivalent to P that
uses the same procedures and calling relation, except that f calls in Q all the
procedures which g calls in P and f no longer calls g in Q unless g called itself in P.
To get this, we have to apply the copy rule to all calls on g from within the body
of f, even nested ones. If g does not call itself, then no calls on g will be left in
the body of f.

Thus the copy rule, when applied to all calls on g in the body of f, maps P
to a new program which we call If- g]P, and [f- g]P the calling graph of
f g]P is formed from the calling graph P by this operation"

(i) Delete the arc (f, g).
(ii) Add a new arc (f, h) for each h such that the arc (g, h) is in P but (f, h)

RECURSION STRUCTURE SIMPLIFICATION 309

is not in the graph resulting from (i).
If g calls itself in P, then (f, g) reappears in the calling graph If g]P.
Our problem is to find a finite sequence If, g,] [f_ g- 1] IrE gEl

Ill gl]P ofthese copy rule substitutions that maximizes the number of strongly
connected components, at least compared to all other sequences of substitutions.
Our solution is applicable to any definition of the substitution operation, so long
as substitution preserves the function computed by a program and is reflected
in the calling graph by the operation (i), (ii) above.

Consider, for example, the following pseudo-ALC;OL program P"

procedure q;
begin

procedure f(x, n);
real x; integer n;
begin

if n 0 then x 0 else
begin
n,=n- 1;x..=x + 1;
g(x, n);
k(x, n);
x=-x-- 1;
h(x, n)

end
end of f;
procedure g(y, m);
real y; integer m;
begin

if m 0 then y..= else
begin
m,=m- 1;
k(y, m);
h(y, m);
f(y,m)

end
end of g;
procedure h(z, i);
real z; integer i;
begin

k(z, i);
i,=i + 1;
k(z, i)

end of h;
procedure k(w, j);
real w; integer j;
begin

integer i;
for i.’= step until j do g(w, i);

310 H. R. STRONG, JR., A. MAGGIOLO-SCHETTINI AND B. K. ROSEN

j,=j-- 1;
f(w, j)

end of k;
f(w,w)

end of q.

For our purposes, the particular operations are irrelevant; we are concerned
only with the calling graph P, shown in Fig. 1.

Fl6.

The relevant part of If hip would be

procedure f(x, n);

X--X- 1,
begin

k(x, n);
n’.=n + 1;
k(x, n)

end

end;

and If hip would be as shown in Fig. 2,

F. 2

RECURSION STRUCTURE SIMPLIFICATION 311

while [k hi [k g] [k f]P would be as shown in Fig. 3.

FIG. 3

Note that, in each of these example graphs, there are two components {q}
and f, g, h, k}. Since we are interested in maximizing the number of components,
the reader might find it helpful to try to find a sequence of substitutions that
increases the number of components before studying the algorithms of the next
section. The maximum attainable via these substitutions is four.

3. The algorithm. Given a recursive program P, the algorithm applies a
variant of topsort [7] to its calling graph P, simultaneously choosing a set * of
nodes which is a covering of the graph. (By path we mean an alternating sequence
of nodes and arcs, beginning and ending with nodes, such that each arc is directed
from its predecessor to its successor node in the sequence. A cycle is a path that
begins and ends with the same node. A node cuts a cycle if it appears in the sequence.
A set of nodes cuts a cycle if one of its members does. A covering is a set of nodes
that cuts all cycles.)

The result of the sorting is a linearization (LIST) of the partial order provided
by the original graph with arcs into * nodes deleted. This linearization then
determines the order of application of the substitutions. We present the algorithm
below in flow chart form. The internal structures mentioned are lists for nodes
(LIST and POOL), a queue for nodes (QUEUE), two cells for nodes (FOCUS,
NEXT), a cell for arcs (PTR), and a structure for a set of arcs (GRAPH).

There are three phases in the algorithm. From a program we pass to a calling
graph together with the number N ofnodes in the graph and a list POOL ofnodes.
For the present, the only constraint on POOL is that it must be a covering.

The second phase manipulates the graph with no reference to the program
text. It differs from topsort [7] in that an empty queue is no longer enough for
termination. An empty queue together with a NO answer to "N NODES
LISTED?" indicates that some cycles remain in the graph. (Only acyclic graphs
are allowed in topsort.) To continue sorting we choose a node not already in
LIST from POOL. We mark this node with * and delete its inarcs, so that any
cycles involving this node will be cut. We queue this node and continue as in [7].
We only dip into POOL when necessary.

The third phase uses LIST and the * marks to direct a series of macro-
expansions in the program. We have actually specified a family of related
algorithms. The members of our family of algorithms can differ in the method of

312 H.R. STRONG, JR., A. MAGGIOLO-SCHETTINI AND B. K. ROSEN

INPUT; PROGRAM WITH N PROCEDURES

(PRODUCE CALLING GRAPH AND POOL
QUEUE ALL NODES WITH INDEGREE O

CHOOSE A NODE
NOT IN LIST FROM POOL;
* ITS PROCEDURE;
DELETE ITS INARCS;
QUEUE IT

-i,N NODESLISTEDP[
YES

IN EACH .w- PROCEDURE,
EXPAND ALL CALLS TO
NON * PROCEDURES THAT
ARE LISTED BELOW IT

OUTPUT: PROGRAM

FOCUS------- HEAD OF QUEUE
REMOVE FOCUS FROM QUEUE
ADD FOCUS TO LIST

OUTDEGREEI(FOCUS)=OP YES

PTR"-ANY OUTARC OF FOCUS
NEXT-"- HEAD OF PTR;
DELETE PTR FROM GRAPH

INDEGREE (NEXT)=O.P NO

YES

QUEUE NEXT

FIG. 4. A family of algorithms. The list POOL of nodes formed in box must include enough nodes to
cut all cycles. The methods for forming POOL in box and for choosing from POOL in box II are
not spec!fied

constructing POOL initially and in the method of choosing which node in POOL
to use in box II.

As an illustration we apply our algorithm to the example P of the last section.
Alphabetical order will be used as the method of choice.

At point I, q is put on the queue and nodes f, g are put into POOL. The
queue is not empty; so q is placed in FOCUS, the queue is emptied, and q is
placed at the top of LIST. The outdegree of q is not zero; so (q, f) is placed in
PTR, f is placed in NEXT and the arc (q, f) is deleted. We proceed to point II,
at which f is chosen and its inarcs, (k, f) and (g, f), are deleted. After placing f
on LIST and in FOCUS, we place (f, g) in PTR (using alphabetical order again
to choose the outarcs), place g in NEXT, and delete (f, g). Since the indegree of g
is still not zero, we place h in NEXT and delete (f, h). Similarly, we delete (f, k).
Now, with outdegree (f) 0, we return to point II and choose g, deleting (k, g).
With g in FOCUS and h in NEXT, we delete (g, h) and queue h. After deleting
(g, k), we place h in FOCUS, delete (h, k) and queue k.

At point III, LIST contains q, f*, g*, h, k. Thus the instructions at point III
are to produce [g- k][g- h][f- k][f- hiP. The calling graph [g- k][g- hi
[f- k] If- hip is shown in Fig. 5. The only changes to P are in the bodies of

procedures f and g. But now the calling graph has four components {q}, {f,g},
{h}, and {k}. If the only entry to P is a call to q, then the structure can be simplified

RECURSION STRUCTURE SIMPLIFICATION 313

FIG. 5

further by deleting h and k. However, for the rest of this paper we will ignore this
kind of simplification, assuming that any procedure of the program is a potential
entry point.

4. The solution. The following results are concerned with the application of
the algorithm to any program P. By "the algorithm" we really mean any algorithm
in the family specified by Fig. 4.

LEMMA 4.1. At any time when box II is entered during a computation, GRAPH
contains a cycle.

Proof. The assertion

(1) ALL NODES OF INDEGREE 0 ARE IN QUEUE OR IN LIST

is true on exit from the box I. The operations which falsify (1) are promptly
followed by operations which make it true again, and (1) is true whenever box II
is entered.

Let box II be entered at time t. By (1) and emptiness of QUEUE, there is
a node fo which is not yet listed and which has positive indegree. Given f for
any nonnegative integer i, if f has positive indegree we choose f+l such that
(f+l,f) is in GRAPH at time t.

If the sequence (fo,fl,f2,"" ") is infinite, then GRAPH has a cycle. Suppose
instead that the sequence is finite, so some > 0 has f of indegree 0. We will
derive a contradiction.

By (1), fi is in LIST at time t. Therefore f was added to LIST from FOCUS
at a time prior to t. Between that time and t, the loop governed by "OUTDEGREE
(FOCUS) 0?" deleted (f,f_ 1) from GRAPH. But no arcs are added, so
(f, f- 1) is missing from GRAPH at time t.

LEMMA 4.2. The algorithm terminates normally.
Proof. An abnormal termination is an attempt to do something impossible

such as dividing by zero. The algorithm contains one box that might be impossible
to execute at some point in a computation: box II presupposes that POOL has
at least one more node not yet in LIST. By Lemma 4.1, GRAPH has cycles when
box II is entered. Since POOL includes a covering C on exit from box I, there
must be nodes in C with positive indegree when box II is entered. These nodes
must be not in LIST and still in POOL, so execution of box II is indeed possible.
Therefore, any terminating computation terminates normally.

314 H. R. STRONG, JR., A. MAGGIOLO-SCHETTINI AND B. K. ROSEN

In the flowchart presentation ofthe algorithm, the nodes corresponding to the
tests "QUEUE EMPTY" and "OUTDEGREE(FOCUS)= 0" cut all cycles
of the flowchart. On each return to "QUEUE EMPTY", the number of nodes
not yet on LIST has been decreased by one. On each return to "OUT-
DEGREE(FOCUS) 0" without passing through "QUEUE EMPTY", the
number of arcs not yet deleted has been decreased by one. Thus there can be at
most N returns to "QUEUE EMPTY" and at most N + E returns to "OUT-
DEGREE(FOCUS) 0", where there are N nodes and E edges in the original
graph. Let c be the maximum length for cycle free paths in the flowchart. Then
the algorithm terminates in no more than 2cN + cE / c steps

For nodes or procedures (we use these terms interchangeably), we define
an ordering" g > f if g appears ahead of f on LIST. Thus, in our example,
q > f > g > h > k. We also write f =< g iff and g refer to the same node or g > f.

LEMMA 4.3. If f <__ g and f calls g in P, then g is in *.
Proof. The arc (f, g) must be deleted before g can be added to LIST. The

only ways the arc (f, g) could be deleted during the operation of the algorithm
are at point II or while f is in FOCUS. But since g appears earlier on LIST than f,
all inarcs to g have been deleted before f is in FOCUS.

COROLLARY 4.4. The set * is a covering of P.
Proof. Because > is transitive and no node h in a cycle can have h > h,

at least one arc (f, g) in a cycle must have f __< g. Therefore g is in *.
We write AP and AP for the program and calling graph resulting from the

application of the algorithm.
LEMMA 4.5. Each non * nodeforms its own component in AP.
Proof. By Lemma 4.3, each procedure in P calls only * procedures and

procedures below it on LIST. At point III, the arcs corresponding to substitutions
are those from * nodes to non * nodes in order of appearance on LIST. When
If g] is performed, the only arcs introduced are those to elements of* and nodes
< g. Thus in AP there are no arcs from * nodes to non * nodes. Consider a com-
ponent of AP with at least two nodes. It must contain nodes f and g and an arc
(f,g) with f __< g. The algorithm does not alter arcs between non * nodes; so,
if f and g were both non *, then f would call g in P, contradicting Lemma 4.3.
Hence, at least one of the nodes must be in *. But, since there are no arcs from the
node to non * nodes, the whole component must be in *.

The following result is concerned with any sequence B of substitutions,
not necessarily following the algorithm. Recall that a cycle is a sequence of nodes
and arcs. A prime cycle is a cycle in which no proper contiguous subsequence
is a cycle. A set of nodes cuts all cycles if and only if it cuts all prime cycles.

Consider the effect of the substitution If- g] on a prime cycle. For it to
have any effect, the arc (f, g) must be in the cycle with f g. Each occurrence of
(f, g) in the cycle appears in a subsequence of the form f, (f, g), g, (g, h), h, with
h 4: g. (If (f, g) is the last arc in a cycle from g to g, we take (g, h) to be the first
arc in the cycle.) For each occurrence of (f, g), we replace this subsequence by the
corresponding sequence f, (f, h), h to form the descendant prime cycle in If g]P.
(Note that if g begins the original cycle, then h will begin the new cycle.) The nodes
of a descendant prime cycle are always a nonempty subset of the nodes of its
ancestor.

RECURSION STRUCTURE SIMPLIFICATION 315

LEMMA 4.6. After any sequence B of substitutions, for each component C of P,
there is a component D of BP which cuts all the cycles of C when viewed as a subset
of the nodes of P.

Proof. Consider any two prime cycles a and fl of C. Let Ba and Bfl be their
descendant prime cycles in BP, so that Ba and Bfl lie in unique components
Da and Dfl of BP. It will suffice to show that Da Dfl, since then all descendants
of prime cycles will lie in the same component D.

By symmetry, we can show that D D by proving the existence of a path
in BP from a node ofB to a node of Bfl. To prove this by induction on the length
of B, we need only consider the case B If g].

Choose nodes a in If g] and b in If gift, with b - g unless fl is a self-
loop g, (g, g), g. Let 7 be a minimal length path from a to b in P. If 7 is also a path
in If- g]P, there is nothing more to prove. Otherwise, 7 must include an arc
missing from If g]P. Therefore, If g]P lacks (f, g) and P lacks (g, g). Therefore
b -: g and 7 has the form 6, (f, g), g, (g, h), e for some path 6 from a to f, node h,
and path e from h to b. Null paths are allowed, of course. By minimality of 7,
the arc (f, g) does not appear in 6 or e. Therefore, 6, (f, h), e is a path in If g]P
froma to b. [3

THEOREM 4.7. Consider any algorithm A in the family such that the starred
nodes form a covering of minimum cardina!ity. The algorithm A produces a program
AP with a calling graph AP which has the maximum number ofcomponents obtainable
via substitutions.

Proof. If there is no path from a to b in P, then no sequence of substitutions
can provide one. Thus the result of any sequence of substitutions is a refinement of
the component structure" components are divided, but never coalesced.

Consider the effect of A on a single component C of P. (Assume C contains
at least one cycle.) If we ignore arcs into and out of C, the action of A on C is
the same whether it is operating on all of P or on C only. The intersection of *
with C is a minimal set of nodes which cuts all cycles of C. By Lemma 4.6, there is
a component D of AC which cuts all the cycles of C.

Now there are two cases to consider. If D meets *, then D is included in *
by Lemma 4.5, and so D is exactly the intersection of * with C by minimality.
If D does not meet *, then IDI by Lemma 4.5, and so the intersection of * with
C has just one member by minimality. In both cases, the intersection of * with C
has IDI members. Thus the number ofcomponents ofAP in C is one plus the number
of non * nodes of C. By Lemma 4.6, this number is the maximum obtainable,
since any component which cuts the cycles of C has at least as many nodes as
the intersection of the * nodes with C.

Note that Theorem 4.7 deals with any version of the algorithm that obtains a
minimum cardinality covering, regardless of how this is done. One way to do this is
to start with a listing of such a covering when forming POOL in box I as follows.

COROLLARY 4.8. IfPOOL isformed by listing a covering ofminimum cardinality,
the algorithm stars exactly the nodes of this covering.

Proof. This follows from Corollary 4.4 and the inclusion of * in POOL. V]

5. Running time and suboptimality. In 3 we specified a family of algorithms.
Except perhaps for boxes and II, the graph operations and tests in the flowchart

316 H.R. STRONG, JR., A. MAGGIOLO-SCHETTINI AND B. K. ROSEN

can readily be programmed so as to require amounts of time essentially inde-
pendent of the calling graph. Here we will also assume that the method of choice
in box II is simply to take the next node in POOL not already in LIST. Thus we
do not consider members of the family that reorder POOL dynamically.

Now we may assume that all boxes strictly between I and III in the flowchart
have running times independent ofthe calling graph. From the proofofLemma 4.2,
it follows that this portion of the algorithm (the portion that does not involve
the program text) has a running time linear in the size (N, E) of the calling graph.

The linearity just established would be of little consequence if the formation
of POOL required more than linear time. Consider two extreme methods of
forming POOL. The first is to list all the nodes in an arbitrary order. This is
rapid but may lead to absurdly many * nodes. We cannot apply Theorem 4.7.
The second method is to find a minimum cardinality covering and list it in some
arbitrary order. By Corollary 4.8, the * nodes will be exactly this covering. Theorem
4.7 establishes optimality, but it is highly unlikely that POOL can be generated
rapidly. The problem of finding a minimum cardinatity covering is polynomial
complete [6].

It will be more practical to form POOL by listing a small but perhaps non-
minimal covering in linear time. The algorithm will then * only those members
of the covering needed to cut cycles for topsort. Thus * will be a small covering
obtained in linear time. Will the recursion structure obtained be close to optimal
whenever the cardinality of * is close to minimal? Theorem 4.7 does not apply
directly.

To analyze the situation, we consider a program P whose calling graph P
has N nodes, K components, and Mo as the minimum number of nodes in a
covering.

LEMMA 5.1. The maximum number of components obtainable via substitutions is
K+N-Mo.

Proof. Let algorithm Aop in the family form POOL by finding and listing
a minimum cardinality covering. The maximum number ofcomponents obtainable
by substitutions does exist and is the number of components of AoptP by
Theorem 4.7.

Let C be a component of P and let Q be the intersection of * with C, so that
C contributes + IC- QI + ICI- IQI components to AoptP in the proof
of Theorem 4.7. Summing over all C leads to K + N Mo. [3

LEMMA 5.2. Let M be the number of nodes starred when algorithm A is applied
to P. The number of components of AP is K + N M.

Proof. Let R be a program like P except that each * procedure in P calls
itself as well as the procedures it calls in P. Thus R has enough self loops to make

be a minimum cardinality covering but is otherwise like P. In particular,
K(R) K, N(R) N, and Mo(R M. By Lemma 5.1, AoptR has K + N M
components. Choosing Aop so as to treat R the way A treats P (except for carrying
along the extra self loops), we find that AP has K + N M components, l-]

THEOREM 5.3. Let MAX be the maximum number of components obtainable via
substitutions in P and let ACT be the actual number obtained when algorithm A
is applied to P. Let Mo be the minimum number of nodes required to cut all cycles
in P and let M be the number of * nodes in AP. Then MAX ACT M Mo.

RECURSION STRUCTURE SIMPLIFICATION 317

Proof, By Lemmas 5.1 and 5.2, MAX-ACT=(K +N-Mo)
-(K+ N-M)=M-Mo. I-1

These considerations come into sharper focus in the context where each
program has but one entry point and is not guaranteed to call each procedure it
declares. (This is indeed the application we are most concerned with.) Now the
graph of interest is the subgraph formed by considering only those nodes in a
larger graph which are accessible from a single node MAIN (representing entry
to the program). In order to obtain this subgraph we would, of course, perform a
depth-first search [16].

During a depth-first search, it is easy to list the nodes which have inarcs from
themselves or from their descendants in the search [16]. These nodes form a
covering which is reasonably small in many examples and which is obtained
in linear time. Still within linear time, we can order POOL so that the nodes with
inarcs from themselves precede all the other nodes, and the other nodes appear in
the reverse of the order in which they were last visited during the depth-first
search. This is called "rENDORDER" in [5].

Using the above method of forming POOL, the graph manipulations of the
algorithm have been programmed in PL/I and subjected to some preliminary
experiments. Postponing a detailed discussion until further experiments have
been performed, we remark on two easily proved results suggested by the simple
examples considered so far. For any positive integer X, we can construct a graph
such that depth-first search uses X nodes to cut all cycles, but only one node is
starred. We can also construct a graph such that X nodes are starred, but only
one node is needed to cut all cycles.

6. A more general problem. The substitution of this paper has a definite
one-way flavor. Once a particular substitution is made, the results cannot generally
be undone by further substitution. For example, if we choose If g] to operate
on Fig. 6, we produce Fig. 7, which no further substitutions will change. However,
by choosing [g f] instead, we obtain Fig. 8 with one more component.

While no substitution will reverse the action of If g], the inverse transfor-
mation is applicable to programs. This information consists of replacing an
appropriately modified copy of a procedure body by a call to that procedure.
We cannot expect to be able to apply this transformation often, at least in a
mechanical way. But it does correspond to a programming technique. We might
hope to tell the programmer some of the effects in terms of recursion structure.
Thus we would like to discover an algorithm for an optimal sequence of

g] Q g-f]Q=

FG. 6 Fro. 7 FG. 8

318 H. R. STRONG, JR., A. MAGGIOLO-SCHETTINI AND B. K. ROSEN

transformations in the wider context including substitutions and their inverses,
deciding when such an inverse is applicable and when it should be performed.

We know that our optimal algorithm is suboptimal in this wider context.
It can do nothing for a program corresponding to If- g]Q in the previous
example; but the sequence, If g]- followed by [g f], will produce [g f]Q.
We have not been able to obtain an optimal algorithm. We have even encountered
difficulty defining optimality in this context. For suppose that as a result of various
transformations, two procedures become identical (except for names). We would
certainly want to identify them and this would simplify recursion structure while
possibly reducing the number of components. It might be that the sequence of
transformations effecting this simplification would not otherwise have been
optimal.

Temporarily assuming away the identification difficulty, one might suppose
that we had only to perform all possible inverse transformations before applying
our algorithm. However, it is possible that two inverse transformations be both
applicable and incompatible, i.e., the application of one precluding that of the
other. Moreover, it is possible for some inverse transformation to become
(nontrivially) applicable only after certain substitutions have been performed.
We have not found any way to bound the implied search tree.

These questions also force us to look more closely at the substitution trans-
formation itself. In our algorithm, the only procedures modified are the * pro-
cedures, and the only procedures used to replace calls in the * procedures are
non * procedures. But in general we might perform a sequence of the form If g]
(modifying f) followed by [h f] (modifying h with copies of f). The question
then arises of whether to use the modified or original f in making the substitution.
Either choice has its supporting arguments, especially in the context of inverse
transformations where the modified f may be shorter than the original.

In this paper we leave this entire area open for further investigation.

7. A specific open problem. In this section we study a specific algebraically
oriented problem related to the identification problem of the last section.

A standard result of recursive function theory tells us that we cannot expect
to decide whether two procedures perform identically. Thus we will take the
simplifying assumption that we would only wish to identify procedures that
were syntactically identical (except for some trivially decidable name substitutions).
Our problem is to decide whether two procedures can become identical via
substitutions and their inverses. If the answer turned out affirmative, we could
consider making all such identifications in advance and define an algorithm to
be optimal if it maximized the number of components, as in the earlier sections of
this paper. Otherwise, we would be stuck with a much more cumbersome definition
and less hope of success.

We now greatly oversimplify our problem to obtain a semigroup word
problem whose solution is likely to indicate that of the identification problem.
The oversimplifications include treating each procedure as if it were simply a
string of procedure calls. Substitution is then the replacement of one of these
calls by its corresponding string; the inverse transformation is the contraction of
some substring to an appropriate call. Thus, corresponding to a program, we

RECURSION STRUCTURE SIMPLIFICATION 319

have a semigroup for which the carrier alphabet is the set of procedures and which
is presented by a set of equivalences of the form: one procedure is equivalent to
a string of others. Our problem is then to decide whether two procedures(elements
of the alphabet) are equivalent.

Consider, for example, the following semigroup on two generators a and b:

a abaa, b aaba.

We have the following expansions (substitutions) and contractions:

a abaa aaabaaa aaaa, b - aaba aaaabaa aaaa.

Here the forward arrow indicates an expansion while the reverse arrow indicates
a contraction. Thus a and b are equivalent in the semigroup.

If the semigroups corresponding to programs were arbitrary, then our word
problem would be recursively unsolvable [12]. However, the restriction that each
generator appear as the left side of at most one equivalence and that there be no other
relations on the semigroups leaves the problem open.

In the example above, we could make all the expansions before all the
contractions as follows:

a abaa a(aaba)aa aa(abaa)(abaa) ,- aa(aaba)a ,-- aaba b.

This process generalizes to the following lemma.
LEMMA 7.1. If there is a sequence of expansions and contractions connecting

two words of one of these restricted semigroups, then there is a sequence connecting
the words in which all expansions appear before all contractions.

Proof. If an expansion immediately follows a contraction and does not
reverse its effect, then it must expand some other element than the one contracted
to. Thus the order of application can be reversed, lq

COROLLARY 7.2. Our word problem is equivalent to the intersection problem for
a pair of context-free grammars which differ only in start symbol and are restricted
to have at most one rule per nonterminal (except that each nonterminal has an
additional rule of the form A a, where a is a terminal distinct from all the terminals
corresponding to other nonterminals).

8. Conclusion. We have established a family of algorithms for simplifying
recursion structure by means of "copy rule"-type expansions of procedure calls.
We can apply the algorithms to other contexts. For example, within one procedure,
we could expand gotos rather than calls in order to produce a program more
suitable for storage in a paged memory.

The algorithms in the family vary according to the method for choosing a
collection POOL of candidates for inclusion in a covering (set of nodes cutting
all cycles) and the method for choosing nodes from POOL when they are needed.
The collection POOL must at least contain a covering. The optimal algorithm in
the family uses a minimum cardinality covering.

It appears likely that any method for finding a minimum cardinality covering
of a directed graph must run in exponential time. Thus it is probably impractical
to run our optimal algorithm on large programs. We have discussed one linear
time heuristic method for the choice of POOL. Our family of algorithms has the

320 H. R. STRONG, JR., A. MAGGIOLO-SCHETTINI AND B. K. ROSEN

advantage of operating with any such heuristic and producing a covering without
listing all the prime cycles in advance.

Of the open areas presented in the later sections, we found the word problem
of 7 especially intriguing. We conjecture that the problem is solvable, but can
offer as eidence only the failure of a few standard techniques for proving
unsolvability.

Acknowledgments. The authors would like to acknowledge the assistance of
Kaaren-Ann C. Fanti in the preparation of this manuscript and the helpful
comments of R. E. Miller and the referees.

REFERENCES

1] F. E. ALLEN AND J. COCKE, Graph-theoretic constructs.for program controlflow analysis, RC 3923,
IBM T. J. Watson Res. Center, Yorktown Heights, N.Y., 1973.

[2] A. K. CHANDRA, Efficient compilation oflinear recursive programs, Proc. 14th Annual IEEE Symp.
on Switching and Automata Theory, 1973, pp. 16-25.

[3] R. L. CONSTABLE AND O. GRES, On classes ofprogram schemata, this Journal, (1972), pp. 66-118.
[4] J. DARLNGTON AND R. M. BURSTaLL, A system which automatically improves programs, Proc. 3rd

Internat. Joint Conf. on Artificial Intelligence, 1973, pp. 479-485.
[5] M. S. HECH’r AND J. D. ULLMAN, Analysis of a simple algorithm for global data flow problems,

Proc. ACM Symp. on Principles of Programming Languages, 1973, pp. 207-217.
[6] R. M. KARl, Reducibility among combinatorial problems, Complexity of Computer Computa-

tions, R. E. Miller and J. W. Thatcher, eds., Plenum Press, New York, 1972, pp. 85-103.
[7] D. E. Knuth, The Art of Computer Programming. I: Fundamental Algorithms, Addison-Wesley,

Reading, Mass., 1968.
[8] A. MAGGIOLO-SCHETTINI AND H. R. STRONG, A graph-theoretic algorithm with application for

trans[brming recursive programs, AICA Convegno di Informatica Teorica, 1973, pp. 377-392.
[9] Z. MANNA AND A. PNEtJLh Formalization ofproperties offunctional programs, J. Assoc. Comput.

Mach., 17 (1970), pp. 555-590.
[10] P. NAUR, ed., Revised report on the algorithmic language ALGOL 60, Comm. ACM, 6 (1973),

pp. 1-17.
[11] M. S. PATERSON AND C. E. HEWITT, Comparative schematology, ACM Conf. on Concurrent

Systems and Parallel Computation, 1970, pp. 119-127.
[12] E. L. POST, Recursive unsolvability of a problem of Thue, J. Symbolic Logic, 12 (1947), pp. 1-11.
[13] B. K. ROSEN AND H. R. STRONG, Simplifying a recursion structure, IBM Tech. Disclosure Bull.,

16 (1973), pp. 858-859.
[14] H. R. STRONG, Translating recursion equations into flowcharts, J. Comput. System Sci., 5 (1971),

pp. 254-285.
15] H. R. STRONG AND S. A. WALKER, Properties preserved under recursion removal, Proc. ACM Conf.

on Proving Assertions about Programs, 1972, pp. 97-103.
16] R. TARJAN, Testingflow graph reducibility, Proc. 5th Annual ACM Symp. on Theory ofComputing,

1973, pp. 96-107.
[17] S. A. WALKER AND H. R. STRONG, Characterizations offlowchartable recursions, J. Comput.

System Sci., 7 (1973), pp. 404-447.

SIAM J. COMPUT.
Vol. 4, No. 3, September 1975

INTERACTIVE COMPUTATION OF HOMOLOGY OF
FINITE PARTIALLY ORDERED SETS*

R. BUMBY,5" E. COOPER: AND D. LATCH

Abstract. We outline a method for practical use of an interactive system (APL) to compute the
homology of finite partially ordered sets.

1. Prerequisites. All partially ordered sets (posets) are assumed finite.
Given a poset (P, _<_), we say that b covers a if b > a and a < c < b implies

a c or b c. Since we deal with finite posets, the order relation can be obtained
as the reflexive, transitive closure of the cover relation. Our programs allow the
user to describe posets by the cover relation considered as a list of ordered pairs
(m.ore precisely, as an N 2 matrix). For its own convenience, the program only
accepts cover relations which are subsets of the usual order on the natural numbers.
There is no difficulty representing any poset in this fashion, e.g., the cover relation
of a "labeled Hasse diagram" [1].

In order to calculate the homology ofa poset, we define a functor, C "o bZ,
from the category of finite posets to the category of finite chain complexes of
abelian groups. If P is a poset, then the group of n-chains, Cn(P), is the free abelian
group generated by symbols ao < a < < a in P. The boundary operator c3
is defined on each generator ao < a < < a by the formula

c3(a0 < < an)= (--1)ia0 < < i < < an,
O<_i<_n

where ao <... < di < < an is the generator of Cn_(P obtained from
ao ... a ... a by deleting the element a. The n-th homology group
of P, Hn(P), is defined to be the nth homology group of the complex C(P). For
the category of small categories, 6at, which includes o, homology is usually
defined as the homology of the simplicial set nerve of P, N(P). It is well known
[3], [6], that these homology theories are isomorphic.

2. Method. We begin by describing some of the functions in our APL-
workspace"

PO" PO computes the graph of the < relation in poset P and represents it
as an N N matrix called POMAT.

CHAIN" CHAIN computes the list of K- 1-chains in the poset P from
the list of K-chains and POMAT.

BD" BD computes the matrix representing the boundary homomorphism.
Input to this function consists of the list of K-chains and the list of K / 1-chains.

Following the sketch for computation of the homology of finite chain
complexes found in Eilenberg and Steenrod [2, p. 138], we diagonalize the matrix
giving the boundary map while saving the left transition matrix. For this diagonal-
ization, we use a method of Nijenhuis [5] for determining the Smith canonical
form of an integral matrix [4]. The functions actually used in the workspace are"

Received by the editors June 27, 1974.
f Department of Mathematics, Rutgers University, New Brunswick, New Jersey 08903.
Department of Mathematics, Lawrence University, Appleton, Wisconsin 54911.

321

322 R. BUMBY, E. COOPER AND D. LATCH

NIJI: NIJ1 reduces an integer matrix to a matrix whose nonzero entries
are confined to main diagonal and an adjacent diagonal. Only these diagonals
need to be stored for the remainder of the computation.

NIJ2:NIJ2 reduces output of NIJ1 to diagonal form.
Communication with user is accomplished via the function HOM. After

loading the workspace, entering the single command HOM causes the response
"ENTER POSET", followed by the request for input ([-q :). The user then enters
the N 2 matrix of the cover relation, either directly or from a stored array.
After computing the list of 1-chains, Ho(P is computed and displayed in the form

HO: RANK(#),

where (#) is the rank of Ho(P). From here HOM enters a loop, which computes
the chains of next highest length, computes the structure of the next homotogy
group and displays it in a format similar to that used for Ho(P (see examples).
If there are any elements of finite order in H,(P), the display includes the word
"TORSION" followed by the orders of the factors in a direct sum decomposition.

3. Miscellaneous comments. An outline of an algorithm for performing this
computation was developed by the second author. Actual programming was done
by the first and third authors.

An early version of the workspace was produced fairly quickly, but proved
too wasteful of space in the diagonalization routine. The appearance of Nijenhuis’
abstract [5], while we were attempting to avoid WS-FULL errors, encouraged
us to rewrite the workspace in the present form. In addition, this allowed a certain
saving of time by not computing the Smith canonical form, but rather stopping
as soon as the matrix was diagonalized. The workspace includes all functions
necessary for the computation of the Smith canonical form of any given integer
matrix.

Computation of integral cohomology via the dual chain complex, C*(P),
can be computed similarly, and is included in the workspace.

The workspace is currently being used on the Rutgers University System.
A listing of the contents of the workspace will be furnished upon request from
Professor R. Bumby.

4. Examples. The cover relation A was derived from a triangulation of the
projective plane. The arrays EL 291, etc., are cover relations of posets on at most
6 points named according to their occurrence in the list obtained by Ellis Cooper
Ill.

HOM
ENTER POSET

A
H0: RANK
H1 RANK 0
H2: RANK 0

TORSION 2

HOMOLOGY OF FINITE PARTIALLY ORDERED SETS 323

A
6
7

1 8
9

2 4
2 5
2 8
2 9
3 4
3 5
3 6
3 7
4 12
4 13
5 10
5 11
6 10
6 13
7 11
7 12
8 11
8 13
9 10
9 12

HOM
ENTER POSET

EL291
H0: RANK
H1 RANK 2

EL291
4
5

2 4
2 5
3 4
3 5
3 6

EL137
3

2 4
2 5
2 6
3 5
3 6

2

6 7 8

10 11 12 13

2 3

4 5 6

324 R. BUMBY, E. COOPER AND D. LATCH

HOM
ENTER POSET

EL137
H0: RANK
H1 RANK 1
H2: RANK 0

EL316
1 4
1 5
1 6
2 4
2 5
2 6
3 4
3 5
3 6

HOM
ENTER POSET

EL316
H0: RANK
H1 RANK 4

5 6

2 3

4 5 6

HOM
ENTER POSET

I-l*--EL315
6

1 5
2 5
2 6
3 5
3 6
4 5
4 6

H0: RANK
H1 RANK 3

HOM
ENTER POSET

2 3 4

5 6

HOMOLOGY OF FINITE PARTIALLY ORDERED SETS 325

,--EL 61
4
5

2 4
2 5
3 4
3 5

H0: RANK
H1 RANK 2

HOM
ENTER POSET

2 3

4 5

[’-]-EL 11
3

2 3
2 4

H0: RANK
H1 RANK 0

HOM
ENTER POSET

2

3 4

[--q-EL 13
2
3

2 4
3 4

H0: RANK
H1 RANK 0
H2: RANK 0

REFERENCES

[1] E. COOr’ER, Enumeration offinite part&lly ordered sets (in manuscript).
[2] S. EILEYBERG ,ND .N. STENOD, Foundations of Algebraic Topology, Princeton University Press,

Princeton, N.J., 1952.
[3] M. O. LAtDAL, Sur les limites projectives et inductives, Ann. Sci. tcole Norm. Sup., 82 (1965),

pp. 241-296.
[4] M. NwMAy, Integral Matrices, Academic Press, New York, 1972.
[5] A. NIJrruIs, Smith canonical forms of integer matrices, Notices Amer. Math. Soc., 21 (1974),

p. A-389.
[6] U. OBOIST, Homology ofcategories and exactness ofdirect limits, Math. Z., 107 (1968), pp. 87-115.

SIAM J. COMPUT.
Vol. 4, No. 3, September 1975

THE POWER OF NEGATIVE THINKING IN
MULTIPLYING BOOLEAN MATRICES*

VAUGHAN R. PRATT,"

Abstract. We show that n distinct and-gate inputs appear in any circuit constructed from and-gates
and or-gates that computes the product of two n n Boolean matrices. Using not-gates as well, it is
possible to realize a circuit for this problem using only O(r/!g27 log n) gates, whence we infer a much
larger complexity gap between and-or and and-or-not circuits than was previously known.

Key words. Boolean, matrix, multiplication, monotone, lower bound, computational complexity,
circuit, network

We are interested in combinational circuits synthesized from and-gates and
or-gates. We first show that n 3 distinct and-gate inputs are needed to form the
product of two n n Boolean matrices, and hence O(n3) two-input and-gates
are needed to compute the transitive closure of a Boolean matrix. While this
result has the flavor of Kerr’s (achievable) lower bound 3] of n 3 +-gates for
computing the min/+ product of integer-valued matrices using only rain-gates
and +-gates, the problem turns out on closer inspection to be considerably more
subtle, and in fact, using our methods, we have been able to come only to within
a factor of two of the best known upper bound of n 3 and-gates. Paterson (private
communication) has recently disposed of this factor.

Secondly, we use this result to study the effect on combinational circuits
of not using not-gates (inverters). (With inverters and either and or or, it is clear
that only a constant factor improvement can be had by increasing the variety of
available types of gates.) A recent conjecture that this entailed a loss of at most
a constant factor is defeated by the observations of Muller and Preparata 5],
who point out that a circuit for sorting v 0- and 1-valued inputs can be built
using O(,) and-gates and inverters, and Lamagna and Savage [4 who show that
at least v log v and-gates and or-gates are required if inverters are forbidden.
This raises the question, what is the greatest loss of economy a circuit designer
may incur in implementing monotonic functions using only and-gates and or-gates ?

Since every monotone function of v variables may be implemented using
O(2") such gates by constructing a circuit based on the disjunctive normal form
of the function, the gap is at most a factor of 2’". This is two exponentials larger than
the above gap of a factor of log v. We improve the gap by almost one exponential,
to a factor of order v 1/2)lg2(8/7)/log2 V, using the result that Boolean matrix multi-
plication can be carried out on a Turing machi,e with the help of the Strassen
7]-Munro 6]-Fischer-Meyer 2] method in time O(n1g27 log2 n). This computa-
tion is performed obliviously--that is, the machine’s head trajectories are a function
solely of the length of the input. By a result of Fischer and Pippenger [1], the
same computation may be carried out by a circuit using a number of and-gates
and inverters proportional to the running time of the oblivious machine.

Received by the editors May 30, 1974, and in revised form August 23, 1974. This research was
supported by the National Science Foundation under Grant GJ-34671.

" Project MAC, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139.

326

MULTIPLYING BOOLEAN MATRICES 327

THEOREM. There are at least n 3 distinct and-gate inputs in a circuit for multiply-
ing two n n Boolean matrices A and B, when the only components permitted in
the circuit are and-gates and or-gates.

Proof. We shall take a syntactic, rather than semantic, approach to describing
wires. With each wire we associate its expression, which is a partially simplified
disjunctive normal form expression describing what function of the inputs this
wire realizes. Formally, the expression of a wire is a list of terms. A term is a list
of input-variables. A typical expression is (a12ba2 a34 aE4a25 a34), with corre-
sponding function

(a12 A b32 k/ (a34) / (a24 A a25 k/ (a34).

We associate expressions with wires inductively, starting from the inputs.
An input wire’s expression is just one term consisting of the corresponding input
variable. The expression of a wire attached to the output of an or-gate is the
concatenation of the two lists of terms comprising the two respective expressions
on the respective inputs of this or-gate. For example, if(al, ab) and (b2 a2
are the expressions of the two inputs, the output is (ax, al bx, b2 a12). For an
and-gate, the Cartesian product for lists is taken instead of concatenation and for
convenience each term is simplified by removing repeated variables. In the
preceding example, replacing the or-gate with an and-gate, with the same input
expressions, would change the output expression to

(axxb2, alax2, albb2, axxbxa2).

Note that we do not effect simplifications based on relations between terms.
In this way, the expression carries along some information about the structure of
the preceding circuitry, as well as about the corresponding function.

Let C be the product matrix AB. Then there are n2 outputs, labeled cij for
i, j in the range to n. The next two lemmas supply a syntactic characterization of
the function "Boolean matrix product" realized at these outputs.

LEMMA 1. In the expression associated with the cij output, every term includes
variables aik and bkj for some k.

Proof. Suppose some term did not have such variables. Now the pair of
matrices A and B in which every entry named in this term is and every other
entry is 0 has the product C AB in which cij 0, since there is no pair aik and bkj
simultaneously 1. But the cj output of the circuit is because one term is by
construction, a contradiction. [-1

LEMMA 2. For each i, j and k in the range to n, there is a term akbkj in the

cij output expression.
Proof. Consider matrices A and B in which ak bkj 1, and all other

entries are 0. Then cj in the product. Hence some term in the cj output
expression is 1, and therefore consists solely of ak and/or bkj, all other variables
being 0. By Lemma 1, both variables must be present.

These lemmas supply necessary conditions for an expression to realize
matrix product. The reader may verify that they are also sufficient, a fact unused
below.

328 VAUGHAN R. PRATT

We are now ready to prove the theorem. We shall give a method for finding//3
and-gate inputs in a circuit Y for multiplying n x n Boolean matrices that

(i) has a minimal number of and-gate inputs and
(ii) with respect to the class of circuits satisfying (i), has a minimal number

of gates.
(Condition (i) must take priority over condition (ii) because we are trying to bound
from below the number of and-gate inputs. If a circuit with fewest and-gate inputs
has n 3 of them, every circuit has n3, but if it is a circuit with fewest gates, then the
conclusion that it has n 3 and-gate inputs cannot immediately be applied to all
circuits.)

For each of the n 3 triples i, j, k in the range to n, we select an and-gate input
whose expression has one term equal to bkj and every term containing either
bkj or a, for some l, and which is an input to an and-gate whose output expression
includes the term aikbkj.

We first verify the existence of such an input. Suppose to the contrary that
every and-gate with aikbkj as a term in its output, and bkj as a term in one of its
inputs, also has a term in the same input that has no occurrence of bkj or ai for
any I. We shall show that this would give rise to noise" in the cj output.

LEIMA 3. If every and-gate whose output expression includes the term akbkj,
and which has the term bkj in one of the input expressions, also has a term in the same
input which has no occurrence of bkj or of at for any l, then in the cj output there
appears a "noise" term which does not simultaneously contain a, and b,,j for any m.

Proof. We prove by induction on the distance from the furthest circuit input
that every expression containing the term akbkj also contains a term with no
occurrence of bkj and no occurrence of ai for - k. This is vacuously true for
expressions at the circuit inputs, and it follows by induction trivially for expressions
at the output of or-gates. For and-gates, if aikbkj appears as a term in the output,
then either ak or bkj or akbk must occur as a term in each input. Accompanying
bkj is a term containing no occurrence of bkj or of air for any l, and by induction,
accompanying akbkj is a term containing no occurrence of bkj or a, for 4: k.
Hence we know there is a term in the output formed by taking from each input
either the term ak, or a term containing neither bkj nor air for 4= k, and concaten-
ating them.

By Lemma 2, akbkj appears in the output, whence a term accompanies it
containing neither bkj nor ai for - k, and hence does not simultaneously contain
ai,, and b,, for any m. U

This lemma together with the preceding hypothesis and Lemma leads to
a contradiction. Hence the desired and-gate input always exists.

We now claim that no gate input is selected twice. Suppose the contrary.
Since bkj is the only variable from the B matrix that can appear by itself as a term
on this wire, only can differ in the two selections; suppose the two selections are
made for the triples i, j, k and m, j, k.

Every term on the selected wire contains either bkj or both a and a,,, for
some l, l’. We first show that the terms containing two such "a’" inputs play no role.

LEMMA 4. Given v m and a circuit Y that computes the Boolean matrix product,
if the expression e of some gate’s output consists of the term bkj together with other
terms each of which contains, for some and l’, the variables a and a,,r, then an

MULTIPLYING BOOLEAN MATRICES 329

equivalent circuit Y’ can be built from Y by omitting this gate and. connecting the
wire(s) formerly connected to its output directly to the input variable bk.

Proof. Suppose Y’ differs from Y for some input. Then by monotonicity,
some output Cpq must be in Y and 0 in Y’, whence bk is 0 and one of the other
terms in e is 1. Setting the ith row of A (that is, all elements air, _< r =< n) to zero
will then set Cpq to zero, again by monotonicity. Hence p i. Similarly p m,
a contradiction.

Hence if the expression at the selected input is other than bk;, it follows that
either condition (i) (number of and-gate inputs) has been violated, or if not, then
both Y and Y’ satisfy (i), whence Y violates (ii) (minimal number of gates within
the class satisfying (i)). In either case, this contradicts the conditions on Y.

The and-gate whose input has been selected twice (an input which we now
know has the expression bkj has on its output the terms aikbkj and amkbkj. We show
that bkj alone will do the same job as this output.

LEMMA 5. Given a circuit Y that computes the Boolean matrix product, if the
expression of some and-gate’s output includes terms aikbkj and amkbkj for # m,
and one input is just the expression bkj then an equivalent circuit Y’ may be built
from Y by omitting this and-gate and connecting the wire(s) formerly connected to
its output directly to the input variable bkj.

Proof. Suppose Y’ differs from Yfor some input. Then, again by monotonicity,
some output Cpq must by 0 in Y and in Y’, when bk. is and both Rig and amk
are 0. Hence changing either Rig or amk to 1 will send Cpq to in Y. This implies
that p m, a contradiction.

Thus, if we had selected the same and-gate input twice, we could have found
a circuit with fewer and-gate inputs, in violation of condition (i).

We have exhibited n 3 distinct and-gate inputs in a circuit with a minimal
number of and-gate inputs. Hence every circuit has n3 and-gate inputs. This
completes the proof of the main theorem.

Discussion. As remarked earlier, the main theorem gives us a much larger
lower bound for the complexity gap between and/or and and/not circuits than we
have had previously. However, the improvement was by only one exponential, from
a ratio of order log n to order rl(/E)lgEtS/7)/log2 n. The best upper bound to date for
this ratio is 2.

In conclusion, we raise the question, is the complexity gap between and-or
and and-or-not circuits for every function at most a polynomial in the number of
inputs7

REFERENCES

[1] M. J. FISCHER AND N. PIPPENGER, private communication, 1973.
[2] M. J. FISCHER AND A. R. MEYER, Boolean matrix multiplication and transitive closure, IEEE Conf.

Rec. 12th Ann. Symp. on Switching and Automata Theory, East Lansing, Mich., IEEE,
New York, 1971, pp. 129-131.

[3] L. R. KERR, The effect ofalgebraic structure on the computational complexity ofmatrix multiplication,
Ph. D. thesis, Cornell University, Ithaca, N.Y., 1970.

[4] E. A. LAMAGNA AND J. E. SAVAGE, On the logical complexity of symmetric switching functions in
monotone and complete bases, Tech. Rep., Center for Computer and Information Sciences,
Brown Univ., Providence, R.I., 1973.

330 VAUGHAN R. PRATT

[5] D. E. MULLER AND F. P. PREPARATA, Minimum delay networks for sorting andfor switching, Proc.
6th Ann. Princeton Conf. on Information Sciences and Systems, Princeton Univ., Princeton,
N.J., 1972, pp. 138-139.

[6] I. MUNRO, Efficient determination of the transitive closure of a directed graph, Information Pro-
cessing Letters, (1971), pp. 56-58.

[7] V. STRASSEN, Gaussian elimination is not optimal, Numer. Math., 13 (1969), pp. 354-356.

SIAM J. COMPUT.
VoI. 4, No. 3, September 1975

SPEED OF RECOGNITION OF CONTEXT-FREE LANGUAGES
BY ARRAY AUTOMATA*

S. RAO KOSARAJUt

Abstract. The recognition speed of context-free languages (CFL’s) using arrays of finite state
machines is considered. It is shown that CFL’s can be recognized by 2-dimensional arrays in linear
time and by 1-dimensional arrays in time nz.

Key words, context-free languages, array automata, recognition speed

1. Introduction. Recognition of context-flee languages (CFL’s) has attracted
considerable attention [4], [10], [12]. Multitape Turing machines or list-like
structures have been employed for such recognition. The known upper and lower
bounds for the speed of CFL recognition are n1g27 and linear time, respectively.
In this paper we show that the recognition speed of CFL’s is tightly bounded by
linear time on 2-dimensional array automata. We also present an n 2 algorithm
for 1-dimensional array automata.

The array automaton model is introduced in 2. A brief review of the CFL’s,
and the Younger’s algorithm for CFL recognition are given in 3. Sections 4
and 5 are devoted to recognition of CFL’s by 2-dimensional and 1-dimensional
array automata, respectively. Throughout we shall skip many trivial details, for
clarity, and consequently some familiarity with the array automaton will be
helpful.

2. Array automata. A d-dimensional array automaton (notationally d-AA)
consists of a 1-way input tape together with a d-dimensional regular array of
cells (d-dimensional integer space Id), each of which contains a finite state machine
(fsm). There is a single input head which scans a square of the input tape, and a
single array head which scans a cell of the array. Any two cells which are separated
by no more than a unit distance along every axis are neighbors of each other;i.e.,

{1 / al, 2 / a2, ..., / al la,I _-< for 1,2,..., d}
is the set of neighbors of ({ 1, {2, "’", {a). Thus there are 3a neighbors for any cell.
When there is no ambiguity, the fsm in any cell is simply referred to by the cell
itself.

A step ofcomputation consists ofan input head move and an array head move,
together with a state transformation for each fsm in the array. The moves of the
input and array heads depend on the input symbol scanned and the state of the
cell scanned by the array head. The input head moves right only, and in one step
it may move right by at most one square. In one step the array head may move
to any one of the neighbors of the cell it is currently scanning. The next state of
any cell depends upon the present state of each of its neighbors; the next state of
the cell containing the array head also depends upon the input symbol being
scanned.

The fsm’s in all cells are identical and start in a designated starting state.
There are two designated states: q, (accept state) and q, (reject state). When a cell

Received by the editors July 27, 1973, and in revised form June 26, 1974.

" Electrical Engineering Department, Johns Hopkins University, Baltimore, Maryland 21218.

331

332 S. RAO KOSARAJU

goes into either state, it cannot change into any other state. When the head scans
a cell in either state, it cannot leave that cell, and we say that the automaton has
halted.

For language recognition, to decide the membership of ala2 a,, the string
ala2 a, # is placed on the input tape with the input head positioned on a;
and each cell ofthe array is set to the starting state, aa2 a, is accepted (rejected)
by the d-AA, M, if and only if the input head eventually scans # with qa (qr,
respectively) as the state of the cell scanned. The language accepted by M, denoted
by L(M), is the set of strings it accepts.

Other variations of this model were considered in the literature [23, [33, [53,
but our results are not sensitive to the particular model employed.

A d-AA, M, recognizes a language L within time T(n) if and only ifM halts on
every input string of length n within T(n) steps and L(M) L. T(n) n is known
as real time. T(n) cn, where c is a constant, is known as linear time.

In the following, for ease of description, we might consider each cell of the
array to consist of an (ordered) set of k registers, for some k. At any instant the
state is given by the ordered k-tuple formed by the contents of the k registers.
In addition, many trivial details are omitted.

3. Context-flee languages. A context-free grammar (CFG) G is a 4-tuple:
G (VN, Vr, P, S), where VN and Vr are finite nonterminal and terminal alphabets
of G, respectively. S is the starting symbol, S e Vn. P is a finite set of productions,
each member of which has one of the forms (for simplicity, the null string A is
excluded):

(a) A a, where A e Vu and a
(b) A - BC, where A, B, C e Vu.

If P contains the production A 7, then for any , fl e (Vu (3 VT)*, we write
a A fl a 7 ft. Let , be the reflexive and transitive closure of . The language,
L(G), generated by G is given by

L(G) {xlx e Vr and S , x}.
A language L is a context-free language (CFL), if and only if there exists a context-
free grammar G such that L(G) L.

In the following, we show that context-free languages can be recognized by
2-AA’s within linear time and by 1-AA’s within n2 time. The algorithm we use is
the classical algorithm of Younger [12]. For any string aa2 a,, n _> and
each a e VT, let

Ai {AIA e VN and A
ALGORITHM.

AI {AIA e Vu and A

l<=i<=j<=n.

P}, l <=i<=n,

AI= U A*A+,, <=i<j<=n,
i<_k<j

whereX*Y= {AI(:IB, C)(BeX, CeY, andA--*BC e P)}.
axa2...a,,eL(G , SEA].

Thus the algorithm involves computing many "convolutions".

SPEED OF RECOGNITION 333

4. CFL’s and 2-AA’s.
THEOREM 1. Any CFL can be recognized by some 2-AA within time T(n)

(1 + e)n, for any given real number e > O.
Proof. Let the array cell where the head starts be cell (1, 1). If alaE...an

is the input string, then at the end of the computation, Ai will be contained in
cell (i, j) of the storage array, for __< __< j __< n. From the input string and the
grammar, A,A,-.., A can be easily computed and stored properly. For

_< < j __< n, cell (i, j) receives AI, AI +1, A-x along the Y-axis (vertical)
from its "down neighbor" (i,j- 1). Simultaneously, cell (i, j) receives A+I,
A+ 2, "’", Ai along the X-axis (horizontal) from its "right neighbor" (i + 1, j).
In a straightforward implementation, it is seen that the computation of A] requires
a time on the order of n2.

In our method, each cell (i, j) receives the above convolution terms from
its down and right neighbors in folded form, folded at the middle, with the middle
terms coming first. When j is odd, there is only one middle term. To maintain
this folding, each cell needs to store only a finite amount of information.

Each cell contains 8 registers" V1, 1/2, 1/3, H1, H2, H3, B and A. The 1/k and
Hk registers are the vertical and horizontal propagation registers, respectively.
These registers provide the necessary delay for maintaining the folded form.
Register B of cell (i, j) is used for storing A. Every one of the registers 1/1, 1/2, 1/3,
H 1, HE, H3 and B can store any subset of the set of nonterminals of the grammar.
Register A controls the various phases of the recognition process. For simplicity,
we will not go into all the details of the operation of register A. Initially every one
of these registers, except B, contains a special symbol-, different from the empty
set , and B contains .

The productions of the grammar are built into the state transformations,
as will be evident subsequently. The following recognition scheme gives the
important details.

Phase 1. When the first symbol a is received, A is computed and stored in
register B of cell (1, 1). Register A of cell (1, 1) is set to indicate that it is the starting
cell. It also sends a control signal, which propagates at the rate of 1 cell/step along
the Y-axis. The propagation of this signal suitably changes register A of each
cell (1, j), j __> 1, to facilitate the positioning of the array head on the cell (1, n) in
Phase 3. For ease of description, let us call this the -signal. The head then moves
to cell (2, 2) in one step. For > 1, when the ith symbol is received"

(a) if it is not #, then AI is computed and stored in register B of the cell
scanned by the head ;i.e., cell (i, i). Then the head moves to cell (i + 1, / 1).

(b) if it is #, then the head moves from cell (i, i) to cell (i 1, 1) and
initiates Phase 2.

Phase takes n + 1 steps.
Phase 2. Cells (j, j), j 1,..., n, act as the classical firing squad, using

register A of each cell. The firing squad operation simultaneously sets register A
of each cell (j, j) into a designated "firing state". As soon as register A of a cell
goes into the firing state, the content of its B register is copied into its 1/3 and Ha
registers, and Phase 3 starts. Phase 2 takes 2n 2 steps.

Phase 3. This is the main computational phase. In this phase, each cell (i, j)
computes A1 from the convolution terms received from cells (i, j 1) and (i + 1, j).

334 s. RAO KOSARAJU

At the beginning of this phase, V V2, V3, H H2 H3 and B of the cell (i, i),
1 <_ _<_ n, contain -,-, AI, -,-, A and AI, respectively. In addition, for any other
cell, each of V V2, V3, H H2 and H3 contains -; and B contains .

At the end of this phase, in each cell (i, j), _<_ <= j <= n, each of V1, V2, V3,
HI, H2 and H3 will contain-, and B will contain A{.

The registers of each cell undergo the following parallel transformations in
one step. Notationally, the superscripts d and r stand for down and right neighbors,
respectively; e.g., for any cell (i, j), V refers to Vk of cell (i, j 1), and H, refers
to Hk of cell (i + 1, j). In any transformation, the right-hand side gives the contents
before the step, and the left-hand side after the step. The transformation
(01’ t2’ (m) -- (1, f12, m) stands for o - 1, 2 -- 2,’", (Zm -- Bin"
(V2, H2) - (V1, H,),

(VI V3, H H3, B

(V,V,H,H,B [.J V*H [.J V,H) ifV -,
(V,-,H,-,B(J V*H) ifVd2 =-,andV 4= -,

(-, B, -, B B) ifYJ, Y =-, andV 4=-,

(. ,B) otherwise.

(I)

(II)

(III)

(IV)

In parallel with these transformations, the head moves left (along -X-axis)
at the rate of cell/2 steps and reaches cell (1, n) in exactly 2(n 1) steps. Cell
(1, n) is located by the a-signal sent in Phase 1. In the next step, cell (1, n) goes into
state qa or qr, depending upon whether or not S is in the set stored in B ofcell (1, n).

This phase takes 2n- steps. Now we prove that when the head scans
cell (1, n), its B register contains A], which establishes the validity ofthe recognition
process.

Let us count steps from the instant when Phase 3 starts. Notationally, let the
contents of registers X1, X2, ..., X,, of cell (i, j) at instant be represented by
(X l, X2, Xm)i’j.

LEMMA 1.1. For any <= <= + r5 <= n and >__ O,

(V2 H2)I’i+ (V H]i,i+6 (assuming (V H 1)i’i-’ (% _))llt-

_Proof. Registers V2 and H2 of any cell always undergo the transformation
(Vz,H2) -(V1,H). Note that in addition for any cell (i,i + 6), (Vz,H2)i+

(-, -). Q.E.D.
LEMMA 1.2. For any <= + r5 <_ n and >= O, (Vl, V3, H1, H3, B)I’i+’ is

given by the following two cases"

Case 1. r5 2j (6 even).

(.) ;) if t< 3j,

(1.2) (Ai+J-k, Ai+j+k- i+ 2j i+ 2j (.J (ii+j-m , AI+ 2jAi+j+k, Ai+j-k+l, +j-re+l))
-(k- 1)<_m<_k

ift=3j+k- 1,1<=k<=j,

SPEED OF RECOGNITION 335

,-- 2J, Ai 2j) !f 4J,.3) -,Ai+ ,al + ;+

(1.4) (, ,Ai +2i) ift>4.j.

Case 2. 6 2.j + (6 odd).

(2.1)) if < j + 1,

(2.2)

(2.3)

ift=j+ ,
U

-k<_m<k

+2j+(ai+ , ai+_+))

if t= 3.j + k + 1,1 <= k <=.j,

(2.4) (_, Ai+ 2j+l ai+ 2j+l Ai+ 2j+ 1) /f 4J + 2

(2.5) Ai+2i+ 1) if > 4] -’ 2.

Proof. We prove this by induction on 6. If 6 0, then .j 0, and =< =< n.
When Phase 3 starts, (V,, Va,H,Hs,B)i=(-,AI,-,AI, AI), satisfying (1.3).
For any _>_ 1, transformation IV applies, and hence (Va, Vs,H,Ha,B)ii

(, Ai), satisfying (1.4).
As inductive hypothesis we assume that the lemma holds for any 6 n 2,

and then show that the lemma must hold for 6 + 1. We treat the case of 6
even (i.e., 6 2j) and leave the other case as an exercise. The validity
for 6 + is established by induction on the instant t. When Phase 3 starts,
(V1, Va, Hi, Ha, B)i6i+ 2j+), satisfying (2.1). Let Case 2 hold for
cell (i, + 2j + 1) at any instant t.

"li,i + 2j i,i + 2jIf 0< t<3.]- or t>4j+2, then (V2)i’i+21:(V1t_l --, (Vs)t
-, and (V1)[’i+i+ Hence by transformation (IV) above,

(Vl, Vs,H1,Ha, ’’‘+2j+)i’a.,,t+l (" ,(B i+2j+l),

satisfying (2.1) and (2.5).
If t= 3j, then (V2)I"+2i (V1)i’_] 2i and (Vs)i’i+21= Ai +i 4:- Also

+2j+(H3)I+ 1,i+ 2i+ Ai+i+ Hence by transformation (II) above,

(V V3 Hi,H3 B)+]i+1 (AI+i i+2j+1 i+j i+2j+l
+ ,-, Ai+j+ ,-, J (--J Ai * Ai+j+),

satisfying (2.2).
V "li’i + 2If 3j + k, for _< k _< j, then (V)I’i+ 2i
lit-1 #: Hence by trans-

formation (I) above and Lemma 1.1,

LI "li, i+ 2j+ (Ai+j-k i+j+k, i+ 2j+ i+ 2j+(El, V3,Hl,.-.313j+k+ ai Ai+j+kl+l, Ai+j-kl+ l),

and
2j [n]i,i+ j+ U i+j-k i+ 2j+ U AI +j+k * i+ 2j+/3j+k+- Ai * Ai+j-k+l,’13j+ Ai+j+k+

satisfying (2.3).
If t=4j+ then (B)i,i+21+a =Ai+2i+1

(V,)i,i+ 2i+ 4: Hence by transformation (III) above,
(W2, G)I’i+2j (--,--),

lt’ +(Vl, V3,H1,H3,,I,4j+l+l--- (_,ai+2J+1,_, AI +2j+1, ai+2j+l),

satisfying (2.4). Hence the induction on is complete. Q.E.D.

and

336 s. RAO KOSARAJU

As a consequence, for any cell (i, + 2j), + 2.j =< n, B contains
Ai+ZJatanyinstant _> 4j and for any cell (i, + 2j + 1),1 <= < + 2j + <= n,
B contains AI + 2j+ at any instant => 4j + 2. Hence for cell (1, n), B contains A’
at any instant >= 2(n- 1). Thus when the head first scans cell (1, n), the B
register contains A].

The complete recognition process takes n + 1 + 2n- 2 + 2n- 5n- 2
steps. Now the theorem follows from linear speedup. (The classical linear speedup
for Turing machines by tape compression can be trivially adapted for d-AA’s.)

Q.E.D.
This is the best we can attain using d-AA’s, since there is a CFL which cannot

be recognized in real time by any d-AA [2], [3].

5. CFL’s and I-AA’s.
THEOREM 2. Any CFL can be recognized by some 1-AA within time T(n) n2.
Proof. Let the input be a a2... an where n >__ 2. The computations are

performed in n2 contiguous cells, divided into n blocks numbered 0, 1, 2, ..., n 1,
left to right. Block b, 0 =< b =< n 2, is of length n + 1, and block n is of
length 1. Let the cells in the bth block, b >__ 0, be addressed (b, 0), (b, 1),...,
from left to right. Thus block b, 0 =< b =< n 2, consists of cells (b, 0), (b, 1),
(b,n).

Block b, =< b _<_ n 1, computes Ab+ 1, A+, ..., A,"_. To compute these,
cell (b, O) receives the sequence of terms

(A] A+),(Ab1-1 A+1) (A A+1) (_,_)n-b-1 (A+I A+),

in (n b 1)(n 1) + b consecutive steps from the rightmost cell of block b 1,
i.e., cell (b- 1, n). From these convolution terms, cell (b, 0) computes A +1,
A+2, A-b, and the other cells of block b provide proper delays so that
correct input sequence is presented to block b + 1. The details are given below.

Each cell consists of 8 registers" Do, D Vo, V Ho, H B and A. Registers
Do, D 1, Vo, V1, Ho and H provide the necessary delays, and initially each of them
contains-, different from ffS. Register A provides proper control sequencing.
For cell (b, 0), __< b __< n 1, register B stores partial results of computation of
convolutions, and initially it contains . The computations are performed in
3 phases as given below.

Phase 1. Let the cell where the head starts be cell (0, 0). When the symbol ai
is received, if a 4: #, then A is computed and stored in register B of the cell
scanned (i.e., cell (0, 1)), and the head moves right by one cell. If the symbol
received is #, then the head moves left by one cell, and starts Phase 2. This phase
takes n + steps.

Phase 2. By proper control signals, a 0 is stored in register A of cell (b, j),
for _<_ b _<_ n 2 and _<_ j _<_ n; a is stored in register A of cell (b, 0), for
1 =< b =< n- 1;and cell (n- 1,0) is marked distinctly, to facilitate the positioning
ofthe head over cell (n 1, 0) in Phase 3. Then Phase 3 is initiated; and in parallel,
cell (0, n) successively places

(A I, (-, -)"- :, (-, -)"- :, ..., 1, A,")

SPEED OF RECOGNITION 337

in registers (Vo, Ho) of cell (1, 0) in (n 2)(n 1) + consecutive steps ((-,-)"- 2

stands for (-,-), (-,-), ..., (-,-) (n- 2 times)). We skip the details, which are
rather involved but trivial in nature. The part of Phase 2, done before Phase 3
starts, can be performed in cn 2 steps, for some constant c and the rest of Phase 2
requires (n 2) (n 1) + steps.

Phase 3. This is the main computational phase;let the instant when this
phase starts be instant 0. From the description of Phase 2, (Vo,Ho)l, ’ is (AI+
if (n 1)i + 1, for 0 _< =< n 2 and (-,-) otherwise. Also, (Do, D i, Vo,
Ho,H1,B)’j=(, ,), for =<b=<n- 2 and 0_<_j_<_n, or (b,j)

(n 1, 0). The cells undergo the following parallel transformations (notation-
ally, superscript stands for the left neighbor)"

A cells.

DO ifD/1
(I) Do

D/1 otherwise;

(II)

VI HI
(Vo, Ho) (Do, HI)

(-,-)

if V], H 4= -,

if V/ and H/l, DO = -,

otherwise;

BU Vo,Ho ifVo:/=-,
(III) B

otherwise;

(IV) V1 Vo;

D) - (B, B) if Vo and V : -,
(V)

(Ho,-) otherwise.

A 0 cells.

(VI)

(VII)

(D1, Vo, V1, H 1) -- (DI, VI, Vo, H);

(Do, Ho, B) (Do, Ho, B).

In parallel with these transformations, the head (which is on cell (0, n)) moves
right cell/2 steps until it scans cell (n 1, 0) (marked in Phase 2); and in the
next step, cell (n 1, 0) goes into state qa or qr, depending upon whether or not
its register B contains S. The head scans cell (n 1, 0) at the (2(n 2)(n + 1)+ 2)nd
instant. In the following, we show that register B of cell (n 1, 0) contains A] at
instant 2(n 2)(n + 1) + 2, verifying the correctness of the recognition process.

Notation. For =<b=<n- 1,1et%=(b- 1)(2n+ 1) andb=n-b- 1.
LEMMA 2.1. For <= b <_ n and >= O, (Vo,Ho)b, ’ is given by

+i-j+ 2) if r. + (n 1)i + j, where 0 <= <_ 7b, <= j <- b,

(-,-) otherwise.

Proof. Lemma 2.1 holds for b (from Phase 2). Assume that the lemma
holds for any b =< n 2. From transformation (III) above, it can be easily proved

338 s. RAO KOSARAJU

that

(B)’ f U (A+i-+*A+i+
i+ +i-m+2)

<=m<=j
if t=%+ (n- 1)i+.j+ 1,

OiTb, <=.j<=b,

otherwise.

Thus

(1) b,0 i+x for 0(B)b+(n-1)i+b+l A/b++1
By transformation (IV) above, (V1)’ oVo),’- 1. Hence (Vo),’ -and (V1) :/:
if and only if z + (n 1)i + b + 1, 0 =< =< 7b. Hence from transformation
(V) and (1),

+i+1
+i-j+2

(H1),0

i+1

(D1),o

From transformations
b0(Hi, Ul)’" (HI,D1),’_,,.

Atq ‘- +

(Vl)’n

A+i++i-j+2

if t=%+ (n- 1)i+.j+ 1,

otherwise;

ift=zb+(n- 1)i+ b + 2,

otherwise.

OiYb,

<.j<b+ 1,

(IV) and (VI), V1)t"2n 0/t--2n--1,

Hence

ift=%+(n- 1)i+j+ 2n +

zb+

l<=.jb,

otherwise;

if t--b4-(n- 1)i4-.j+ + n

%+1 + (n 1)i+.j- n,

.j<=b+ l,

otherwise;

if Zb + (n 1)i + b + 2 + n

"L’b+ 4- (n 1)i + b + n,

otherwise.

and

(H 1)b,

(D1)tb’n I A/b++i+11

Now from transformation (I),

(Do)+ 1,o

and

if and only if t<=zb+14-b-- 1-- n;

(Do)bb++,,+o b+i+l for 0 < i< Yb"(n)i Ai +
).. (H1. -ifand only ift=zb+l +(n-- 1)i+j. 0__< i_<Tb-- 1.Thus (V b,n "ib,n

< j =< b. (V1)b’" and (H1)b’", (Do)b’" #- if and only if t= %+1 + (n 1)i,

SPEED OF RECOGNITION 339

0 =< <_ 7b 1. Hence by transformation (II),

(A:/+ b+,+)Ab+i+

i-j+2 b+i+2(Yo,Ho)tb+l’O (A/b:l Ab+i-j+3)

This can be rewritten in the form

Ab+l+i-j+l A+ i+l
’-i + +++i-j+2)

(Vo, Ho),+ ,o

(-,-)

This proves the lemma. Q.E.D.
Thus forb=n- l,

,,o (]-J, -J+ 1)
(yo, Ho)- (-,-)

if Zb+ -]--(n- 1)i + 1,

0<_i<_7b- 1,

if r+ + (n 1)i -+- j,

0<-i<-7- 1, 2<j<_b+ 1,

otherwise.

ift=rb+l +(n-- 1)i+j,

O iTb+l, <=j<__b+ 1,

otherwise.

if (n 2)(2n + 1) + j,

otherwise.

l<j<n-1

Thus by transformation (III) tin,- 1,o
,-/(n-2)(2n+ 1)+n A1, which verifies the recognition

process.
The whole process takes n + + Cr/2 q-2(n- 2)(n + 1)+ 3 steps c’rt 2,

for some constant c’. Now the theorem follows from linear speedup. When n 1,
cell (0, 0) handles input a # as a special case. Q.E.D.

6. Conclusions. We studied the recognition of CFL’s, using Younger’s
algorithm, by arrays of finite state machines. It would be interesting to investigate
whether Earley’s [4] algorithm could give equally efficient realizations on array
machines.

Acknowledgments. This is a part of the author’s thesis [8] done under the
stimulating guidance of Professors Aravind Joshi and Hisao Yamada. Thanks
are due to one of the referees for his many significant suggestions.

REFERENCES

[1] W. T. BEYER, Recognition of topological invariants by iterative arrays, Project MAC, Tech. Rep.
TR-66, Mass. Inst. of Tech., Cambridge, Mass., 1969.

[2] S. N. COLE, Real time computation by n-dimensional iterative arrays qffinite-state machines, IEEE
Trans. Computers, 18 (1969), pp. 349-365.

[3] , Deterministic pushdown store machines and real time computation, J. Assoc. Comput.
Mach., 18 (1971), pp. 306-328.

[4] J. EARLEY, An efficient context-free parsing algorithm, Comm. ACM, 13 (1970), pp. 94-102.
[5] V. C. HAMACHER, A class of parallel processing automata, Ph.D. thesis (Tech. Rep. TR-68-6),

Syracuse Univ., 1968.
[6] J. E. HOPCROFr AND J. D. ULLMAN, Formal Languages and their Relation to Automata, Addison-

Wesley, Reading, Mass., 1969.
[7] S. R. KOSARAJU, Recognition ofcontextzfree and stack languages, IEEE Switching and Automata

Theory Conf., 1969, pp. 129-132.

340 S. RAO KOSARAJU

[8] Computations on iterative automata, Ph.D. thesis, Univ. of Pennsylvania, Philadelphia,
1969,

[9] A. R. SMITH III, Two-dimensionalformal languages and pattern recognition by cellular automata,

IEEE Switching and Automata Theory Conf., 1971, pp. 144-152.
[10] L. G. VALIANT, General context-free recognition in less than cubic time, Tech. Rep., Carnegie-

Mellon Univ., Pittsburgh, January 1974.
[11] A. WAKSMAN, An optimum solution to the firing squad synchronization problem, Information and

Control, 9 (1966), pp. 66-78.
[12] D. H. YOUNGER, Recognition andparsing oj’conte,\’t-./’ree languages, Ibid., 10 (1967), pp. 189-208.

SIAM J. COMPUT.
VOI. 4, NO. 3, September 1975

OPTIMUM PARTITIONS OF TREE ADDRESSING STRUCTURES*

W. H. HOSKENf

Abstract. We consider the problem of finding the best partition ofa binary tree addressing structure
where the maximum block size is given and a one-block buffer is available. An algorithm is presented
for finding an optimum partition. The algorithm operates in time proportional to N. n2, where N is
the number of nodes in the tree and n is the block size.

Key words, data base, index, tree, partition, access

Introduction. In large data base systems the directories or indexes involved
in the access method are often large files in their own right. In this case, the access
information must be partitioned into blocks and, assuming random access to
blocks, the dominant cost of a search becomes the number of block accesses in
a search. We consider here the case of a tree structured access method. Searches
are assumed to begin at the root of the tree and proceed to the descendants.
Weights (e.g., the frequency that a node is the terminal point of a search) are
assumed for each node.

We present an algorithm to find a partition of a weighted binary tree so that
the "weighted path length" is minimal where "path length" to a node v is the
number of times blocks are entered in a path from the root to v. The algorithm
operates in time proportional to N. na, where N is the number of nodes in the
tree and n is the maximum number of nodes in a block.

The algorithm may be extended in a straight-forward way to more general
trees. However, the operating time increases drastically.

This problem suggested itself in reading Knuth [1], and variants of it are
treated in Muntz and Uzgalis [2] and Kernighan [3], [4].

1. Preliminary definitions and notation. A weighted binary tree is a structure
(V,I,r,L,R, W) where
V is the finite set of nodes,
i

V is the set of internal nodes,

V I is the set of leaves,
r s V is the root,
L" i --, V determines the left son,
R’I V determines the right son,
W:V N t.J {0} assigns nonnegative integer weights to nodes.

The following conditions hold"
1. L(v) L(v’) implies v v’, R(v) R(v’) implies v v’, L(v) R(v) for any v.
2. The root r is the only node not in the range of L or R. For nonroot nodes v,

F(v) (the father of v) is the node such that R(F(v)) v or L(F(v)) v.
A path from vl to Vm in is a sequence of nodes vl,v2,..., Vm where vi_l

F(vi) for 2, ..., m. Of course, if a path exists between nodes, it is unique.

Received by the editors May 28, 1974, and in final revised form September 3, 1974.
5"Whitmore Laboratory, Computer Science Department, Pennsylvania State University,

University Park, Pennsylvania 16802.

341

342 w.H. HOSKEN

The height, ht(v), of a node v is the length ofthe longest path from v to any leaf,

ht(v) for leaves v,

max [ht(L(v)), ht(R(v))] + for nonleaves.

The subtree of z at v is the binary tree with v aS root and including all of the
descendants (in z) of v. A part of a binary tree is a set B of nodes of a subtree ’of z which includes the root of ’ and for any v B not the root of z’, includes the
father of v. The function s(v) is the number of nodes in the subtree at v.

An n-partition P of z is a partition of V with at most n nodes in any block.
To simplify a later statement it will be useful to define an nzj-partition as an
n-partition with at most .j nodes in the block with the root.

If P is a partition of a weighted binary tree z, the cost of P is defined as

Cost(P)= M(v)W(v),
vV

where M(v) is the P-path length defined as follows" Let r v l, v2, ’’’, Um U

be a path in z from root r to node v. Then

M(v l) 1,

M(vi) if vi and vi+ are in the same block,
m(vi+ l)

M(vi) + otherwise.

2. Preliminary remarks. Before presenting the algorithm it will be useful to
show that least cost n-partitions of a simple form can be found.

LEMMA 1. Let z be a weighted binary tree. There is a least cost n-partition P of
with blocks that are parts of .

Proof. First observe that a block B containing the root will not be a part of
if and only if there is another node v in B such that F(v) is not in B. For other
blocks B, B will not be a part of if and only if there are distinct nodes u and v
in B such that F(u) B and F(v)6 B.

Suppose a block B contains distinct nodes vl, v2,’-’, v,, with m > and
F(v3 B (or v r) for 1, 2, m. A new partition P’ can be defined, splitting
B into m blocks B B2, B as follows: Include in B the node vi and all nodes
v in B for which the entire path from v to v lies in B. Note that each block Bi
will be a part of . The cost of P’ is the same as the cost of P since the P-path
length M is the same as the P’-path length M’ for each node v V.

This process may be repeated for all blocks that are not parts of . Q.E.D.
In the proof of Lemma it appears that requiring blocks to be parts of

results in many partially full blocks. Lemma 2 shows that least cost partitions
can be found where the only partially full blocks have no descendant blocks.

LEMMA 2. Let be a weighted binary tree. There is a least cost n-partition
P of into blocks that are parts of . Furthermore, for all blocks B with a node v
such that F(v) B but v B, there are n nodes in B.

Proof. Let P be a least cost n-partition of r with blocks that are parts of r.
Let B be a block of P with fewer than n nodes. Let v be a node such that F(v) B
but v B. Let v be in block C. A new n-partition P’ can be formed changing B to

OPTIMUM PARTITIONS 343

B’= B U {v} and C to C’ C {v}. Note that Cost (P’) =< Cost (P). If C’ is not

a part of , a new n-partition P" can be formed using the block splitting process
described in the proof of Lemma 1, so that

Cost (P") Cost (P’) __< Cost (P).

This process can be repeated so long as blocks violating the condition of the
lemma exist. Since P is itself a tree structure (with blocks taken as nodes, etc.)
and the process ofobtaining P’ from P increases the size ofparent blocks, eventually
the only partially full blocks will have no descendant blocks. Q.E.D.

From these lemmas it can be seen that the problem of finding a least cost
n-partition of a weighted binary tree : can be reduced to the problem of finding
the best part B of including the root and then repeating this on the subtrees
with roots that are sons of members of B but not in B. A nondeterministic process
forming the block with the root may be described as follows:

(i) Include the root in the block.
(ii) If there are no nodes remaining, stop.

(iii) If there are n nodes in the block, stop. Otherwise, include some son of
some member of the block.

(iv) repeat step (ii).
Example shows that the heuristic process of including in step (iii) the son

which is the root of the highest weight subtree does not always yield a least cost
n-partition.

Example 1.

V= {1, 2, 3, 4, 5, 6, 7},
r=l,
W(1) W(2)= W(3)= 0,
W(4) W(5)= W(6)= W(7)- 1,
N=7,
n=3,

4 5 6 7

(a) P, {B1, B, B3, B, Bs},
B1 {1,2,3},
B2 --{4}, B3 --{5}, B4 {6}, B {7},

Cost 1. W(1) + 1. W(2) + 1. W(3) + 2. W(4) + 2. W(5)
+ 2. w(6) + 2. w(7)

--8.

(b) P2 {B1, B2,
B {1,2,4,
U2 {5},
U {3, 6, 7},

344 w.H. HOSKEN

Cost 1. W(1) + 1. W(2) + 2. W(3) + 1, W(4) + 2. W(5)
+ 2. W(6)+ 2. W(7)

--7.

3. The algorithm. The algorithm may now be stated. A two pass process is
envisioned. During pass one each internal node v is labeled (bottom up) with
numbers tag (v,j), where 0 _< tag (v,j) -< j and j 1, 2, ..., n. Each tag (v,j)
is the number of nodes from the subtree at L(v) to be included with v in attaining
a least cost n-j-partition of the subtree at v.

In order to calculate tag (v, j) at any node, auxiliary information must be used.
Let W’(v) W(v) for v a leaf,

W’(L(v)) + W’(R(v)) + W(v) for v a nonleaf.
For.j= 1, 2,..., n"

If s(v) <= j, then C(v, j) W’(v), and if v is a leaf, tag (v, .j) 0, otherwise
tag (v, j) s(L(v)).

If s(v) > j, then
j-1

C(v, j) min [C(L(v), i) + C(R(v), .j 1)1 + W(v)
i=0

and tag (v, j) is any which achieves, this C(v, .j).
For .j 0, C(v, O) C(v, n) + W’(v).
During pass two the tags are used to determine the blocks. To determine

the block B containing the root, proceed as follows. If s(r) <_ n, then B consists of
all the nodes. Otherwise, B is defined according to the following process.

The root r is included in B and b(r) n.
If v is a node and F(v) has been included in B, then v will be included in B

and have value b(v) as follows"
Case 1. If v is a left son of F(v) and tag (F(v), b(F(v))) ve O, then v is included in

B and b(v) tag (F(v), b(F(v))).
Case 2. If v is a right son of F(v) and tag (F(v), b(F(v))) 4: b(F(v)) 1, then

v is included in B and b(v) b(F(v)) tag (F(v), b(F(v))) 1.
Once the block B is defined, this process is repeated recursively on each

of the subtrees with roots v 6 B where F(v) B. In this way, an n,partition is
defined.

To see that the n-partition so defined is a least cost n-partition, consider the
definition of the tags. The value b(v) at node v indicates that a part of size b(v)
is to be used at v. Now tag (v, b(v)) is the number of nodes from the subtree at
L(v) to be used in the least cost n-partition of the subtree at v with the added
condition that there are only b(v) nodes in the block containing v. Thus L(v) should
be included in the same block with v if tag (v, b(v)) :/: O. Similarly for R(v), but to
make up a part of size b(v), b(v)- tag (v, b(v))- 1 nodes come from the subtree
at R(v).

Example 2. It will be instructive to work out an example. Let z be as in
Example and n 3.

First, since 4 is a leaf,

C(4, 1)= C(4, 2)= C(4, 3)= 1, C(4, O)= 2.

OPTIMUM PARTITIONS 345

Similarly,

Therefore,

and

Next,

C(5, .j)= C(6, .j)= C(7, .j)= C(4, .j), j=0,...., 3.

tag (4, 1) tag (4, 2) tag (4, 3) 0,

tag (5, j) tag (6, j) tag (7, .j) tag (4, .j), j= 1,2,3.

C(2,1)= C(4,0)+ C(5,0)=4 and tag (2,1)=0,

{C(4 0)+C(5)=3} =3 so tag (2 2)=0C(2,2)=min
C(4,1)+ C(5,0)=3

(Whenever two values of tag (v, j) are possible, the smaller has been chosen.)

C(2,3)= W’(2)=2 so tag (2, 3)= 1,

C(2, 0)= C(2, 3)+ W’(2)= 4.
Similarly,

C(3,j) C(2,.j), j 0,..., 3.

tag (3, j) tag (2, .j), j 1,2, 3.

For the root,

C(1,1)=C(2,0)+ C(3,0)=8 so tag(I,1)=0,

{C(2 0)+C(3 1)=8} =8 sotag(1 2)=0C(1,2)=min
C(2,1)+ C(3,0)=8

C(1,3)=min C(2,1)+C(3,1)=8 =7 so tag(1,3)=O,

C(2, 2)+ C(3,0)= 7

C(1,0) C(1,3)+ W’(1)= 11.

In pass two:
b(1) 3 and tag (1, 3) 0 so 2 is not included.
3 tag(l, 3) 1 2 - 0 so 3 is included.
b(3) 2 and tag (3, 2) 0 so 6 is not included.
2 tag (3, 2) 1 1 - 0 so 7 is included.
b(7) 1.

The block with is 1, 3, 7} and the process is repeated on the trees at 2 and 6.
Since b(2)= 3 and s(2)= 3, the block with 2 is {2, 4, 5}. Finally, b(6)= 3 and
s(6) 1, so the block with 6 is {6}.

4. Concluding remarks. The operating time for the algorithm is proportional
to N" n2. The operation min{__- (C(L(v), i) + C(R(v), j 1)), j 1, n, is
done at each node and contributes the factor of n2.

No examples have been found where the heuristic process (including with the
father, the son with the highest weight subtree) gives a partition of more than 30

346 w.H. HOSKEN

of the least cost., Example 3 shows that some partitions with full internal blocks
are quite poor with respect to optimum.

Example 3.
Letv= {1,2,...,4.m, 4.m+ 1},
r=l,

m+ 2, m+ 3,...,2.m+
L(i)= i+ 1, i= 1,...,m,
L(i) i+ m, m + 2,...,2.m + 1,
R(i)=i+m+ 1, i= 1,...,m,
R(i) + 2.m, m + 2, 2.m + 1,
W(v) for leaves,

0, otherwise.
n=4.
(a) Let P {B1,B2,... B,,, B,+I} where

B, i, R(i), L(R(i)), R(R(i))}, 1,
B,,+l={m+ 1},

m,

Cost(P)= 2.1 + + 2.i+ + 2.m+ (m+ 1)

(m + 1)2
for large m.

(b) LetP’ {Bi B’ B’ C’1 }2, ,./4, "’", C’,., C’,.+1 where

B {4.(i- 1) + l, 4.(i- 1) + 2, 4.(i- 1) + 3,4.(i- 1) + 4},
i= 1, m/4,

C {R(i), L(R(i)), R(R(i))}, 1,..., m,
C,,,+ {m + 1},

3

(a) rn 4, Cost 25 (b) rn 4, Cost 18

OPTIMUM PARTITIONS 347

Cost (P’) 8.2 + 8.3 + + 8.(m/4 + 1) -+- (m/4 + 1)

4. [(m/4 + 1). (m/4 + 2)- 2] + m/4 +
m2/4 for large m.

Acknowledgments. The author wishes to thank E. G. Coffman, Jr., and
J. Bruno for helpful discussions.

REFERENCES

[1] D. E. KNUTH, The Art of Computer Programming, vol. 3, Addison-Wesley, Reading, Mass., 1973,
pp. 472-473.

[2] R. MUNTZ AND R. UZGALiS, Dynamic storage allocation for binary trees in a two level memory,
Proc. Princeton Conf. on Inf. Sci. and Systems, 4 (1970), pp. 345-349.

[3] B. W. KERNIGHAN, Optimal partitionsfor a class ofsubroutine graphs, Ibid. 4 (1970), pp. 350-354.
[4] --, Optimal sequential partitions of graphs, J. Assoc. Comput. Mach., 18 (1971), pp. 34-40.

SIAM J. COMPUT.
Vol. 4, No. 3, September 1975

PARALLELISM IN COMPARISON PROBLEMS*

LESLIE G. VALIANTf

Abstract. The worst-case time complexity of algorithms for multiprocessor computers with
binary comparisons as the basic operations is investigated. It is shown that for the problems of finding
the maximum, sorting, and merging a pair of sorted lists, if n, the size of the input set, is not less than
k, the number of processors, speedups of at least O(k/log log k) can be achieved with respect to com-
parison operations. The algorithm for finding the maximum is shown to be optimal for all values of k
and n.

Key words, parallel algorithms, comparison problems, sorting merging, tournaments, complexity

Introduction. We investigate the worst-case time complexity of parallel
binary-comparison algorithms for the classical problems of merging, sorting, and
finding the maximum. We do this for a model that in several senses can be regarded
as embodying the intrinsic difficulty of solving these problems on a multiprocessor
computer. Any lower bound on the time complexity of a task for this model will
necessarily also be a bound for any other model of parallelism that has binary
comparisons as the basic operations. Furthermore the best constructive upper
bounds will correspond to the fastest algorithms for independent processor
machines whenever the time taken to perform a comparison dominates all the
overheads.

For each problem the input consists of a set of elements on which there is
a linear ordering. The ordering relationship between any pair of elements can be
discovered by performing a comparison operation on them. In our model there
are k processors available, and therefore k comparisons can be performed simul-
taneously. The processors are synchronized so that within each time interval
each of them completes a comparison. At the end of the interval the algorithm
decides, by inspecting the ordering relationships that have already been estab-
lished, which k (not necessarily disjoint) pairs of elements are to be compared
during the next interval, and assigns processors to them. The computation termin-
ates when the relationships that have been discovered are sufficient to specify
the solution to the given problem.

The time complexity of each problem will be expressed as a function of the
number of processors, and of the size of the input set. The function will give the
number of time intervals taken for a worst-case input by the comparison algorithm
that requires the least time in the worst case. Thus we define max (n) to be this
measure of complexity for the problem of finding the maximum of n elements
on a k processor machine. Sort (n) is defined analogously for putting n elements
in order, and Merge (m, n) for merging two sorted lists of length m, n respectively.

The phenomena we exhibit for the three problems share certain qualitative
features. For a given size of input set, the more processors we have available,
the shorter the computation time. However, the price paid for increased speed is
increased total number comparisons. Intuitively, we can say that the larger k is,
the larger the number of comparisons that at each step we have to choose on the

Received by the editors February 5, 1974.
f Centre for Computer Studies, University of Leeds, Leeds LS2 9JT, England. This research was

carried out at Carnegie-Mellon University, Pittsburgh, Pennsylvania.

348

PARALLELISM IN COMPARISON PROBLEMS 349

basis of fixed previous information, and consequently the lower the "average
quality" of the choices made. For any given task P, we can conveniently measure
this phenomenon by the "speedup factor" P1/P, where P is the worst-case time
complexity on P on processors. The success 0f parallelization can then be judged
by observing how close this speedup factor is to k.

That there are mathematically degenerate extreme cases has been observed
before. All the problems can be solved in unit time if there are enough processors
for every element to be compared with every other simultaneously. The speedup
then, however, is rather small (x/). At the other extreme, as the input set
becomes very large in relation to k, then, as observed by Borodin and Munro [5],
optimal speedups can be approached. Furthermore, such speedups can be attained
by algorithms that use the processors largely independently (as in Corollaries
3, 6, 7, 9 below) and that are therefore efficient even on machines for which inter-
processor communication is relatively expensive.

Here, however, we shall focus especially on the intermediate cases. As the
fastest parallel algorithms previously studied for the case k n rn are those
that can be realized on sorting networks (Batcher 2], Knuth [6]), it will be of
interest to compare the results for these with our analysis. Thus, to find the
maximum of k elements on k processors can be done, and requires [log2 k steps
on a network. It is natural to ask whether better utilization of the available pro-
cessors can be made if the network restriction is removed. For merging two lists
of k elements on k processors again O(log2 k) time is necessary and can be achieved.
In this case, it has, furthermore, been proved (by R. W. Floyd [6]) that O(k log2 k)
comparisons are necessary, and hence that, under the network constraint, near
optimal use of the k processors is being made. The question is whether the log2 k
bound represents the intrinsic complexity of the merging problem or is a conse-
quence only of the extra constraints.

Even if the network restriction is relaxed to allow arbitrary disjoint com-
parisons, it is easy to see that the log2 k lower bound remains for both problems.
What our results show is that for the more general model, this barrier no longer
exists. We note, however, that the overheads implied by our algorithms may
grow as log k, i.e., faster than the bounds we shall derive. Thus although we may
validly ignore overheads for any fixed value of k, it will not be meaningful to do so
asymptotically.

1. The maximum. We give a worst-case analysis of the problem of finding
the maximum of n elements using k processors. We consider the case of k n
first, and then show how solutions to all the others can be derived. The theorems
are stated in the form of asymptotic inequalities. However, it will be apparent
that the analysis itself is complete in the sense that given any k and n, a provably
optimal algorithm can be developed using the observations made in the proofs.
Although, for simplicity, we shall not explicitly consider the possibility of two
elements being equal, our arguments apply to that case as well, as long as just
one of the maximal elements is being sought.

THEOREM 1. For k n > 1,

max (n) >= log log n const.

350 LESLIE G. VALIANT

Proof. Consider the execution of an arbitrary comparison algorithm for
finding the maximum of n elements. Let C be the set of all elements that up to time
have not been shown to be smaller than any other. Call these the candidates at
time i, and denote their number by ci.

To prove the theorem, we show that given k n and c, the value of Ci/l
can be bounded from below. The result is then deduced by induction on i.

Suppose that in the next time interval in every comparison between a non-
candidate and a candidate the candidate turns out to be the larger. Then the
results of these comparisons will clearly not contribute to any reduction in the
candidate population at all. Clearly, this will also be true for any comparisons
that involve only noncandidates. Therefore, in this worst case the only comparisons
that do contribute to reducing the number of candidates are those among the
candidates themselves.

To obtain the bound, we show that if n comparisons are made on c elements,
then there must be a sufficiently large subset of these elements in which no pair
has been compared directly. In the worst case, it is possible that the elements in
this subset happen each to be larger than each of the elements outside this subset.
In that case, they will clearly all still be candidates at time + 1.

The inductive step can be reduced to a graph theoretic formulation if we
identify elements with nodes and comparisons with arcs in the obvious way.
We call a subset of the nodes of a graph stable if no pair from it is connected by
an arc. We can then express the relationship we require as follows:

Ci+ min {max {hlG contains a stable set of size h}l
G is a graph with c nodes and k arcs}.

As a corollary to Turan’s theorem, it can be shown [31, that

Ci+ >
=2k +c

By solving this inequality, we get that, if Co n k, then for some constant,
ci will exceed unity as long as

< log log n const.

The result follows.
COROLLARY 1. If 4 <= 2n <= k <= n(n 1)/2, then

max (n) >__ log log n log log (k/n) const.

Proof. Solving the same inequality as above, i.e.,

Ci+ >
=2k+c

with Co n gives the claimed solution. V1
As we shall now indicate, not only are the known bounds on stability achievable,

but the extremal graphs are such that comparison algorithms based on them do
reduce the candidate population at an optimal rate.

PARALLELISM IN COMPARISON, PROBLEMS 351

THEOREM 2. For k n > 1,

maxk (n) =< log log n + const.

Proof. It is known [3], [7] that any graph with p nodes that has no stable set
larger than x has at least as many arcs as the graph G,,x. G,,. is defined to be the
graph with p nodes that consists of x disjoint cliques of which p x(q 1) have
q nodes and the remaining xq-p have q- nodes, where q [p/x]. It is
easily shown that such a graph has (q 1)(2p xq)/2 nodes altogether.

In our parallel algorithm we shall at time perform comparisons as dictated
by some such graph with p c. Clearly, c + will equal x, since to each clique there
will correspond exactly one candidate at time + 1. To minimize c+ we shall
have to use from among the graphs

{G,,xlX 1,2,... Gc,,x has fewer than I arcs}
the one with the smallest index x. We therefore have that

ci+ min {xl([ci/x l). (2ci x. [ci/x])/2 __< k}.
This relation gives the inequality

c+ N k.const."
Solving for co n k gives that for some constant, c for some =< log log n
+ const. The result follows.

From the considerations in the proof of Theorem 1, it is immediate that if
G,, is chosen at each step so as to minimize x, the implied algorithm is indeed
optimal.

COROLLARY 2. For 4 <= 2n <__ k <= n(n 1)/2,

maxk (n) _<_ log log n log log (k/n) + const.

The remaining case, that of k < n, can be dealt with by the following observa-
tions. Clearly with just k comparisons we can reduce ci by at most k at each step.
However, as long as c >__ 2k, we can achieve this optimal reduction by having k
disjoint pairs from ci compared. Furthermore, once cg is less than 2k, the algorithm
of the previous theorem can take over. We therefore conclude the following.

COROLLARY 3. For < k < n,

n/k + log log k const. < max (n) < n/k + log log k + const.

For each case we have arrived at upper and lower bounds that differ only
by additive constants. Furthermore, the method of deriving a provably optimal
algorithm for any given values of k and n is implicit in our analysis. We conclude
by mentioning that for the special case of k n, we can state the exact result
explicitly as follows.

COROLLARY 4. The sequence si, S 2 with the property that si
max {ylmax. (y)= i} is defined by

si=3 andsi+ =(2si+ 1)si.

For some real number K, si [K2’/2 J.

352 LESLIE G. VALIANT

Proof. By induction on i. The given solution of the recurrence follows from
the analysis of [1]. [-]

2. Merging. We now give an algorithm for merging that is considerably
faster than any corresponding algorithm previously known.

THEOREM 3. For k [xn and < n <= m,

Mergek (n, m) =< 2 log log n + const.

Proof. We proceed inductively, by showing how, given 1--1 processors,
we can, in two time intervals, reduce the problem of merging two lists of length
n, m, respectively, to one of merging a number of pairs of lists, the shorter of each
of which has length less than w/. The pairs of lists are so created that we can
distribute the [,,5/processors amongst them at the next stage in such a way
as to ensure that for each pair there will be enough processors allocated to satisfy
the inductive assumption.

Consider the following algorithm for the sorted lists X (x l, x2, ..., x,),
Y (Yl, Y2, Ym)"

(a) Mark the elements of X that are subscripted by i. [v/-n] and those of
Y subscripted by i. [/-] for 1,2, There are at most l/and 1/-1 of
these, respectively. The sublists between successive marked elements and after
the last marked element in each list we call segments.

(b) Compare each marked element of X with each marked element of Y.
This requires no more than [,n/comparisons and can be done in unit time.

(c) The comparisons of (b) will decide for each marked element the segment
of the other list into which it needs to be inserted. Now compare each marked
element ofX with every element of the segment of Y that has thus been found for it.
This requires at most

comparisons altogether and can also be done in unit time.
On the completion of (a), (b) and (c) we have identified where each of the

marked elements of X belongs in Y. Thus there remain to be merged the disjoint
pairs of sublists (X1, Y1), (X2, Y2), where each Xi is a segment of X and,
therefore, of length IXl _-< Lxl. Furthermore, IXel < n and YI < m since
the sublists are disjoint. But by Cauchy’s inequality,

It follows that

There. are therefore enough processors altogether that we can assign
[v/(IXil Y[)] to merge (Xi, Yi) for each simultaneously.

We have therefore established that the inductive process of successively
splitting a pair of lists into a set of pairs of sublists can continue with the given
number of processors. Furthermore, the length of the shorter component of each
sublist pair is inductively bounded by the square root of the shorter component
of the list pair. Thus at time 2i, each pair of lists produced has a component of

PARALLELISM IN COMPARISON PROBLEMS 353

length no more than 2i where

i Lx//i J,

and 2o n. Solving 2 _<_ x//2i gives 2 _<_ /1/2i. The merging process clearly
terminates locally whenever a pair of sublists with a null component is produced.
Thus merging must be complete before 2i 0. This gives that

Mergek (n, m) __< 2 [log log n + const.

The additive constant can be shown to be less than unity if logarithms to the
base 2 are taken. F!

COROLLARY 5. For k lr-n- where < n <__ m and r >= 2,

Merge (n, m) =< 2(log log n log log r) + const.

Proof. We use the same algorithm as above, except that at step (a) the objects
marked are those subscripted by i. (x/)] in X and by i. [v/(m/r)] in Y for

1, 2,.... It is easily verified that steps (b) and (c) then each require no more
than k comparisons, and can thus be done in unit time. Now 2i < v/(2_ i/r),
from which the result follows. E!

COROLLARY 6. For < k <= n < m,

Mergek (n, m) <= (n + m)/k + log (mn log k/k) + const.

Proof. Mark k elements in each list so as to induce k segments of about
uniform size (i.e., n/k and re in each one. Merge the two lists of marked elements
as in the above theorem. Insert each of the 2(k 1) marked elements into the
segment to which it belongs in the other list. This can be done in time log (ran
This leaves 2k pairs of disjoint sublists to be merged, in which no pair contains
more than (n + m)/k elements. It only remains to schedule how this merging is
to be done on the k processors in time (n + m)/k (as opposed to time 2(n + m)/k).

The first observation is that the problem of merging a given pair of lists by
the standard sequential algorithm (Knuth [6, p. 160]) can be split arbitrarily
into two independent subproblems with no loss of efficiency. If the two lists have
x elements altogether, then for any y we can divide the task into processes that
take y and x y steps, respectively. The two processes simply execute the
first y and x-y- steps, respectively, of the standard merging algorithm,
but start from different ends of the lists.

With this freedom to break up the merging of a pair arbitrarily, we can
schedule the whole task optimally as follows. We symbolically assign the ith
processor jointly to the ith segments of the two lists. These segments have
(m + n)/k elements between them. To any sublist pair which has say z elements
in common with this pair of segments, we assign z steps of the ith processor.
Then clearly, we are assigning no more than (m + n)/k steps altogether to each
processor. Furthermore, since, by construction, each sublist is totally contained
in some segment, each sublist pair will be assigned to at most two processors.
With this scheduling, we can therefore carry out the remainder of the computation
optimally. El

This last corollary is an improvement on one described in 5] (and attributed
to Kirkpatrick) for the case k << n m. Asymptotically, a speedup of k is clearly

354 LESLIE G. VALIANT

achieved, since it is known [6] that the merging of two lists of length n requires
2n comparisons in the worst case.

The method suggested in [-5] is essentially that described in the first paragraph
of the proof above, with the suggestion that the number of elements initially
marked in each list be not k but some function of n, such as log n. Even with
naive scheduling (i.e., whenever a processor becomes free supply it with an
unmerged sublist pair) a speedup of k can be achieved asymptotically in this way.
Although this is less efficient than our algorithm, the idea can be used to show that
even in the general case of n __< m, optimal speedup is achievable in various
asymptotic senses, such as the following.

COROLLARY 7. Ifm en where .>= 1, then

Merge1 (n, m)/Merge (n, m)-- k as n oo.

Proof. Execute the first paragraph of the proof of Corollary 6 but with
log n elements marked in each list. This requires o(n) comparisons and time.
Clearly the total number of comparisons required to merge the sublist pairs
produced is no more than Merge1 (n, m). Even with the naive scheduling indicated
above, if optimal sequential merging algorithms are used for the sublist pairs,
the total time taken is no more than Merge1 (n, m)/k + o(n). Since Merged(n, m) > n
the result follows.

Note that the asymptotic behavior of Merge (n,m) itself is at present
unknown [6]

3. Sorting. The well-known information theoretic argument gives that the
sorting of n elements requires, in the worst case, n log n- O(n) comparisons.
This immediately gives the following lower bound for sorting on n processors"

Sort, (n) =>__ log n const.

We now derive a corresponding upper bound.
THEOREM 4.

Sort,/2 (n) <= 2 log n log log n + O(log n).

Proof. We show that the binary-merge sorting algorithm requires only this
time if merging is done last, as in Theorem 3.

We first consider the case n 2 for some .j. We assume inductively that
after the ith stage, we have 2- disjoint sorted lists each of length 2i. By assigning
2 processors to each such pair and using the fast merging algorithm, we clearly
arrive at the inductive assumption of the following stage after time 2 log + const.
But sorting of the whole list will be complete when .j. The total time needed is
therefore no more than

log

(2 log + const.) =< 2 log n log log n + O(log n).
i=1

In the general case, when n is not a power of two, there may be a fragmentary
sorted list left over at each stage. However, the above argument applies in that
case as well. [-_]

PARALLELISM IN COMPARISON PROBLEMS 355

COROLLARY 8. For 4 <= 2n < k <= n(n 1)/2,
Sortk(n < 2(log n log (k/n))(log log n log log (k/n) + const.).

Proof. With k processors we can split the input into sets of size [k/n] and
sort each such set completely in one step. We then need log n log (k/n) stages
of merging in the manner of Corollary 5.

COROLLARY 9. For < k < n,

Sortk (n) _< (n log n)/k + 2 log k. log (n log k/k).
Proof. As in [5], we split the input into k equal setsand sort each of these

sequentially in time (n/k)log (n/k). We then successively merge pairs of these,
in log k stages, using the algorithm of Corollary 6. At each stage, there will clearly
be twice as many processors available per merge as at the previous one, and if we
always use these, then the time taken for each stage will be about n/k.

4. Conclusion. We have shown that for the most basic model of parallelism
for comparison problems, algorithms for merging, sorting and finding the
maximum exist that are much more efficient than any previously known. We
suggest our model and analysis as part of the theoretical background against
which parallelism for these problems can be studied and in appropriate instances
exploited. In practice, to derive good algorithms suitable for a specific multi-
processor machine, additional considerations have also to be taken into account.
In particular, the tradeoffs between optimizing the sequencing of the comparisons
(which is what our analysis, attempts), and minimizing the overheads (e.g.,
inter-processor communication), have to be weighed.

Of the many further questions implied, theoretically the most tantalizing is
perhaps that of parallelism in the problem of finding the median. Since this can
be done in linear time sequentially [4], but cannot be solved in less than time
loglog n on n processors (by implication, Theorem 1), it follows that for the
case k n, O(k/log log k) is an upper bound on the attainable speedup. Since we
have shown that for merging, sorting, and finding the maximum, a speedup of
that order is attainable, any substantial lowering of this upper bound for the
median, which we conjecture to be possible, would put this problem in a class of
its own. It would confirm that near optimal sequential algorithms for the median
problem need to be "more carefully sequenced" than those for any of the others,
and would go some way to explaining why they have proved more difficult to find.
By examining parallelism, we may in this way gain deeper insights into specific
computational problems than is offered by sequential analyses alone.

REFERENCES

[1] A. V. AHO AND N. J. A. SLOANE, Some doubly exponential sequences, Fibonacci Quart., 2 (1973),
no. 4, pp. 429-437.

[2] K. E. BATCHER, Sorting networks and their applications, Proc. AFIPS Spring Joint Computer Conf.,
32 (1968), pp. 307-314.

[3] C. BERGE, Graphs and Hypergraphs, North-Holland, London, 1973.
[4] M. BLUM, R. W. FLOYD, V. PRATT, R. L. RIVEST, AND R. E. TARJAN, Time bounds for selection,

J. Comput. System Sci., 7 (1973), pp. 448-461.
[5] A. B. BORODIN AND I. MUNRO, Notes on "Efficient and Optimal Algorithms", 1972.
[6] D. E. KNUTH, The Art of Computer Programming, vol. 3, Addison-Wesley, Reading, Mass., 1973.
[TJ P. TURAN, On the theory ofgraphs, Colloq. Math., 3 (1954), pp. 19-34.

SIAM J. COMPUT.
Vol. 4, No. 3, September 1975

THE RENEWAL MODEL FOR PROGRAM BEHAVIOR*

H. OPDERBECK AND W. W. CHU"

Abstract. A model for program behavior, the renewal model, is introduced; its properties
are discussed, and its ability to model the behavior of real programs is investigated. Using this
renewal model, several theorems are derived which describe the performance of the working set
replacement algorithm. Then the renewal model is used to evaluate the performance of a re-
placement algorithm for two-level directly addressable memory hierarchies.

Key words, models of program behavior, renewal model, working set algorithm, two-level directly
addressable memory hierarchies

1. introduction. The development of virtual memory systems is one of the
most important advances in computer architecture over the last decade. Virtual
memory systems have successfully shifted the allocation of main memory from
the programmer to the system. While the programmer is relieved from this burden,
the system now has to decide what parts of a program must be present in main
memory during a given interval of execution. These decisions must be made with
respect to the behavior of the executing programs.

Virtual memory is usually divided into blocks of contiguous locations to
allow an efficient mapping of the logical addresses into the physical address space.
If these blocks are of equal size, the system is called a paging system and the blocks
are called pages. Main memory is equipartitioned into page frames of the same
size, and any page can be put into any available page frame. The occurrence of
a reference to a page that is currently not in main memory is called a page fault.
A page fault results in the interruption of the program and the transfer of the
referenced page from secondary storage.

Since the main memory has only a limited capacity, pages already in main
memory must continually be removed to make room for pages entering from
secondary memory. The decisions as to when and what pages are to be removed
from main memory are critical for the efficient operation of the system. The
replacement algorithm is that part of the system which makes these decisions.
The objective of a replacement algorithm is twofold. Firstly, it is to keep those
pages in main memory that are currently being used. This is necessary to keep
the page fault frequency as low as possible. Secondly, the replacement algorithm
is to free page frames as soon as there is a low probability that they will be referenced
in the near future. This is a requirement for the efficient utilization of main memory
by all processes. If the second level memory is directly addressable by the CPU,
the objective of the replacement algorithm is to guarantee an efficient use of the
high-speed (first level) memory.

If a program’s page references were randomly distributed over all pages
according to a uniform distribution, it would ,not matter what page is chosen

Received by the editors February 20, 1974, and in revised form July 24, 1974.
t Computer Science Department, University of California, Los Angeles, Los Angeles, California

90024. This research was supported by the U.S. Office of Naval Research, Mathematical and Informa-
tion Sciences Division, under Contract N00014-69-A-0200-4027, NR 048-129.

The results of theorems and 2 and the intervening lemmas are roughly equivalent to
results obtained earlier in [4], [6], [8].

356

THE RENEWAL MODEL FOR PROGRAM BEHAVIOR 357

for replacement. The page fault frequency would only depend on the number of
allocated page frames. However, programs tend to reference pages unequally;
they tend to cluster references to certain pages in short time intervals. This property
is exhibited to varying degrees by many practical programs and commonly known
as locality. The properties of locality are [10]"

1. A program distributes its references nonuniformly over its pages, some
pages being favored over others.

2. The density of references to a given page tends to change slowly in time.
3. Two reference string segments are highly correlated when the interval

between them is small, and tend to become uncorrelated as the interval
between them becomes large.

The cause for the occurrence of locality in practical programs can be found in
the behavior and style of programmers. Programmers tend to organize their code
into modules; they frequently use loops in their control structures. It is also
common practice to group data into content-related blocks. The modularity of
code and data layout is the primary reason for the clustering of references in
space and time.

For the purpose of studying memory management, we will use the following
abstraction of the notion of a process. A process is a sequence of references (either
fetches or stores) to a set of information, called a program. When talking about
processes in execution, we must distinguish between real time and virtual time.
Virtual time.is the time seen by an active process, as if there were no page wait
interruptions. By definition, a process generates one information reference per
unit virtual time. Real time is a succession of virtual time intervals and page wait
intervals. A virtual time unit is the time between two successive page references in
a process, and usually the memory cycle time of the computer in which the process
operates. As a matter of convenience, we let the time for 1,000 references to the
first level memory be equal to msec.

Let N {1, 2, ..., n} be the set of pages in the logical address space of .n
n-page program. The dynamic behavior of the program for given input data can
be modeled in machine-independent terms by its reference string o9, which is a
sequence

O fir2

each r, being in N. r, implies that page was referenced at the tth reference;
thus measures the virtual processing time, which is discrete.

The performance of a replacement algorithm depends largely on the behavior
of the running programs which, for our purposes, will be described by their
reference strings. These reference strings can be obtained in two ways. Firstly,
a program is interpretively executed and its reference string is recorded. Secondly,
the reference string is generated by a model of program behavior. In the first case,
simulation techniques are usually used to evaluate the performance of various
replacement algorithms. This method has been used successfully in the past [1],
[2], [3], [12]. However, only short reference strings (compared with the length
of real programs) are usually processed, since these simulations are rather expen-
sive. This is one of the reasons why the modeling of program behavior has recently
found increasing interest [9], [10], [16]. In this case, the reference string is only

358 It. OPDERBECK AND W. W. CHU

described in terms of its statistical properties. These properties are then used to
evaluate the performance of replacement algorithms, thereby considerably
decreasing the overall effort in terms of cost and time. The analytical study is,
of course, only as good as the underlying model. Therefore, it is necessary to
develop models of program behavior which allow us to model the behavior of
realprograms with reasonable accuracy (depending on the kind of application).

In this paper, we shall first review several available program models. Then
we will describe the renewal model for program behavior, derive its properties, and
investigate its ability to model the behavior of real programs. Using this renewal
model for program behavior, several theorems are derived which describe the
performance of the working set replacement algorithm [6]. The renewal model
is also used to evaluate the performance of a replacement algorithm for two-level
directly addressable memory hierarchies.

2. Models for program behavior. The random reference model (RRM) [7]
is a program behavior model which assumes that each page is equally likely to
be referenced at any time. In this case, the time between successive references to
the same page, called the interreference interval, is geometrically distributed.
The probability that any given page is referenced is 1/n, where n INI is the
.number of pages which comprise program and data. The independent reference
model (IRM) is a generalization of the RRM. In this model, the page references
rl, r2, ..., r,, are assumed to be inclependent trials under some fixed probability
distribution. In other words, the probability of referencing page at the kth
reference is given by Pr [rk i =/3i. Note that consecutive page references are
taken according to these probabilities without regard to the previous references.
The interreference intervals are again geometrically distributed. The average
interreference interval for the ith page is m 1///i. The RRM is the special case
of an IRM where/i 1/n for all i.

The page fault frequency of the LRU and the working set algorithm was
derived for the IRM [4], [8]. Also, page reference strings generated by the IRM
were compared with reference strings of real programs [17]. The results show that
the IRM is a poor approximation. The observed page fault frequency of the
working set algorithm differed from the theoretical value for the IRM in many
cases by more than one order of magnitude.

The locality model of program behavior [9] was defined as (L 1, tl), (L2, t2),
.., (L, t), ..., where L is the ith locality and t the holding time in L. The

Li are members of a specified set of localities associated with the program. A
specialization of this model is the so-called very simple locality model (VSLM).
This model assumes a fixed size locality, i.e., the localities L are all of the same
size x, where __< x < n. At any given time t, the probability of referencing a page
in the locality L is 2, and the probability of referencing a page not in L
and therefore making a transition to another locality is 2.

Experimental results [17] show that the VSLM more closely approximates
the behavior of programs than does the IRM. However, the VSLM does not
do as well as the simple LRU stack model which will be discussed next.

The simple LRU stack model (SLRUM) is based on the memory contention
stack generated by the LRU algorithm [14]. To create the SLRUM, we assign

THE RENEWAL MODEL FOR PROGRAM BEHAVIOR 359

tO each position of the stack a fixed probability. We will denote these probabilities
q l, q2, "", qk where k is the largest integer such that qk > 0 and qj 0 for all
j > k. All the qg’s are independent of each other. The qj are termed stack distance
probabilities, with j being the distance from the top of the stack. At any time,
stack position j will be chosen with probability qj; if it is chosen, the page in
that position becomes the current reference and is brought to the top of the stack.
The pages at stack positions through j- are pushed down one position.
In general., there is a nonzero probability q which denotes the probability of
referencing a page that has not been accessed before; if such a page is chosen,
it is put on top of the stack, and all previously referenced pages are pushed down
one position. Since q is generally not equal to zero, there is a finite probability
of referencing a page which is not in the LRU stack even after a very long execution
time. Because of this behavior, the stack is steadily growing in size. However,
all pages with a stack distance larger than k will never be accessed again, because
qj 0 for j > k. Whenever q > 0, there are some pages which are "passing
through the set of all those pages to which references may be directed, i.e., the
top k pages of the LRU stack. The rate at which these pages enter the stack at
the top is equal to the rate at which they drop below stack distance k, thereby
becoming inaccessible. This kind of behavior is frequently exhibited by pages
used in input/output operations. In this case, the probability of referencing a
new page which contains input data is larger than zero even after a long virtual
execution time. But once all the data items in the input page have been read,
this page will never be accessed again. A similar observation can be made for
pages used in output operations.

3. Renewal model. As mentioned before, the interreference intervals for the
IRM are geometrically distributed. This corresponds to an exponential distribution
on a continuous time scale. Using a continuous time scale, we can describe the
referencing of pages as a Poisson arrival process. The arrival of a customer corre-
sponds to the referencing of a page, interarrival times correspond to interreference
intervals. The Poisson arrival process consists of the superposition ofn independent
Poisson processes, one for each page. The arrival rate for page corresponds to
the reference probability i of the IRM. We therefore have again

This represents a complete alternative description of the IRM on a continuous
time scale. It is the special case of a renewal model where the interreference
intervals are exponentially distributed. If we generalize this latter assumption
and replace the exponential distribution by a general cumulative distribution F(t),
we obtain the renewal model for program behavior. In this model, we assume that
the page interreference intervals are statistically independent. Note that under
this general assumption, only the referencing of individual pages constitutes a
renewal process. The process, which is formed by superposing (or pooling) the
n individual processes, is generally not a renewal process. The n individual processes
are assumed to be independent.

360 H. OPDERBECK AND W. W. CHU

Figure 1 shows an example of a renewal process for a program which consists
of five pages. The horizontal axis represents virtual processing time. The page
reference string is formed by projecting the page references of each page on a
common time axis.

Z 3

II

34124 2 4 5
I,,

4 4 4

T

T

135
VIRTUAL PROCESSING TIME

,I /

=- I’
!,I,I

2 4 3

FIG. 1. Example ofa reference string generated by the renewal model

DEFINITION OF THE RENEWAL MODEL. R (n, V) is a renewal model for
program behavior iff

1. n is a positive integer;
2. Visa list ofn cumulative distribution functions Fi(x), 1, 2, ..., n, where

mi og [1 Fi(x)] dx exists and =1 1/mi 1.
Here m is the average interreference interval of page i. 7=1 1/m is a
normalizing condition. If this condition holds, we have, on the average, one page
reference per unit time.

Let us now consider what type of cumulative distribution functions Fi(t)
may be used for the representation of interreference intervals. For the continuous
time IRM, the probability of referencing some page during the small time interval
At is constant and equal to fli" At. Let us call fli the immediate reference density
(ird). For exponentially distributed interreference intervals, the ird fl is independent
of the current backward distance of page i, that is, the time interval between the
last reference to page and the current time. intuitively, this appears to be rather
a questionable assumption since it contradicts the principle of locality. The
principle of locality implies that the larger the current backward distance of page i,
the smaller its reference probability. Thus the ird fli should not be a constant
but a decreasing function of the backward distance. This explains why the IRM
is not a good model of program behavior.

In renewal theory, the ird is known as the age-specific failure rate. Renewal
processes for which fl(t) is a decreasing function of the backward distance are
called processes with negative aging [5]. The ird fli(t) uniquely determines the
probability density function (pdf)(t) and the cumulative distribution Fi(t

(t) i(t).exp i(x) dx

Fi(t) 1-exp i(x) dx

THE RENEWAL MODEL FOR PROGRAM BEHAVIOR 361

4. Application of the renewal model to the working set algorithm. For renewal
models, the page interreference intervals are assumed to be statistically independent.
Further, the reference probability of each page is independent of the reference
probability of any other page. The sequence of references for each page is modeled
separately. Therefore renewal models can be applied most successfully to replace-
ment algorithms for which the replacement decision depends solely on the
behavior of individual pages. The working set replacement algorithm is an
example of such a replacement algorithm. In this case, pages are always replaced
when they have not been referenced during the last msec. This decision is clearly
independent of the reference distribution of all the other pages.

We are now going to derive the average page fault frequency and the average
working set size for the working set algorithm. The average page fault frequency
can be calculated very easily because it is directly related to the distribution
function F(x) of each page. The following three lemmas are used for the calculation
of the average working set size. These lemmas will also be used later for the
evaluation of two-level directly addressable memories.

THEOREM 1. The average page fault frequency, Q(z), of the working set
algorithm with window size z for the renewal model is

Q(z) Fi(z).
i= mi

Proof. Since page does not belong to the current working set if its inter-
reference interval is larger than z, Fi(z) is the probability that the next reference
results in a page fault caused by page i, given that page is referenced next. Recall
that mi denotes the average interreference interval ofpage i. Therefore, (1 F(z))/m
is the average page fault frequency due to page i. By summing up these average
page fault frequencies for all the distinct pages in the program, we obtain Theorem 1.

LEMMA 1.

x f(x) dx + [1 F(x)] dx m z[1 F(r)].

Proof.

x. f(x) dx + [1 f(x)] dx

. F(z) F(x). dx + [1 F(x)] dx

. F(z)- z + [1 F(x)] dx m- :[1 F(z)3.

LEMMA 2. The expected time interval a page resides in main memory is

r, + x f(x) dx/(1 F(z)).

Proof. The page is replaced at the first instance of time when an interreference
interval larger than r occurs. The probability of this event is F(z). Thus the

362 H. OPDERBECK AND W. W. CHU

probability that the kth interreference interval is the first one that is larger than z
is IF(z)]k-1. (1 F(z)).

Let E{xlz} be the expected length of the interreference interval, given that
it is shorter than . The expected time interval a page resides in main memory is

E{xI}.F()
(1) [1 F(z)]. (k 1). E{xlz}. IF(z)]k-’ + + z.

k= F(’c)

The probability Pr {y __< x[’c} that the interreference interval y is less than or equal
to x, given that it is less than or equal to , is

F(x)
Pr{y__<xlz}= F-- forx=<,

0 forx > z.
Thus

(2) E{xl}
F(z)

x f(x) dx,

where f(x) dF(x)/dx. Substituting (2) into (1) yields Lemma 2.
LEMMA 3. The expected number of references to a page between page faults

(excluding the reference which caused the page transfer)for the working set algorithm
is F(r)/(1 F(v)).

Proof. The lemma follows directly from the proof of Lemma 2.
Since [1- F(r)]/m is the average page fault frequency due to page i,

mill1- Fi(z)] is the average inter-page-fault interval for page faults caused by
page i. At the beginning of such an inter-page-fault interval, page resides in
main memory. Lemma 2 gives the expected length of this residency in main
memory. The expected fraction of time page resides in main memory is the ratio
of the expected time page resides in main memory to the average inter-page-fault
interval of page and is equal to

(3) x. fi(x) dx + z[1 Fi(z)3

Using Lemma 1, (3) reduces to

[1 Fi(x) dx [1 Fi(x)] dx.
m m

By summing up these time fractions, we obtain the following theorem.
THEOREM 2. The average working set size, s(z), of the working set algorithm

with window size z for the renewal model is

s() [F,(x)3 dx
i=1 mi

Note that limo s(r) 0 and lim s(r) n.
COROLLARY 1.

d
dr

s(r)=

THE RENEWAL MODEL FOR PROGRAM BEHAVIOR 363

Proof. Differentiating s(r) of Theorem 2 yields directly Q(r) of Theorem 1.
Corollary is analogous to Denning and Schwartz’ result [8] for the case of a
discrete time scale.

As mentioned before, we should use a renewal process with negative aging
for the modeling of program behavior if we want to derive a better program model
than the IRM. This implies that the immediate reference density i(t) must be a
decreasing function of the backward distance t. If we choose

then/3i(t is a decreasing function of for 0 < 1, > 0. Since the ird/i(t) uniquely
determines the pdffM) and the cumulative distribution Fi(t), we obtain

and

Ji(g) (XDOi(Di t)i-1 exp {-(pit)’}

Fi(t) exp

F(t) is the so-called Weibull distribution [18]. It is easy to verify that the
mean of the Weibull distribution is

(4) mi
F(1 +

and the coefficient of variation (the ratio of standard deviation to the mean) is

F(1 +(5) Ci {F(1 -t- 1/0i)} 2

1/2

In order to obtain estimates for the parameters i and p, we measured the
mean and the coefficient of variation of the interreference interval distribution for
two sample programs (FORTRAN and FORTCOMP). An estimate for was then
derived from the coefficient of variation (equation (5)). This estimate of and
the measured mean is then used to determine p (equation (4)). ’Fables and 2
give the mean mi, the coefficient of variation ci, and the estimates for e and p
for FORTRAN and FOR:COMP, respectively. The results in these tables reveal that
different pages have great differences in the average interreference interval m.
For the FORTCOMP program, for example, the smallest interreference interval is
3.6379 references and the largest interreference interval is 166,630 references.
A similar statement is true for its coefficient of variation. This shows that different
pages may exhibit a completely different behavior. The intuitive explanation for
this observation is, among other things, that pages are used for the storing and
fetching of instructions as well as data.

The page fault frequency for the case in which the interreference interval is
distributed according to a Weibull distribution can be derived from Theorem
and is equal to

i= mi

364 H. OPDERBECK AND W. W. CHU

Likewise, the average working set size for the Weibull distribution can easily be
derived from Theorem 2 and is equal to

1
exp {-(pit)’} dr.

i=1 mi

This integral can be evaluated by numerical integration.
Figures 2 and 3 show the average page fault frequency for the FORTRAN

and the FORTCOMP program, respectively. The dashed curves represent the
measurement results. The two solid curves represent the average page fault
frequency for the renewal model with the Weibull distribution and IRM, respec-
tively. The exponential distribution can be viewed as a special case of the Weibull
distribution for which i 1 and pi 1/m.

Figures 4 and 5 show the results for the average working set size for the
same two sample programs. As can be seen from these figures, the renewal model
represents a better approximation of program behavior than the IRM. The results
for the IRM are similar to those obtained by Spirn and Denning [17].

In the renewal model, we have assumed that page interreference intervals are
statistically independent. We know, however, that in real programs the inter-
reference intervals are somewhat dependent. Comparing the program behavior
derived from the renewal model with the program behavior derived from measure-
ments, the results show that the assumption of independent interreference intervals
in the renewal model gives a fairly good approximation.

TABLE
Input parameters for the renewal model (FORTRAN program)

Page

Number

2
3
4
5
6
7
8
9

11
12
13
14
15
18
19
20
21
22
23
25
26
32

7.2601
11.601
68.537
158.78
46.714
148.94
322.69
1336.5
1052.3

3.3813
19.189

146.11
42.199
45.403
60.942
20.669
100.49

4.5785
35.642

4544.0
26308.0
41654.0
2202.0

87.598
60.762
43.704
31.026
20.631
28.481
21.901
11.539
20.082

239.34
99.796
61.684

315.33
303.92
250.63
45.218
21.873
45.907
24.942
28.834
12.371
10.086
47.107

0.2077
0.2177
0.2279
0.2398
0.2565
0.2431
0.2538
0.2861
0.2576
0.1854
0.2045
0.2173
0.1802
0.1809
0.1844
0.2268
0.2540
0.2263
0.2483
0.2426
0.2822
0.2943
0.2254

12.085
5.2498
0.63832
0.19592
0.44153
0.19146
0.06799
0.0086463
0.019123

70.438
5.1890
0.42261
7.4553
6.6665
4.1168
2.1895
0.21731
10.039
0.70178
0.006358
0.0004698
0.0002426
0.02147

THE RENEWAL MODEL FOR PROGRAM BEHAVIOR 365

TABLE 2
Input parametersfor the renewal model (FORTCOMP program)

Number

2
3
4
5
6
8
9
10
11
12
13
14
15
16
17
18
20
21

1741.8
166630.0
31243.0

14.113
74.6
8.1907
8.8770
3.6379
5.6674

52.571
90.315

298.27
54.591

321.27
9.7798

27.492
278.49
31.394

12.878
1.4573
2.0555

124.34

0.2137
0.7020
0.5320
0.1228

53.605
12.625
10.449
41.857
34.610
36.731
21.083
15.949
36.331
26.127
43.766
40.187
16.401
6.9421

0.1457
0.2151
0.2296
0.1541
0.1612
0.1590
0.1838
0.1996
0.1593
0.1734
0.1526
0.1555
0.1979
0.2687

0.04025
7.576E-6
5.745E-5

3887.45
51.366
8.1422
4.6809

503.77
186.56
23.694
2.8669
0.40926

22.306
1.4548

212.21
59.515
0.47184
0.50709

5. Application to a two-level directly addressable memory hierarchy. In the
case where only the first level of the memory hierarchy is directly addressable by
the CPU, an entire page must be transferred whenever an information item is
referenced which is not in the first level. Because of the locality of page references
this is in many cases an efficient policy. However, as Tables 1 and 2 show, there are
usually some pages which are referenced rather infrequently. For these infrequently
used pages, it would be more efficient to transfer the referenced information item
directly to the CPU, leaving the corresponding page in the second level memory.
Memory hierarchies that use this strategy are called two-level directly addressable
paged memories. The IBM 360/67 installation at Carnegie-Mellon University is
an example of a computer system with this type of memory hierarchy [11], [13],
[20]. As the costs of high-speed large memories such as bulk core storage and
semiconductor memory decrease, systems with two-level directly addressable
memories become increasingly attractive. Experimental performance [19] and
some theoretical properties [15] of these memory systems have been reported
recently.

To demonstrate the utility of the renewal model, we are now going to apply it
to the evaluation of a two-level directly addressable memory hierarchy. In the case
where only the first level of the memory hierarchy is directly addressable, a
demand paging algorithm has to decide when to remove a page from the first level
memory and what page or pages are to be removed. The same decisions must also
be made in a two-level directly addressable memory hierarchy. In this later case,

366 H. OPDERBECK AND W. W. CHU

10

o
0.1

RENEWAL MODEL

MEASUREMENI
IRM

2 3 4 5 6 7 8 9 10 11

WORKING SET PARAMETER r, MSEC

FIG. 2. Average pagefaultfrequency (FORTCOMP program)

however, we now have a choice as to whether or not to promote a page to the
first level. We therefore must establish a second decision rule which tells when to
promote a page.

There is a variety of promotion and replacement decision rules. These
decision rules may or may not depend on the reference string. Any combination
of a promotion rule with a replacement rule represents a memory management
algorithm for a two-level directly addressable memory hierarchy. If the promotion
and replacement rules are not applied at the same time, the amount of allocated
first level memory varies in time, and we have a dynamic storage partitioning
scheme. In what follows, we will restrict ourselves to a particular combination of
a promotion and replacement rule which uses the dynamic storage partitioning
scheme.

THE RENEWAL MODEL FOR PROGRAM BEHAVIOR 367

o 0.1

z

MEASUREMENT

RENEWAL MODEL

IRM

I.
2 3 4 5 6 7 8 9 10 11

WORKING SET PARAMETER r, MSEC

FIG. 3. Average pagefault frequency (FORTCOMP program)

If only the first level memory is directly addressable, the choice of a specific
replacement rule with its parameter determines uniquely the average page fault
frequency and the average number of allocated first level memory page frames.
In the case of two-level directly addressable memories, there is not only one
combination of parameters for the promotion and replacement rule, but there is,
in general, a large number of such combinations which all achieve the same
average page fault frequency. We are therefore interested in an answer to the
following two questions:

1. Given that the average number of allocated first level memory page frames
should not be greater than n, how should we select parameters for the
promotion and replacement rule that minimize the total processing time’?

368 H. OPDERBECK AND W. W. CHU

2O
IRM

18

16

14

12

10

RENEWAL MODEL

MEASUREMENT

2 3 4 5 6 7 8 9 10

WORKING SET PARAMETER r, MSEC

FIG. 4. Average working set size (FORTRAN program)

2. Given that the total processing time should not be greater than t, how
should we select parameters for the promotion and replacement rule
that minimize the average number of allocated first level memory page
flames’?

We are going to use the "working set rule" as a replacement rule; i.e., a page
is removed from the first level memory whenever it has not been referenced during
the last r msec. As a promotion rule, we will use a rule that was first suggested
by Williams [193: whenever a page that resides in the second level memory is
referenced, it will be promoted according to some fixed probability p. Although
this promotion rule appears to be very simple, it can be quite effective since it
causes those pages that are referenced more frequently to be promoted to the

THE RENEWAL MODEL FOR PROGRAM BEHAVIOR 369

18

16

14 MEASUREMENT

/
RENEWAL MODEL

2 3 4 5 6 7 8 9 10 11

WORKING SET PARAMETER r, MSEC

FIG. 5. Average working set size (FORTCOMP program)

first level memory. With this particular combination ofpromotion and replacement
rule, the parameters to be optimized are the working set parameter r and the
promotion probability p. Let us call this particular combination of promotion and
replacement rule a (p, r,)-algorithm.

We define v as the number of references to a page while it resides in the second
level memory;i.e., the number of references between removal and promotion to
the first level memory, v is a random variable which is geometrically distributed.
The mean value of v is

E{v} p v (1 p)V-,

370 H. OPDERBECK AND W. W. CHU

Note that we have the same value E{v} for each page because the promotion
probability p is independent of the number of the referenced page. However,
the expected period of time a page stays in the second level memory is different
for different pages. This time interval can be computed as a sum which consists
of two parts. The first part is the expected period of time between the removal
from the first level memory and the first reference to the same page in the second
level memory. The second part is equal to (lip- 1). mi, that is, the expected
number of interreference intervals times the average length of an interreference
interval for page i.

Let s denote the expected time interval between the removal from the first
level memory and the first reference to the removed page in the second level
memory. We know that a page which is transferred to the second level memory has
a backward distance equal to z. The random variable s has therefore the following
cumulative distribution:

F(sl)

The mean of the random variable s, Ei{slr}, can be derived as follows:

Ei{sl’c
ri(z

s.fi(s + z)ds

El(Z)
(s- z)fi(s)ds

ri(z(- 1) (s z)d[1
ds

Fi(z) (- 1). (s z)l Fi(s)]]= 1 Fi(s)-I ds

From Lemma l, we know that limso s. (1 Fi(s))= 0 for m < . Therefore

Ei(slz) [1 F,(s)] ds (1 Fi(z)).

Thus the expected period of time a page stays in the second level memory is

(6) f [1- Fi(s)] ds) /(1- F(z)) + mi.

We now make use of Lemma 2 to calculate the expected fraction of time
a page stays in the first level memory. Summing these fractions over all pages,
we obtain the following theorem.

THEOREM 3. The average number of allocated first level memory page frames
for the (p, r)-algorithm is

L 1 Fi(s)] ds (p + [1 Fi(z)] ;1 p])
i= mi

For p 1, we obtain the same result which was previously derived for the
working set algorithm (Theorem 2).

THE RENEWAL MODEL FOR PROGRAM BEHAVIOR 371

THEOREM 4. The expected fraction a of references to the first level memory for
the (p, z)-algorithm is

(-, ai p" Fi(r)
tr /_., , where ai=

i= mi Fi(z)(p 1) + 1

Proof. As mentioned above, the expected number of references to a page in
the second level memory is 1/p. Lemma 3 gives the same information for the first
level memory. From this we derive the expected fraction of references to each
page. The sum of these fractions weighted by the average reference frequency 1/m
gives Theorem 4.

Let Tx denote the real processing time for a program operated under a
(p, z)-algorithm (the processing time including the access times to single informa-
tion items in the first level memory and the second level memory and the page
transfer times for transferring from the second level to the first level memory).
Further, let To be the fastest execution time which can be achieved if the whole
program is loaded into the first level memory. To is equal to the total number of
page references. The ratio 6 T/To is called the expansion factor. The expansion
factor 6 is a measure for the delay which is introduced by the use of a slower
secondary memory. We will use 6 as a performance measure for the evaluation of
the (p, z)-algorithm.

The expansion factor 6 depends on the following variables: (i) the promotion
probability p, (ii) the working set parameter z, (iii) the speed ratio R of the memory
hierarchy and (iv) the page transfer time T. T includes the processing time which
is spent to transfer the modified pages back from main memory to secondary
storage. For convenience we shall use the access time of the first level memory
as a time unit for T. In order to compute 6, we need to know the expected number
of page transfers for page i, which is given by p(1 -tri)To/mi. Recall that o- is
the fraction of references to the first level memory for page i. Let us assume that
a page which is promoted to the first level will be referenced by the CPU only
after it has been promoted. Then the real processing time due to references to
the first level memory is

(7) L -" [th + P(1 ai).
i=1 mi

The real processing time due to references to the second level memory is

To(8) (1 ai)(1 p),
i= mi

and the real processing time due to page transfers is

(9)
i=

Adding (7), (8) and (9) and dividing by To we obtain the following theorem.

372 H. OPDERBECK AND W. W. CHU

THEOREM 5. The expansion factor 6 for a two-level directly addressable memory
hierarchy with speed ratio R and page transfer time T and operated under a (p, z)-
algorithm is

6 -- __1 [a+(1 a)(pT+g(1-p)+p).
i=1 mi

To demonstrate the use of the renewal model for the evaluation of two-level
directly addressable memory hierarchies, the average number of first level memory
pages (Fig. 6) and the expansion factor (Fig. 7) were evaluated for different values
of the working set parameter z and the promotion probability p. In these figures,
the Fovcoa program was used as a sample program (see Table 2). Further,
we chose R 10 and T 5,120 units.

12

R= 10

1.5 2 3 4 6 8 10 15 20 30 40 60 80 100

WORKING SET PARAMETER r, MSEC

FIG. 6. Average number offirst level memory pageframesfor the (p, z)-algorithm

The average number ofallocated first level memory page frames is an increasing
function of both the working set parameter z and the promotion probability p.
No such general statement can be made with respect to the expansion factor 6.
This is because a greater promotion probability increases the number of references
to the first level memory and may therefore speed up the computation. However,
it also increases the number of page promotions, thereby slowing down the
computation. This explains why two of the curves of Fig. 7 cross each other.

Figures 6 and 7 taken together allow us now to answer the two questions
which had been posed in the beginning of this section. For instance, the dashed
line of Fig. 7 connects all those points for which the average size of the allocated
first level memory space is equal to five page frames. The minimum of this curve

THE RENEWAL MODEL FOR PROGRAM BEHAVIOR 373

represents the optimal combination of parameters for the promotion and replace-
ment rule that minimizes the total processing time, given that the average number
of allocated first level memory page frames is not greater than 5. In this case,
the optimal combination is approximately z 10 msec, and p 10 -4.

These figures represent only an example for the application of the renewal
model and highlight the technique that can be used for the optimization of two-
level directly addressable memories. The optimization of a two-level directly
addressable memory with such parameters as promotion and replacement rule,
page size, speed ratio R, etc., is beyond the scope of this paper.

Much more theoretical and experimental work has to be done to evaluate
the performance of these promotion and replacement rules. In particular, the
following questions should be investigated" how can the promotion probability
be implemented (possibly by promoting a page after every pth page reference to
the second level memory)? What other promotion and replacement rules are
available? What is the effect of different speed ratios R? It appears that the renewal
model is a valuable tool for the investigation of these problems. Also, it is quite
possible that the use of a different distribution function for the page interreference
intervals may produce closer approximations of the behavior of real programs.

6. Conclusion. One of the difficulties of modeling resource allocation in
modern computer systems has been the proper representation of memory
allocation. The primary reason for this difficulty can be found in the varying
memory requirements of the running programs. Many efforts have been made to

4.0

3.5

3.0

2.5

2.0

1.5

R= 10

3 4 6 8 10 15 20

WORKING SET PARAMETER -, MSEC
3O 4O 6O 80 100

FIG. 7. Expansionfactorfor the (p, z)-algorithm

374 H. OPDERBECK AND W. W. CHU

describe this complex process in terms of a model of program behavior. However,
no universal model that can describe all kinds of program behavior satisfactorily
has yet been developed, and it is not clear whether this can be done. Like all the
other models of program behavior that have been used in the past, the renewal
model is limited in its applicability. However, in certain cases it can be a very
useful tool to study the performance of memory allocation algorithms. This was
shown for the working set algorithm and the (p, z)-algorithm. Such studies allow
us to gain insight into the performance characteristics of these algorithms. This,
in turn, may significantly contribute to the improvement of overall system
performance.

Acknowledgment. The authors wish to thank the referees for their constructive
comments.

REFERENCES

[1] L. A. BELAOV, A study of replacement algorithms for virtual-storage computers, IBM Systems J.,
5 (1966), pp. 78-101.

[2] W. W. Cm ANO H. O’OEBEC, The page fault frequency replacement algorithm, Proc. AFIPS
1972 Fall Joint Computer Conf., 41, no. 1, pp. 597-609.

[3] E. G. CorrMAN ANO L. C. VAt,AN, Further experimental data on the behavior ofprograms in a

paging environment, Comm. ACM, 11 (1968), pp. 471-474.
[4] E. G. COrFMAN ANO P. J. DENNiNg, Operating, System Theory, Prentice-Hall, Englewood Cliffs,

N. J., 1973.
[5] D. R. Cox, ReneWal Theory, Methuen, London, 1967.
[6] P. J. DNNNG, The working set modelforprogram behavior, Comm. ACM, 11 (1968), pp. 323-333.
[7] ., Thrashing: Its causes and prevention, Proc. AFIPS 1968 Fall Joint Computer Conf., 33,

pp. 915-922.
[8] P. J. DENNING AND S. C. SCHWARTZ, Properties of the working set model, Comm. ACM, 15 (1972),

pp. 191-198.
[9] P. J. DENNING, J. E. SAVAGE AND J. R. S’mN, Some thoughts about locality in program behavior,

Proc. Symp. on Computer Communications Networks and Teletrafic, Polytechnic Inst. of
Brooklyn, 1972, pp. 101-112.

10] P.J. DLmNrNG, On modelingprogram behavior, Proc. AFIPS 1972 Spring Joint Computer Conf., 40,
pp. 937-944.

[11] R. E. FKES, H. C. LAUE AND A. L. VAREHA, Steps towards a generalpurpose time-sharing system
using large-capacity core storage and RSS/360, Proc. 23rd National ACM Conf., 1968,
pp. 7-18.

[12] M. JOSE,’H, An analysis ofpaging andprogram behavior, Comput. J., 13 (1970), pp. 38-54.
[13] H. C. LAttEr, Bulk-core in a 360/67 time sharing system, Proc. AFIPS 1967 Fall J,oint Computer

Conf., pp. 601-609.
[14] R. L. MATTSON, J. GECSEI, D. R. SLUTZ AND I. L. TRAIGER, Evaluation techniques for storage

hierarchies, IBM Systems J., 9 (1970), pp. 78-117.
15] R. R. MUNTZ AND H. O’DERBEC, Stack replacement algorithmsfor two-level directly addressable

paged memories, this Journal, 3 (1974), pp. 11-22.
[16] G. S. SHEDLER AND C. TUNG, Locality inpage reference strings, this Journal, (1972), pp. 218-241.
[17] J. R. S’IRN AND P. J. DENNING, Experiments with program locality, Proc. AFIPS 1972 Fall Joint

Computer Conf., 41, no. 1, pp. 611-621.
[18] W. WEmULL, A statistical distribution function of wide applicability, J. Appl. Mech., 18 (1951),

pp. 293-297.
[19] J. G. WILLIAMS, Experiments in page activity determination, Proc. AFIPS 1972 Spring Joint

Computer Conf., 40, pp. 739-747.
[20] A. L. VAREHA, R. M. RUTLEDGE AND M. M. GOLD, Strategies" for two-level memories in a paging

environment, Proc. 2nd ACM Symp. on Operating Systems Principles, 1969, pp. 54-59.

SIAM J. COMPVT.
Vol. 4, No. 3, September 1975

ON FINDING AND UPDATING SPANNING TREES AND

SHORTEST PATHS*

P. M. SPIRA’ AND A. PAN
Abstract. We consider one origin shortest path and minimum spanning tree computations in

weighted graphs. We give a lower bound on the number of analytic functions of the input computed by a

tree program which solves either of these problems equal to half the number of worst-case comparisons
which well-known algorithms attain. We consider the work necessary to update spanning tree and
shortest path solutions when the graph is altered after the computation has terminated. Optimal or

near-optimal algorithms are attained for the cases considered. The most notable result is that a spanning
tree solution can be updated in O(n) when a new node is added to an n-node graph whose minimum

spanning tree is known.

Key words, spanning trees, shortest paths, lower bounds on computation, graph computations

1. Synopsis of results. Dijkstra [2] has given an algorithm to find all shortest
paths from a single origin in a directed graph with positive arc weights and Prim
has given an algorithm t6 find a minimal spanning tree in an undirected graph.
We discuss the optimality of these algorithms in the sequel and show that no

program whose unit operation is the evaluation and testing for positivity of an
analytic function ofthe weights can better these algorithms by more than a factor of
two. We then consider the problem ofupdatingprevious shortest path andminimum
spanning tree solutions when parameters of the graph are changed. We consider
what must be done when nodes are added or deleted and when weights on arcs are
increased or decreased. We obtain lower bounds and optimal or near optimal
algorithms for these problems in terms of how many analytic functions of the
weights must be considered.

2. Definitions and preliminaries. Let G be an n-node with d the distance from
node to node j so that G is undirected ifd d for all and j.

DEFINITION 2.1. An analytic tree program T is one defined by a rooted tree.
Each internal node and the root are labeled by analytic functions, and each leaf
is labeled by an answerthe output of the program. Computation begins at the
root. At each node the analytic function is evaluated and the next node visited is
the left or right successor of the present node. Computation terminates when a
terminal node is reached. The depth of T, d (T), is the length of the longest branch.

DEFINITION 2.2. Let l, ..., l,, be linear maps from Rn to R, where R is the real
numbers, and let C

_
Rd be a convex set. Let L + {x Rn:li(x) >= O, < m}.

A complete analytic proof of L / on C is a matrix
Pxx Px

P P p J
Received by the editors January l, 1974, and in revised form July 26, 1974. This research was

supported in part by the U.S. Army Research Office, Durham, under Contract DA-ARO-D-31-124-71-
6174 and in part by the National Science Foundation under Grant GJ-356 04.

" Department of Electrical Engineering and Computer Sciences and the Electronics Research
Laboratory, University of California at Berkeley Berkeley, California 94720.

Department of Electrical Engineering and Computer Sciences and the Electronics Research
Laboratory, University of California at Berkeley, Berkeley, California. Now at Bell Laboratories,
Naperville, Illinois 60540.

375

376 P.M. SPIRA AND A. PAN

where each pi)’Rd R is analytic and such that x e L + ,, ::li, =< __< k, with
pj(x) >= O, 1 <= j <= k. We call k the width of .

The reason for defining a complete proof is that any lower bound on the width
of a complete proof for L + is a lower bound on the depth of a tree program. In
fact, we have the following lemma.

LEMMA 2.3. Let 11 ..., l" be linear maps from R to R. Let C
_
Re. Let k be the

minimum width of any analytic proof of L + on C. Let T be a program which, given
any point x C, determines whether or not x L +. Then d(T) >_ k.

Proof. The proof is direct from the definition of complete analytic proof.
Q.E.D.

We shall use in all our lower b’ound proofs the following theorem.
THEOREM 2.4 (Rabin). Let/1, l" be linear forms from Rd to R, with m <= d.

Let C
_
Ra contain a point for any given of the 3" possible +, 0, sign conditions

of the Then any complete analytic proof of L + on C has width at least m.
This theorem says that under the given hypotheses, the easiest thing to do to

verify that a point x e C is in L + is to compute l(x), ..., l"(x) and see if they are all
nonnegative.

3. Spanning trees. Prim’s [1] well-known procedure finds the minimum
spanning tree in an undirected graph. There are two types of comparisons em-
ployed. The first type finds the closest unconnected node to the set of nodes already
connected. This closest node becomes a connected node. The second type compares
for each unconnected node the distance to it via the last connected node and the
distance to it which was minimal before the last node was connected. If the al-
gorithm is properly programmed by introducing a tree of depth [log2 (n k)] for
the arcs from the kth node brought in, then it will take between 1/2(n 1). (n 2)
and (n- 1). (n- 2) comparisons, depending upon the number of new arcs
brought into consideration in the second type of comparison. We show that any
analytic tree program will have depth at least (n 1). (n 2) for this problem.
In fact, more strongly, we have the next theorem.

THEOREM 3.1. Let T be an analytic tree program which, given a complete un-
directed weighted graph and n arcs, determines whether or not these arcs form
a minimum spanning tree. Then d(T) >= 1/2(n 1). (n 2).

Proof. Let D be the set of n arcs. Let d max {dij:the arc from node to
node j is in D}. Then the arcs of D form a minimum spanning tree if and only if
they form a tree and dij __> d for each and j such that the arc from to j is not
in D. But this is a set of (n 1). (n 2) inequalities which satisfy Rabin’s hy-
pothesis. Q.E.D.

We now discuss updating minimum spanning tree solutions when graph
parameters are changed. First we consider adding a new node to the graph.

THEOREM 3.2. Let an n-node weighted undirected graph G be given, together with
n arcs known to be a minimum spanning tree. Let an (n + 1)-st node be added to
G, together with at least two arcs connecting it to the original n nodes. Then any
analytic tree program to compute the minimum spanning tree of the new graph has
depth at least n.

Proof. Consider the case in which there are two arcs from the new node which,
together with the given minimum spanning tree, form a cycle of length n + 1.

SPANNING TREES AND SHORTEST PATHS 377

Then the new minimum spanning tree will contain each of these arcs except that
arc with the maximum weight. Q.E.D.

The reader can easily construct an O(n log n) algorithm to update the minimum
spanning tree if he or she notes the fact that the only eligible arcs are the n arcs
now in the tree and the at most n new arcs connected to the new node. In fact,
there is an O(n) algorithm which we now present. Also, the algorithm uses storage
proportional to n.

THEOREM 3.3. There is an algorithm to update the minimum spanning tree of
an n-node graph to which a new node has been added which uses O(n) comparisons
and O(n) storage.

Proof. We give the algorithm. The input to the algorithm is the set of arcs in
the old tree and the set of arcs to the new node. All arcs appear with their weights.

ALGORITHM.
1. Find minimum weight arc incident upon each node.
2. Find the connected components of the set of arcs found in step 1.
3. Find the minimum arc between each pair of trees found in step 2 such that

there is at least one such arc.
4. Collapse each tree found in step 2 to a new node, and go to step if there is

more than one such node.
Step requires at most 4n comparisons. Step 2 is linear in n if we use Tarjan’s

[4] connected components algorithm. Step 3 can be done by processing each edge
not found in step once and uses linear storage. To see this, note that there can be
no more than one arc between any two trees unless one ofthem contains the newly
added node, or there would have been a cycle in the original spanning tree. So we
only need to process arcs that go to the component containing the new node and
hence use linear storage. In the process we will throw out all nonminimal con-
necting arcs, so that step 4 is trivial. When we return to step 1, we have the original
problem on at most half as many nodes. Hence for a constant c, we have a recursion
for the work, F(n), given by

F(n) <= F(n/2) + cn,

so that F(n) <= 2cn. Q.E.D.
We note that Johnson and Simon [5] have independently discovered an

entirely different O(n) algorithm for this problem.
The rest of the results on updating spanning trees are now stated as Theorem

3.4.
THEOREM 3.4. Let G be an n-node undirected weighted graph whose minimum

spanning tree is specified. Then:
(i) If the value of a tree arc is increased any analytic tree program to update

the minimum spanning tree has depth at least n/4 for n even and (n2 4)/4 for n
odd. Furthermore there is an algorithm using this many comparisons in the worst
case.

(ii) If the value of a nontree arc is decreased in weight, then an algorithm
using n comparisons in the worst case will yield the new minimum spanning
tree and no analytic tree program with depth less than n can solve this problem.

(iii) If a node is deleted from the graph together with all of its arcs, then an

378 P.M. SPILL& AND A. PAN

analytic tree program to update the solution has depth at least n 2). (n 3)
(although it will usually be easier than this).

Proof. (i) Consider all arcs running between the two subtrees formed by
deleting the arc whose weight has increased. Then the new tree will be the union of
the subtrees and the connecting arc of minimum weight. If the subtrees have and
n nodes, there are n(n i) such arcs. Hence the result follows.

(ii) The arc of decreased weight is in the new tree if and only if it is no longer
the maximum weight arc in the cycle it forms when added to the old minimum
spanning tree.

(iii) The worst case occurs when the deleted node was a root of degree n
of the old tree. Then no old information is useful. Q.E.D.

4. Shortest paths. In this section we discuss finding and updating shortest
paths from a single origin in positively weighted directed graphs (digraphs).
Dijkstra’s [2] procedure for finding a shortest path from a root to every other node
in an n-node graph requires between 1/2(n 1). (n 2) and (n 1). (n 2) com-
parisons. Similar considerations apply as in the spanning tree problem. Also,
similarly to Theorem 3.1, we have Theorem 4.1.

THEOREM 4.1. Let T be an analytic tree program which verifies that a tree rooted
at node specifies a shortest path from node to each other node in a positively
weighted digraph. Then d(T) >= n 1). (n 2).

Proof. Let Dj be the shortest distance from node to node j in the given tree
foreach < .j =< n. Assume with no loss of generality that D 2 =< D3 =< _< D,.
Then for each =< <__ .j n such that dj is not in the proposed shortest path tree,
we must verify that dj >= Dj Dj and this set of 1/2(n 1). (n 2) inequalities
cannotbeprovenbyananalyticproofofwidthlessthan1/2(n- 1).(n- 2). Q.E.D.

In contrast to the case of spanning trees, when a new node is added, it requires
an O(n2) algorithm to update the solution. In fact, the updating problems we con-
sidered for shortest paths all require O(n2) steps.

THEOREM 4.2. Let G be an n-node positively weighted digraph for which a
shortest path tree from node to each other node is specified. Then"

(i) If a new node is added, any analytic tree program to update the solution
will have depth at least 1/2(n 1). (n 2).

(ii) If a node is deleted, any analytic tree program for updating the set of
paths will have depth at least 1/2(n 2). (n 3).

(iii) If the weight of some arc in a path is increased any updating program will
have depth at least 1/2(n 2). (n 3).

(iv) If the weight of some arc in a path is decreased, the minimum depth of an
updating program is at least 1/2(n 2). (n 3).

(v) If the weight of an arc not in the shortest path tree is decreased, then any
analytic tree program to update the solution has depth at least 1/2(n 2). (n 3).

Proof. (i) Consider the case in which

dij- 1, <,j<n

dij <-, all other/and.j with =< # .j =< n + 1,

di,,+t min {dii’l <= 4: .j <= n + 1}.

SPANNING TREES AND SHORTEST PATHS 379

Then the old tree had a direct arc from node to each other node, but the new tree
will not use any of these arcs. The new solution will have a direct path only from
node to node n + 1, and an entirely new solution for the rest of G which will
entail finding a shortest path from node n + to each other node.

(ii) Consider the case

d12 1,

d2j= 1, 3 <j<n

dij> 2, all otheriandj.

Then if node 2 is deleted, an entirely new problem must be solved on nodes

d12 1,

dzj 1, 3 < j < n

dij> 2, i4: 2, j 2,

di2 > Z dij"
j2

Then the original solution is to go from node to node 2 and thence directly to
each other node. Now let d12 increase to be the maximum of all weights, and we
must solve a new problem from node to nodes 3 through n.

(iv) Let

d0 1, < j <= n,

dj < -, all other and j,
n

and now let d12 decrease to be the minimum weight arc. So we must solve a shortest
path problem from node 2 to each other node.

(v) Let

d12 1,

dzj 1, 2 < .j,

dij > 2, .j 2,

dj<-, all otheriandj.
n

Now let d a3 decrease to 1/n. Then we must solve a new problem from node 3 to
nodes 2,4,..., n. Q.E.D.

5. Further considerations. In this concluding section we make several further
remarks about shortest paths and spanning trees. Firstly, there is an algorithm for
shortest paths or for the spanning tree problem which uses an average of 1/2n 2
+ O(n log2 n) comparisons. To see this, let G be a graph in which the weights are,

chosen independently from any probability distribution which has zero probability

380 P.M. SPIRA AND A. PAN

of yielding negative values. Then Spira’s [6] algorithm for the all shortest path
problem can be adapted to either of the above problems to yield an algorithm
which uses 1/2r/2 + O(r/log2 n) comparisons on the average. Secondly, we have dis-
cussed updating where only the answer to the problem considered is retained. It
seems likely that if intermediate information in obtaining the original solution is
kept, improvements will be possible. We have not investigated this. Thirdly, we
have not considered sparse graphs. A major open problem is whether there are
O(E) algorithms for these computations in the case where E, the number of edges
actually present, is small.

Acknowledgment. We acknowledge a helpful discussion with Professor
Shimon Even concerning Theorem 3.3.

REFERENCES

[1] R. C. PRIM, Shortest interconnection network and some generalizations, Bell System Tech. J., 36
(1967), pp. 1389-1401.

[2] E.W. DIJKSTRA, A note on two problems in connection with graphs, Numer. Math., (1959), pp. 269-
271.

[3] M. O. RABIN, Proving simultaneous positivity of linear forms, J. Comput. System Sci., 6 (1972),
pp. 639-650.

[4] R. TARJAN, Depth-first and linear graph algorithms, this Journal, (1972), pp. 146-160.
[5] R. JOHNSON AND JANOS SIMON, Private communication.
[6] P. M. SPIRA, ,4 new algorithmforfinding all shortest paths in a graph ofpositive arcs in average time

O(n log n), this Journal, 2 (1973), pp. 28-32.

SIAM J. COMPUT.
Vol. 4, No. 3, September 1975

ON THE NUMBER OF MULTIPLICATIONS/DIVISIONS
EVALUATING A POLYNOMIAL WITH AUXILIARY FUNCTIONS*

L. REVAH

Abstract. The number of multiplications/divisions (we use the notation m/d) necessary to evaluate
an nth degree polynomial with auxiliary functions are studied. Motzkin proved, that in general,
[(n + 1)/2] m/d are required when operations on coefficients of the polynomial are not counted and
presented an algorithm which requires [(n + 2)/2] m/d.

The main purpose of this work is to treat the question, ’Is the minimum number of m/d [(n + 1)/2
or [(n + 2)/2]?" We obtain the following results:

(a) for n < 9, the minimum number is [(n + 2)/2],
(b) for n __> 9, we prove by exhibiting an algorithm that almost all polynomials of degree n can be

evaluated with [(n + 1)/2] multiplications over a complex field.

Key words, algebraically closed field, algorithm, auxiliary functions, lower bounds, polynomials,
preconditioning

1. Introduction. We are interested in establishing the number of arithmetical
operations required to evaluate the nth-degree polynomial P,(x)= 7-o uixi.
One can evaluate x2, x3, x", then multiply ai by xi (1 <_ =< n), and finally
add these products and a0. This method requires 2n m/d and n additions/
subtractions (we use the notation a/s).

When a polynomial of degree n is computed at one point by Horner’s method
based on the following identity"

P,(x) uix’= (.." (u,x + u._,)x + ...)x + uo
i=0

or
P,(x) P,_ I(X)X q- b/0,

then n m/d and n a/s are involved. Horner’s method turns out to be optimal
from the point of view of operation count for computing a polynomial at one
point (Pan [2]).

When the same polynomial is to be evaluated at several points, we can manipu-
late in some way the coefficients of the polynomial once and for all and then use
these "adapted’: (we shall say preconditioned) coefficients in all subsequent
evaluations.

A scheme with preconditioning is a sequence of steps"

(1) pi R’i Ri, i= 1,2, r,

in which"
(a) is one of these operations" addition, subtraction, multiplication,

division;
(b) R’i, R7 is either x, pj (j < i) or a function aj jj(u0, b/l, b/n)

E(c) pr(x czt, o 2, ..., a) P,(x) i:o bliX’"
The number of m/d in the scheme is the number of times is either multiplica-

tion or division, a2 is called a parameter or an auxiliary function.
Received by the editors February 12, 1974.
Department of Computer Science, University of Toronto, Toronto, Ontario, Canada M5S 1AL.

This research was carried out at the Department of Computer Science, Technion-Israel Institute of
Technology, Haifa, Israel.

381

382 ,L. REVAH

P; is called a chain step if either none ofthe R;, R; is a parameter or if p; " R;
and R’ is not a parameter. Otherwise p; is said to be a parametric step.

Motzkin proved that every scheme with preconditioning which computes
a general nth-degree polynomial at a general point requires at least [(n + 1)/2]
m/d and at least n a/s, if operations on coefficients are not counted.

Motzkin 1] indicated a scheme for evaluating an nth-degree polynomial with
[(n + 2)/2] multiplications and n + a/s (for simplicity, we do not follow the
indexing of (1), but instead, indicate the degree of a polynomial obtained at each
multiplication step):

P2 x(x + o),

P4 (P2 q- X q- 2)(P2 d- 3) "-
(2) P2s+ 2 P2s(P2 -b 2s+ 1) "]- 02s+ 2, S 2, 3,’’’, k 1,

Pn(X)
unP2kX q- Uo

for even n 2k,

for odd n=2k+ 1.

(See also [5, pp. 7-10] .) Other known methods do not achieve the lower bound of
[(n + 1)/2 for the number of m/d, which fact gave rise to the question, "Is the
minimum number [(n + 1)/2] or [(n + 2)/2]?" Since [(n + 2)/2] turns out to be
(n + 1)/2 when n is even, we deal only with polynomials of odd degree. (This
question was raised in Knuth [3, 4.6.4, Prob. 40]. Rabin and Winograd [4]
gave a scheme for the case n 13 using 7 multiplications.)

First we shall .establish the necessary conditions for schemes evaluating
all nth-degree polynomials with [(n + 1)/2] m/d. Then we shall prove that for
< n < 9, the lower bound on the number of m/d is [(n + 2)/2].

In the last section we shall prove that for n >__ 9 the lower bound is [(n + 1)/2
by constructing four schemes over a complex field corresponding to four cases
of odd n"

1. n=4k-l,k>=3;
2. n=4k-3, k> 3odd;
3. n=4k- 3, k>2even;
4. n=9.

2. Necessary conditions for an algorithm to compute any nth-degree poly-
nomial with [(n -I- 1)/2] m/d. We cite the following result.

LEMMA (Pan [2, p. 113], Bclaga [5, p. 11]). The number k of parameters
involved in a scheme (1) computing an n-th-degree polynomial satisfies the inequality
k>n+l.

With no loss of generality, we can assume that the scheme (1) with m/d is
of the form’(we write x for m/d)

(3)
qi TI) > T2), 1,..., t,

qt+l Pn(X) q, +--- T[3),
where Ti) (1 =< j <_ t, 1 =< =< 3) is some sum of q (s < j), x and parameters 0.

Then it is easy to prove the following lemma.
LEMMA 2 (Knuth [3, 4.6.4, Prob. 30, p. 443]). For any scheme of the form (1)

with chain and 2 parametric m/d, it is possible to construct a scheme of the form

POLYNOMIAl, WITH AUXILIARY FUNCTIONS 383

(3) which evaluates the same polynomial as the preceding one with at most 2t q- 2

parameters.
From these two lemmas we deduce the following corollary.
COROLLARY 1. If a scheme (3) evaluates any n-th-degree polynomial with

[(n + 1)/2 m/d when n is odd, n >= 3, then all m/d must be chain operations.

Proof. Indeed, it is possible to construct a scheme (3) with + t2 (n + 1)/2
m/d and at most 2t + t2 parameters (Lemma 2). But 2t + t2 >-- n + (Lemma 1).
Therefore 2 0. [-]

DEFINITION 1. We call the operation Pi R’i R’[a nonreducing operation if
either one of the following conditions holds"

(i) ifo is +, Rj P and Rj Q, then

degree (P) > degree (Q);

(ii) if is +, Rg P/Q and Rg P’/Q’, then

degree (PQ’ +_ P’Q) max (degree (PQ’), degree (P’Q)),

where P, P’, Q and Q’ are some polynomials in x.
A scheme is called a nonreducing scheme if it contains only nonreducing

operations. Otherwise the scheme is said to be reducing.
THEOREM 1. If a nonreducing scheme does not contain any parametric m/d,

then the leading coefficients of polynomials in numerator and denominator obtained
at each step pg are rational numbers. Therefore every nonreducing scheme without
parametric mid evaluates only polynomials with rational leading coefficient.

Proof. We prove this theorem by use of induction on the number of m/d in
the scheme (3). V]

This leads to the following theorem.
THEOREM 2. The necessary conditions for a scheme to evaluate any n-th-degree

polynomial when n is odd, n > l, with [(n + 1)/2] mid are"

(i) the scheme must not contain parametric m/d;
(ii) the scheme has to be a reducing one.
The point is that in other methods, the monic polynomial p, of degree n

was obtained first, and then, in order to compute the general polynomial P,(x)
ZT= tliXi’ the monic polynomial p,(x) had to be multiplied by a parameter u..

We avoid this loss of multiplication.
In fact, we will try to obtain two monic polynomials of the same degree using

chain multiplications only and then subtract these two polynomials obtaining
a polynomial with a general leading coefficient"

X
-1R,i + a_ix + + ao,

Rj x + b_lx + + bo,

and if p R Rj, then

pj (as_ bs 1)xs- +_1_ (ao bo).

Theorem 2 and Lemma lead us to the following result concerning the number
of a/s in a scheme evaluating any nth-degree polynomial with [(n + 1)/2 m/d.

384 L. REVAH

COROLLARY 2. For odd n, the lower bounds of [(n + 1)/2 for mid and n for a/s
cannot both be achieved. A scheme evaluating any n-th-degree polynomial with
[(n + 1)/2] mid contains at least n + a/s.

Proof. There are at least n + parameters in a scheme evaluating an nth-
degree polynomial (Lemma 1). Parametric mid are not allowed (Theorem 2).
Therefore there are at least n + parametric a/s defining the n + parameters.

When we try to apply the above-stated idea for a polynomial of odd degree n,
< n < 9, we cannot achieve the lower bound of [(n + 1)/2] for the number

of m/d.
3. Lower bound for polynomials of degrees n 3, 5, 7. The necessary con-

ditions of the preceding section do not imply the achievement of the lower bound for
n 3,5,7.

LEMMA 3. If Pm-" Pk- P’k is the first reducing operation in the scheme not
containing any other multiplication, except the first one, by a first-degree polynomial
(i.e., there is no multiplication of the form p (i<uiPit+ vx + a)(wx + fl),
where u v and w are integers), then the leading coefficient of x in p,. is an integer
(possibly 0), being the degree of Pk (and P’k).

Proof. Only chain m/d may be used in the scheme (3). Let us prove the
lemma in the case in which only multiplications are used. Without loss of generality,
we may assume that the first chain multiplication is of the form P2 x(rtx +),
where n is an integer.

It follows from the hypothesis of the lemma that any polynomial obtained
before the reducing operation p,, is ofeven degree with an integer leading coefficient.
Moreover, any rth-degree polynomial obtained in the scheme before the operation
p,, has its two highest terms of the form

F)xr-nsx + s.-.o 4- u

where u and s are integers. (This can be proved easily by use of induction on r.)
Therefore, in the reducing operation p,,,, Pk and .p, are of the following form"

st)xt_Pk rls xt -4- -o -4- u d- ’’’,

P’k ns2xt + + u2 + "",

where ul,/,/2, s1 and s2 are integers and s s2 Thus p,, (/’/2 bll)Xt- +
and its leading coefficient is equal to u2 u l, which is an integer number, as
required. 71

With this lemma, we can prove, by use of combinatorial analysis, the impos-
sibility of achieving the bound [(n + 1)/2 for n 3, 5, 7.

THEOREM 3. For odd n, < n < 9, there is no method evaluating all n-th-degree
polynomials with less than [(n + 2)/2 m/d.

Proof. In order to illustrate our method of proof, we shall consider a scheme
(3) without divisions. (When divisions are allowed, the proof is similar but a

POLYNOMIAL WITH AUXILIARY FUNCTIONS 385

little cumbersome.) We consider a four-level tree (see Fig. 1), each level correspond-
ing to chain multiplication. (Remember that parametric multiplications are not
allowed.) A node Pi represents a polynomial of degree at most whose leading
coefficient is an integer number, and p’ is a polynomial of degree at most j with
a general leading coefficient.

1st multipli-
cation

2nd multipli-
cation

3rd multipli-
cation

4th multipli-
cation

FIG.

The root of the tree is a polynomial of first degree with integer leading
coefficient obtained without multiplication.

The dotted line joining the node Pi to the node pj or p’ indicates one multi-
plication and one reducing subtraction. We can multiply only those polynomials
appearing in the path from the root to the node pi or p’.

The first level corresponds to the first chain multiplication, which gives a
polynomial of degree 2 with integer leading coefficient.

The second level corresponds to two multiplications, and its nodes represent
integer leading coefficient polynomials P3, P4. P’ appears also in the second level;
it results from subtraction of two different second-degree polynomials with
equal leading coefficients obtained by 2 different multiplications.

In the fourth level, we include only polynomials of degree seven or higher,
since we are interested in obtaining the general seventh-degree polynomial with
4 multiplications. Therefore there appear the nodes PT, P8, P9, P o, P12, P6
representing the corresponding polynomials evaluated by use of 4 multiplications.
(Other polynomials are of lower degrees and are of no interest in obtaining the
bound.)

For example, monic seventh-degree polynomials can be calculated with
4 multiplications in one of the following ways:

P2, P3, P4; P2, P3, Ps; P2, P4, Ps; P2, P4, P6"

386 L. REVAH

From the above considerations and from Lemma 3, we can conclude that
there is no way to obtain p’ in the second level, p’ in the third level and p in the
fourth level. 71

4. Algorithms for computing polynomial of degree n with [(n + 1)/2 multi-
plications. These algorithms will be reducing. We can point out that for all algo-
rithms we will start with one even-degree monic polynomial, P2t, and two odd-
degree monic polynomials P2tl + and P2,2 + 1, which we obtain by known methods,
and then we construct the required algorithm.

THEOREM 4. Let x2 + 2x be given. Then every monic polynomial P2, + of odd
degree 2t + can be evaluated with multiplications (and 2t + a/s).

Proof. We use induction on t. The proof is obvious for 1. (Since for any 2
amonicpolynomialx3 + =oaixicanbewrittenas(x2 + 2x + ol)(x + Oo) + 71,
where 0o a2 2, 01 al 0o2 and 7 ao 002, then only one multiplica-
tion and 3 a/s are required.) Assume the theorem to be true for every < < t.

For a given 2, any monic polynomial P2t + can be written as

P2t + a2i x +
i=o -- X -- a2i+l X

i=o

for a suitable choice of ai’s. So, for every ,,

where

t Z a2/+ 10{t
2i

i=O

and 7t Z a2,02 ‘"i=o

’ thenNow choose e,, a root of =o ai+ z2

P2t-1

and P2,+ can be obtained from P2t- given x2 + 2x by one more multiplication
and 2 more additions involving e’, and 7, (where e; 2/4 st). By the induction
hypothesis on P2,- , the theorem follows. [-]

THEOREM 5. There exists a scheme evaluating s monic polynomials P2,,+ of
odd degree 2t + (i 1, 2,..., s) and a monic polynomial P2, of even degree 2t
using + =1 t, multiplications (and 2t + + 2 Y,=I t, + s a/s).

Proof. Let

x2t-P2 X2 "31- u 2 -1 "at- -31-

x2ti + (i) x2tiP2 + + 2 -at- + l)(), i= 1,2,...,s.

POLYNOMIAL WITH AUXILIARY FUNCTIONS 387

First we compute P2, with Motzkin’s method"

P2 x(x + 2),

P4 (P2 -+- X + 02)(p2 -+- (X3) -Jl’-
4)

Pzs+ 2 Pzs(P2 + 0{2s+ 1) + 0{2s+ 2, S 2, "’", 1,

/’,(x)

The first multiplication in this algorithm is P2 X(X + 2) with 2 (uz,- 1)/t.
The number of multiplications used is (the number of a/s is 2t + 1). Now the
quadratic polynomial x2 + 2x is given. Therefore each of the polynomial
can be evaluated using ti multiplications and 2ti + a/s by the scheme of
Theorem 4.

2m iXt.LetQ2m+(x)=x2 +1 +i_o xiqi and let (r(x) i=o
LEMMA 4. For any monic Q2,,+1, any r (r =< [m/2] 1) and any number

in--1there exists a monic polynomial P,,(x) x" + i=o aix’ such that degree (Q2m+l
Pro(Pro + C,)(X +)) <= m. Furthermore, a,._j (1 =< j __< m r 1) is a poly-

nomial in and q2m-i (0 <= <= j 1), 2a_j + ,_j (0 =< j _<_ r) is a polynomial in, qi(m + r-j+ <= <= 2m),and 2a_s+ r-s(S < J).
Proof. Let us consider the polynomial

(5) S Pro(Pro + 8)(x -k- o) Px + Po + PmrX +
The coefficientsjofxJinS,j=m+ t,r+ <t <m, is

(6) Sj 2at_ + 2 am-jar+i-1 + o 2 am
i=1 i=0

Forj=m+t,O<t<= r+ 1,

at + i"

Sj

(7)
m--r-1 m-r-1

nt- am_jar+i_ nt- o Z am-iat+i"
i=r-t+2 i=r-t+l

So we can choose ak recursively in the following manner" for r + < =< m,

r--t+ r--t

Rat-1 nt- l’t- -- 2 am-i(Rat+i-1 " t+i-1) 0 2 am-i(2at+i-F Or+i)
i=1 i=o

(9)

Therefore Pro(x) Zi%o aixi. gl

LEMMA 5. Let S be as in Lemma 4. Then

r-t + m--r-1

2at- + Or- qm+t am-i(2at+i + ?-t+i- 1) am-iat+i-1
i=r-t+2

2-t m-r-1

o Z am-i(Zat+i + ?-t+i) o Z am-iat+i
i=0 i=r-t-

(i) for2r + _< j =< m, s, fa(e, 2ao + ’o, "’", 2a + e,,e,a,ar+ 1,’’, am);

For 0 < <_ r + 1, we choose at- such that

(8) at- qm+t am-ia,+i-1 am-ia,+i
i+1 i=0

388 L. REVAH

(ii) for j r 4- t, O< <= r + 1,
a,..., am, ,"’,).

Proof. (i)

Sj rat-1

(10)

r-1 j-r-1

i=0 i=0

j-r-1

+ a_(2a +) + o a_a.
i=0 i=r+l

(ii) Fort<r+ 1,

(11)

(, 2ao + o, 2at + r,

aj_ i- lai

For r + 1,

(12)

t-1 t-1

si era,_ "31- E a-i-1(2ai + .i) + o a_i(2a + ei)
i=0 i=0

+ aa-i-l(ai -4- .i) -+-
i=t i=t

2 13$2r+1 ?.rar + a2r_i(2a +) + o a2r-i+ 1(2ai + i) +
i=0 i=0

4.1. Algorithm fr 4k 1, k >_ 3. Let u(x) ;o ux be given. Let
2k-2 k-3

P2k- ,(x) x2k-1 -- E aixi, Ck- 2(x) xk- 2 + Cixi,
i=O i=O

k-2

Ok- I(X) xk-1 -[- E dixi"
i=o

THEOREM 6. For almost every polynomial u(x) of degree n 4k 1, k 3,

Cr Ck- 2 + and * u.
O 0*

Using Lemmas 4 and 5 with
r--k-l, m=2k-1,

there exists three monic polynomials P2k-1, Dk-1, Ck-2 and numbers , *, fl and 2
such that

u(x) [P2k-1(X -" O0 --(P2k- + Ck-2)(x + a*) + fl]
(13)

[P2k-1(x + Z) +)’] -+- Dk_ 1"

Proof. We have to find 4k parameters:

(14) a2k- 2, ao Ck- 3’ CO dk- 2’ do , *, 7, ft.
Clearly, * u,. If Q(x) x4k- + k-20 qix’= U(x)/(*), then

Q(X)-- P2k-1 P2k-1 Ck-2 a a* +aa*
(x + a)

(15)
-[- P2k- Ck- 2 0*

-31- (X* 31- ’(Z

POLYNOMIAL WITH AUXILIARY FUNCTIONS 389

it is possible to obtain ai, i= 2k- 2,..., k, and 2ai + 2, i= k- 1,..., 0,
as some functions of e and of coefficients of Q such that degree (Q S) 2k 1,
where S P2k-l(P2k -’1" Ck- 1)(x "1- e) (Lemma 4).

Continuing to compare coefficients in both sides of (15) and using Lemma 5,
we obtain formulas for computing in terms of e and q2k-1,’’’, q,,k-3, q,k-2,
for ak-j-1, j= 1,2,...,k-1, in terms of e and q,k-2,’’’,q2k 1, and
therefore for k (k- 1/u,).

Comparing coefficients of xk- in (15), we obtain some polynomial equation
in e.

Indeed, from (15), we obtain qk- Sk- + (ak- -1- k- 1) -1- 1/Un, or

(16)

k-2

(ak-i-2 + eak-i-1)(ai + 1) + eao(ek-1 + O,k-1)
i=0

+ (ak- + k- 1) -31- 1/u, qk- O.

The left side of (16) is a polynomial in e; we denote it P(e). In order to prove the
solvability of P(e) 0, we have to show that P(e) is not identically a constant
(for each set of u,, q,k-1,’’’, %). (We work in the field of complex numbers,
which is algebraically closed.)

Let us write P(e) as a sum of two polynomials" the first is a polynomial in e
and q, :/: k, k- __< __< 4k- 1, and does not depend on qk; the second is a
polynomial in e and depends on qk. With Lemma 5, we conclude that qk does not
appear in ai, > 0; qk enters only in the computation of ao.

Now we write

k-3

P(e) (ak-i-2 + eak-i-1)(ai +
i=1

+ ao[2ak-2 + k-2 + (2ak-1 + Ok-1)] + O(ak-2 + eak_l)

+ eal(ak-2 + k-2) -t- "(ak_ + O’k-1) +
Ui,

We obtain P(e) R(e) qkU.(O,k-z a/u.), where R(e) does not depend on
Denoting b(e) k- 2 e/u,, and using the equation (10) for the coefficient ofx2J- 2,
j 1,2,..., k- 1, and the equation (11) for k- 1, and using (12) with

k, we obtain 4(e) g(e) e/(4u.) q4k-2/2, and l/u,, does not appear in g(e).
The coefficient of e in (e) is a polynomial in 1/u,. Since the coefficient of 1/u,,
is -1/4, therefore b(e)cannot be a constant for every set of u., q,k-2, "’", qo
(it contains at least a linear member as a polynomial in e). Therefore P(e) R(e)
-qkU.4)(e) cannot be a constant identically. So P(e) 0 almost always has some
solution.

Once e is fixed, we compute a2k_ 1, ao, Ck-3, CO, ,]) and e*.
Finally, equating the coefficients of xk- , j 2, 3, ..., k, on both sides of (15),

we obtain dk_ j.
[-]

LEMMA 6. There exists a scheme computing PEk-, Dk- and Ck_ 2 with 2k 3
multiplications (and 4k 3 a/s).

390 L. REVAH

Proof. We have two monic polynomials of odd degree, P2k-1 and either

Dk-1 or Ck-2, and one monic even-degree polynomial, either Ck-2 or Dk_ 1.

So we can use Theorem 5. 1
THEOREM 7. There exists a scheme computing almost every polynomial of degree

n 4k 1, k >= 4, with [(n + 1)/2] multiplications (and n + 5 a/s).
It is clear how we compute u(x). First we evaluate all the parameters (14)

such that (13) holds. Then we use Lemma 6 to evaluate Pek-1, D_ and C_ e
with 2k- 3 multiplications. We need 3 additional multiplications in order to
obtain u(x) by (13).

Example. Evaluation of a polynomial u(x)= 1o ux of degree 11 will
proceed as follows"

1. Preconditioning.
(i) compute parameters a4, a3, ae, a l, ao, t, e*, fl, Co, 7, d and do such

that the equality

u(x) [Ps(x + a) (P5 + x + Co)(X + a*) + fl] [P(x + a) + 7]

+ xe + dlx + do
holds, where Ps(x) x + =o aixi"

(ii) compute parameters ae, a l, fie, ill, flo (as rational functions of
a,, a, a, a l, ao, d l) satisfying the equality"

Ps(x) E(x2 + dlx + al)(x + rio) + fill(xe + dlx + a) + fie.
2. Evaluate xe + dlx x(x + d l) using one multiplication (and one

addition).
3. Compute Ps(x) using the equality in (ii) with 2 additional multiplications

(and 5 a/s).
4. Evaluate u(x) by the equality in (i) using 3 multiplications (and 9 a/s).

The total number of multiplications involved is 6 (and for a/s is 15).

4.2. Algorithm for n 4k 3, when 4 =< k is even. As for the preceding
scheme, the present one will be reducing. We use one monic even-degree poly-
nomial,

2k-3

x,2k- 2Pe- e + aix’,
i=0

and two odd-degree monic polynomials,
k-4

xk-3Ck- 3 -[- cx’ and
i=0

k-2

xk-1Dk- + 2 diXi"
i=0

THEOREM 8. For almost every polynomial u(x)= =o uixi, n 4k- 3,
k >_ 5, k even, there exist three monic polynomials P2k-2, Ck-3, Dk- and numbers, *, fl and 7, such that

(17)

u(x) [P2_2(x + a)- (P2k-2 -F Ck_ 3)(X -- 0(*) %-] [P2-2(x + a) + 7] +

Proof. The method of proof is similar to that of Theorem 6.

POLYNOMIAL WITH AUXILIARY FUNCTIONS 391

From Theorem 5, the proof of the following lemma is immediate.
LEMMA 7. There exists a scheme computing Pzk-2, Ok-1 and Ck_ 3 with

2k 4 multiplications (and 4k 5 a/s).
THEOREM 9. There exists a scheme computing almost every polynomial of

degree n 4k- 3, when k <= 4 is even, with [(n + 1)/2] multiplications (and
n + 5 a/s).

4.3. Algorithm for n 4k 3, k > 3 odd.
THEOREM 10. For almost every polynomial u(x)--’=o uixi, n--4k- 3,

k > 3 odd, there exists three monic polynomials

V2k-2 --X

2k-3 k-3

xk-22k- 2 + aixi Ck- 2 q- Z CiX"
i=0 i=0

k-5

xk-4Dk- 4 q- Z diXi’
i=o

and numbers , *, fl, 7, 6 and b such that

u(x) EPic_ (x +) (P,_ + fl)(x + *) + c,_] EPic- (x +) +]

"[- (Ck_ 2 + Dk_a)(X2 + ax + b) + Ck_ 2 1- (,

where a (a2k- 3 1)/(k 1).
LEMMA 8. There exists a scheme computing P2k-2, X2 + ax, Dk_ 4 and Ck_ 2

with 2k 5 multiplications (and 4k 7 a/s).
Proof. As in Theorem 5, we first compute P2k-2 by Motzkin’s method (4).

The first multiplication in this method is x2 + ax, where a (22k_ 3 1)/(k 1).
Then we use the scheme of Theorem 4 to compute odd-degree monic polynomials
Dk_ 4 and Ck_ 2 with first multiplication X2 -- ax.

THEOREM 11. There exists a scheme computing almost every polynomial of
degree n 4k- 3, when k > 3 is odd, with [(n + 1)/2] multiplications (and
n + 7 a/s).

4.4. Algorithm for n 9.
THEOREM 12. For almost every polynomial u(x)= /9=o uixi, there exist a

monic polynomial P4 and numbers , o*, fl, 7, and e such that

u(x) [n(x)(x +) (n(x) + I)(x + *) +] [n(x)(x +) +] + .
THEOREM 13. There exists a scheme computing almost every polynomial of

degree 9 with [(n + 1)/2 5 multiplications (and n + 3 a/s).
Proof. Compute P, by the two first multiplications of (4). This requires

2 multiplications of 5 a/s. Then compute u(x) by the identity of the Theorem 12.
Remarks. We have proved the existence of a scheme "for almost every"

polynomial u(x). "Almost every" was due to the fact that we succeeded in proving
the solvability of the polynomial equation P() 0 for almost every polynomial
u(x). However, we feel that the following conjecture is true.

Conjecture. Theorems 7, 9, 11 and 13 are true for all nth-degree polynomials,
when n is odd. Therefore, the corresponding algorithms can evaluate every
nth-degree general polynomial.

392 L. rtEVAH

We have seen in Theorems 6, 8 and 10 that in order to obtain the required
parameters, we have to solve P() 0. If there exists some real solution , then
the parameters are real for real coefficients ui. However, the algorithm ofTheorem 5
may involve complex parameters for real coefficients of P, C and D. Therefore,
the question, "Can the lower bound of [(n + 1)/2] for the number of m/d be
achieved over the field of real numbers?" remains open.

Acknowledgment. I would like to acknowledge the valuable guidance of
Professor S. Winograd of Technion-Israel Institute of Technology, my research
advisor, throughout the course of this master’s thesis research.

REFERENCES

[1] T. S. MOTZKIN, Evaluation ofpolynomials and evaluation of rationalJknctions, Bull. Amer. Math.
Soc., 61 (1955), p. 163.

[2] V. YA. PAN, Methods of computing values of polynomials, Russian Math. Surveys, 21 (1966),
pp. 106-136.

[3] D. E. KNUTH, The Art of Computer Programming, vol. 2, Addison-Wesley, Reading, Mass.,
pp. 422-444.

[4] M. O. RABIN AND S. WINOGRAD, Fast evaluation ofpolynomials by rational preparation, RC 4802,
IBM T. J. Watson Research Center, Yorktown Heights, N.Y., 1971.

[5] E. G. BELAGA, Evaluation of polynomials of one variable with preliminary processing of the co-

efficients, Problemy Kibernet., 5 (1961), pp. 7-15.

SIAM J. Corata-.
Vol. 4, No. 3, September 1975

AN ALGORITHM FOR DETERMINING WHETHER
THE CONNECTIVITY OF A GRAPH IS AT LEAST k*

SHIMON EVEN

Abstract. The algorithm presented in this paper is for testing whether the connectivity of a large
graph of n vertices is at least k. First the case of undirected graphs is discussed, and then it- is shown
that a variation of this algorithm works for directed graphs. The number of steps the algorithm requires,
in case k < x/, is bounded by O(kn3).

Key words, algorithm, connectivity, graph

1. Introduction. Let G be a finite undirected graph with n vertices and e edges.
We assume that G has no self-loops and no parallel edges. A set of vertices, S,
is called a separating set if there exists two vertices a, b S such that all paths
between a and b pass through at least one vertex of S. The connectivity, c, of G
is defined in the following way"

(i) if G is completely connected, then c n 1,
(ii) if G is not completely connected, then c is the least number of vertices in

a separating set.
Menger’s theorem [1] states that if the connectivity of G is c, then for every two
vertices a and b there exist c vertex-disjoint paths connecting a and b;2 and
conversely, if for every two vertices a and b there exist c vertex,disjoint connecting
paths, then the connectivity of G is at least c. Dantzig and Fulkerson [2] introduced
the relation between connectivity and network flow. Thus the Ford and Fulkerson
[3] algorithm can be used to determine the connectivity of a graph. In fact, the
max-flow min-cut theorem (and algorithm) immediately translates to the following"
the maximum number of vertex-disjoint paths connecting vertices a and b is equal
to the minimum cardinality separating set between a and b, in case there is no edge
between a and b; otherwise the number of paths is one more than the minimum
cardinality of a set separating a from b after the edge between them has been
deleted.

Thus one can find the connectivity of a graph in the following way" for each
pair of vertices, find the maximum number of vertex-disjoint paths. The minimum
value over all pairs is the connectivity.

For each pair of vertices, we construct a flow network whose number of
vertices is 2n and the number of edges is 2e + n. The capacities are all one. 3

Each labeling and augmenting path realization costs O(e) steps, and it corresponds
to one path between the two vertices. Since the connectivity can be as high as
n 1, the whole procedure for finding the maximum number of vertex-disjoint
paths connecting this pair of vertices is at most of cost O(ne), or O(n3) if O(e) O(n2).

Received by the editors September 12, 1973, and in revised form August 7, 1974.

"f Department of Computer Science, Technion-Israel Institute of Technology, Haifa, Israel. On
leave of absence from Weizmann Institute of Science, Rehovot, Israel.

Each pair of vertices is connected by an edge. In this case, G has no separating sets.
Clearly, the vertices a and b are shared by all c paths, but no other vertex, and therefore no edge,

is shared.
For more details, see, for example, [4, p. 226]. There, some of the capacities are infinite and some

are unit. Changing them all to one unit does not change anything.
393

394 SHIMON EVEN

Repeating this for all pairs will cost, then, at most O(nS). Recently, Even and
Tarjan [5 have reduced these to O(n2"5) and O(n4"), respectively.

Assume now that we are not interested in the connectivity itself, but rather
would like to check whether the connectivity is at least k, where k is much smaller
than n. It is natural to investigate the question of whether we can find an algorithm
which requires less than O(n’’s) steps.

Kleitman [6] has shown a method which takes at most O(kZn3) steps. In 2
I shall present a method, an improvement of Kleitman’s technique, which takes
at most O(kn + k3g/2) steps. Directed graphs are discussed in 3.

It is proper to comment here that the case of k is trivially solvable in
O(e) steps. The case k 2 was solved in O(e) steps by Hopcroft and Tarjan [7],
who proceeded to solve the case k 3 in O(e) steps, too [8]. Their methods are
different from the ones described above. They use the powerful technique of
depth-first search (which was already known in the 19th century as a maze threading
technique. See, for example, Lucas’ [9] report of Tr6maux’s work). I do not
believe that their methods will extend for higher k’s.

2. The algorithm for undirected graphs. Let G be an undirected graph with n
vertices and e edges. Let L {v l, v2, "", v} be a set of vertices of G and u be
a vertex of G not in L. Let k be a positive integer such that k <_ I.

Let us add to G a new vertex a and connect it by an edge to each of the vertices
in L. The new graph, (, will be called the augmented graph.

LEMMA 1. If in G each vertex vi (1 <= <= 1) can be connected to u via k vertex-
disjoint paths, then in J there are k vertex-disjoint paths between a and u.

Proof. Assume not. Then there is a separating set S, iS[< k, such that all
paths from u to a pass through at least one vertex of S. Consider the set of vertices,
U, such that, as for u, all the paths from them to a pass through at least one vertex
of S. None of the vertices in L can be in U, since each vertex of L is connected by
an edge to a. Thus there exists a vertex v in L which is not in U and not in S.
Every path from u to v must pass through at least one vertex of S. Thus there
cannot be k vertex-disjoint paths between u and v, a contradiction. Q.E.D.

Assume the set of G’s vertices is { 1, 2,..., n}. Let j be the least vertex such
that for some < j there are no k vertex-disjoint paths connecting and j in G.

LEMMA 2. Let j be as defined above and J be the augmented graph where L
1, 2,..., j }. There are no k vertex-disjoint paths connecting a and j in .
Proof. Consider a minimum separating set S, such that all paths between

and j pass through at least one vertex of S. It follows that]S[< k. Let U be the
set of all vertices such that all paths from them to must pass through at least
one vertex of S. Clearly, j e U. If a vertex j’ < j is in U, then there are no k vertex-
disjoint paths from j’ to i, and jth choice was erroneous. Thus j is the least
vertex in U, or L [’l U . Namely, all paths from j to vertices in L must pass
through, or end in, a vertex in S. It follows that in (there are no k vertex-disjoint
paths between a and j. Q.E.D.

We are now ready for the algorithm for determining whether the connectivity
of G is at least k.

ALGORITHM 1.
1. For every and j such that < j _< k, check whether there are k

CONNECTIVITY OF A GRAPH 395

vertex-disjoint paths between them. If for some and j the test fails, then
G’s connectivity is less than k.

2. For every j, k + __< j < n, form’ (and check whether there are k vertex-
disjoint paths between a and j. If for some j the test fails, then G’s connec-
tivity is less than k.

3. The connectivity of G is at least k.
The proof of validity of this algorithm is as follows" if G’s connectivity is at

least k, then by Lemma 1, step 2 will detect no failure, and the algorithm will halt
with the correct answer. If G’s connectivity is less than k, then by Lemma 2,
failure will occur, and again the algorithm will halt with the correct answer.

Step of the algorithm requires at most O(k3 e) elementary steps, and step 2
requires at most O(k.n.e). Thus the whole algorithm requires at most
O(k3. e + k. n. e) steps. Since O(e) =< n2, the number of steps is bounded by
O(k3" Fl2 + k./,/3). For k < /-, O(k. n3) is an upper bound.

The algorithm is an improvement of Kleitman’s algorithm [6], which may
require O(k2. n3) steps. The saving is achieved by the addition of the vertex a
and checking its connectivity to every vertex j (in t) instead of repeating this
test for k different vertices.

3. The algorithm for directed graphs. Let G be a directed graph whose set of
vertices is {1, 2,..., n} and with e edges. An (i, j)-separating set, S, is a set of
vertices such that every directed path from to j passes through at least one vertex
in S. The connectivity of G is defined as follows"

(i) if the graph is completely connected (namely, e n(n 1)), then c n 1,
(ii) if the graph is not completely connected, then c is the least cardinality of

a separating set.
Menger’s theorem holds in this case, too, and the network flow technique

applies. The straightforward technique of checking if there are k vertex-disjoint
directed paths between every ordered pair of vertices takes at most O(kn4) steps.

Let G be an augmented graph constructed for j as follows" add a new vertex
a to the graph and connect a by an edge to each of the vertices in L { 1, 2, ...,
j }. Similarly, is constructed by adding a new vertex a and edges from each
of the vertices in L to a. Assume now that j > k.

LEMMA 3. If in G each L can be connected to j via k vertex-disjoint directed
paths, then in G there are k vertex-disjoint directed paths from a to j.

The proof of this Lemma and the following one is analogous to that of
Lemma 1.

LEMMA 4. If, in G, j can be connected to each L via k vertex-disjoint directed
paths, then in , there are k vertex-disjoint directed paths from j to a.

Let j be the least vertex such that for some < j either there are no k vertex-
disjoint directed paths from to j or there are no k vertex-disjoint directed paths
from j to i.

LEMMA 5. Assume j is as defined and that there are no k vertex-disjoint directed
paths from to j (from j to i). There are no k vertex-disjoint paths from a to j in G
(from j to a in G).

The proof is analogous to that of Lemma 2.

Clearly, L {1,2, ,j 1}.

396 SHIMON EVEN

ALGORITHM 2.
1. For every and j such that __< < j =< k, check whether there are k

vertex-disjoint directed paths from to j and also if there are k such paths
from j to i. If one of these tests fails, then G’s connectivity is less than k.

2. For every j, k + =< j =< n, form G and check whether there are k vertex-
disjoint directed paths from a to j; also form and check whether there
are k such paths from j to a. If for some j one of these tests fails, then G’s
connectivity is less than k.

3. The connectivity of G is at least k.
The proof of validity is similar to that of Algorithm 1. Again, step takes

at most O(k3n2) and step 2, O(kn3). If k < x//-, then the whole algorithm takes
at most O(kn3) steps.

Acknowledgment. This work was done while the author was with the Depart-
ment of Computer Science, Cornell University, during the summer of 1973.
It is a revision of Report TR-73-184 of the Department of Computer Science,
Cornell University, Ithaca, New York, 1973.

REFERENCES

[1] K. MENGER, Zur allgemeinen Kurventheorie, Fund. Math., 10 (1927), pp. 96-115.
[2] G. B. DANTZIG AND D. R. FULKERSON, On the max-flow rain-cut theorem of networks, Linear

Inequalities and Related Systems, Annals of Math. Study, no. 38, Princeton University Press,
Princeton, N.J., 1956, pp. 215-221.

[3] L. R. FORD AND D. R. FULKERSON, Flows in Networks, Princeton University Press, Princeton,
N.J., 1962.

[4] S. EVEN, Algorithmic Combinatorics, Macmillan, New York, 1973.
[5] S. EVEN AND R. E. TARJAN, Network flow and testing graph connectivity, this Journal, to appear.
[6] D. J. KLEITMAN, Methods./br investigating connectivity oflarge graphs, IEEE Trans. Circuit Theory,

CT-16 (1969), pp. 232-233.
[7] J. HOPCROFT AND R. TARJAN, Algorithm 447; Efficient algorithms.[br graph manipulation, Comm.

ACM, 16 (1973), pp. 372-378.
[8] Dividing a graph into triconnected components, this Journal, 2 (1973), pp. 135-158.
[9] E. LUCAS, Rcreations Mathmatiques, Paris, 1882.

SIAM J. CoMPua’.
Vol. 4, No. 4, December 1975

COMPLEXITY RESULTS FOR MULTIPROCESSOR
SCHEDULING UNDER RESOURCE CONSTRAINTS*

M. R. GAREY AND D. S. JOHNSONJ"

Abstract. We examine the computational complexity of scheduling problems associated with a
certain abstract model of a multiprocessing system. The essential elements of the model are afinite
number of identical processors, a finite set of tasks to be executed, a partial order constraining the
sequence in which tasks may be executed, a finite set of limited resources, and, for each task, the time
required for its execution and the amountx)feach resource which it requires. We focus on the complexity
of algorithms for determining a schedule which satisfies the partial order and resource usage constraints
and which completes all required processing before a given fixed deadline. For certain special cases,
it is possible to give such a scheduling algorithm which runs in low order polynomial time. However,
the main results of this paper imply that almost all cases of this scheduling problem, even with only one
resource, are NP-complete and hence are as difficult as the notorious traveling salesman problem.

Key words, complexity of algorithms, NP-complete problems, scheduling theory

1. Introduction. In recent years, there has been considerable interest in
scheduling problems associated with a certain abstract model of a multiprocessing
system (see [6] for a survey). Much effort has been directed toward obtaining
,efficient algorithms for scheduling a given set of tasks to achieve the least possible
finishing time. In a number of important special cases [7], [4], [9], [1], such
efficient optimization algorithms have been obtained. In contrast, Ullman [10]
has shown that certain other cases belong to the class of NP-complete problems,
which is tantamount to proving that they are computationally intractable. In this
paper, we consider the augmented multiprocessing model of [5], which allows for
the possibility that certain tasks may require the use of various limited resources
during their execution, and examine how such constraints affect the computational
complexity of the associated scheduling problems.

We first describe the augmented multiprocessing model. Its three main
components are processors, resources and tasks. The processors are all identical,
each able to execute at most one task at a time, and there are at most a finite
number of them. The set {R 1, R2, ’’’, Rr} of resources is also finite and,
for each resource R, there is a bound B which gives the total amount of that
resource available at any given time. The tasks form a third finite set- T1, T2 ..., Tin}, the elements of which are to be executed by the processors
subject to a number of constraints.

First, associated with each task T is a positive task time z which is the time
required for execution of T. If a processor begins executing T at time t, it will
complete the execution of T at time + z, and until then can execute no other
tasks.

Second, - is partially ordered by a binary relation -< which must be respected
in the execution of - as follows: if T-< T, then the execution of T must be
completed before the execution of T can begin. It is frequently convenient to
describe the partial order by a directed graph G with node set - and a directed
edge (T, T) if and only if T -< T.

* Received by the editors July 30, 1974.

? Bell Laboratories, Murray Hill, New Jersey 07974.

397

398 M.R. GAREY AND D. S. JOHNSON

Finally, for each resource Rj and task T, there is a nonnegative resource
requirement Rj(T) _< Bj which is the amount of resource R required by T at all
times during its execution. The execution of tasks is constrained by the require-
ment that no subset of tasks can be executed simultaneously if the sum of their
requirements for any resource R exceeds B, the total amount of that resource
available.

For the purposes of this paper, we shall assume that all zi, B and Rj(T) are
integers. This entails no loss of generality for the type of results we present, since
it is equivalent to permitting arbitrary rational values.

A particular input for the general scheduling problem consists of the following
information" a number n of processors a set {R 1, RE, R,I of resources,
together with a bound Bj for each R; a set -= {T1, T2,..., Tin} of tasks,
together with a partial order -< on - and, for each T, a corresponding task
time zi and resource requirements R I(T) through R,(T); a positive integer
deadline D.

A function f"- {0, 1, 2,..., D 1} is a valid schedule for such an input
if it obeys the following four conditions"

(i) for each T e ,, f(T) + z =< D;
(ii) for each T, T e ,, if T -< T, then f(T/) + zi =< f(T);
(iii) for each iriteger t, 0 =< < D, the set

E(t) {T/ ’-:f(T) __< < f(T/) +
satisfies Igf(t)l n, and

(iv) for each integer t, 0 __< < D, and each j, __< j __< r,

R(T) __< B.
TiEf(t)

The set Er(t defined in (iii) is called the set of tasks being executed at time under
schedule f.

Some additional terminology will be useful to describe certain special
properties which may be satisfied by inputs. The partial order -< is said to be a
forest if whenever T -< Tk and T -< Tk, we have either T -< T or T -< T. An input
will be said to have the saturated processor property if m__ n" D. Any valid
schedule f for an input with this property must have IEy(t)l n for each integer t,
0 _<_ < D, i.e., no processor can be idle until the deadline D is reached. An input
has a saturated resource Rj if im= "ciRj(Ti) D.Bj. Any valid schedule f for an
input with resource R saturated must satisfy T,Es,) Rj(T) Bj for each integer t,
0 __< < D, i.e., the full amount of resource Rj must be in continued use until
the deadline D is reached. We shall be dealing mainly with inputs for which all
r l, in which case the saturated processor property can be written I--I n. D,
and resource Rj will be saturated if a- Rj(T) D.Bj.

In this paper we shall be concerned with algorithms which, given any input I,
are capable of answering the question, "Does there exist a valid schedule for I?".
Notice that we phrase the question in such a way that the answer is always "yes"
or "no". Such phrasing is convenient to use in proving computational complexity
results and will not seriously limit the applicability of the results. The related
problems of actually generating a valid schedule for a given input or (treating

COMPLEXITY RESULTS FOR SCHEDULING 399

the deadline D as a variable) generating a valid schedule which achieves the
minimum possible deadline D have computational complexity within a polynomial
of that for the simple existence problem.

In particular, we shall be concerned with algorithms which apply only to
certain restricted classes of possible inputs. It will be convenient to denote such a
subproblem by MS[tpl, q)2,’", (Jgk], which represents the subproblem having
input domain restricted to only those inputs satisfying all of the constraints (Px
through (Pk. For instance, MS[n __< 2, each z 1] has input domain consisting
only of those inputs with at most two processors and all task times equal to one.
Occasionally we may include a vacuous restriction for emphasis. The subproblem
MS[n =< 2, each z 1, r arbitrary] is identical with the above but may be specified
this way when compared to MS[n __< 2, each zi l, r k] for some fixed k.

For a variety of subproblems, we will either give an algorithm for the sub-
problem which operates in time bounded by a polynomial in the length of the
input or prove that the subproblem belongs to the class of "NP-complete"
problems. There is a significant difference between these two possibilities, since,
as a result of work by Cook [2] and Karp [8], it is widely believed that both
possibilities cannot hold for the same problem. This belief is motivated by the
knowledge that either all or none of the NP-complete problems can be solved
with polynomial-time algorithms, along with the fact that this class contains
a number of extensively studied problems, such as set covering and the "traveling
salesman" problem, for which no such algorithm has ever been found. The reader
who is unfamiliar with the terminology related to NP-complete problems, or who
would like his belief in their intractability reinforced, is referred to [2] and [8] for a
complete discussion. (Note that the term "NP-complete" is synonymous with
"polynomial complete".) For the purposes of this paper, we shall use the following
informal definitions.

A problem P (9, g) consists of an input domain ! and a property re. An
algorithm for P (9, g) is an algorithm which for any input I e determines
whether or not property rc holds for I (briefly, whether or not c(l) holds). Observe
that we have described the general scheduling problem and its subproblems in
this format, all having the same property g "there exists a valid schedule for
input I".

For any two problems P (9, r) and P’= (’, r’), we say that P is poly-
nomially reducible to P’ if there exists a total function g: --, 9’ such that (i) g can
be performed in polynomial time by a deterministic Turing machine, and (ii) for
any I e 9, g(I) holds if and only if g’(g(I)) holds. If P is polynomially reducible
to P’, we write P P’.

The class of problems NP consists of all problems which can be solved with
a polynomial-time-bounded nondeterministic Turing machine. A problem P
is said to be NP-complete if both P e NP and, for every P’e NP, P’ oc P. An
immediate consequence of the transitivity of the reducibility relation oc is that,
in order to prove P e NP is NP-complete, one need only exhibit a known NP-
complete problem P’ such that P’ oc P. This is the method that will be used in
our proofs, where we leave to the reader the trivial observation that P e NP and
the straightforward verification that the mapping g can be executed in polynomial
time.

400 M. R. GAREY AND D. S. JOHNSON

We now briefly outline the contents of the paper. In 2 we examine sub-
problems with n 2 processors and show that MS[n 2, r 1, -< a forest, each
zi 1] is NP-complete, while a polynomial time algorithm can be given for
MS[n 2, r arbitrary, -< empty, each zi 1]. In 3, we examine subproblems
with n _> 3 and derive, by a series of reductions, the NP-completeness of MS[n 3,
r I, -< empty, each z 1]. In the final section, we discuss a number of different
senses in which these results are "’best possible" and state some additional results
and open problems.

2. Two-processor subproblems. In this section we discuss special cases of
the general scheduling problem for which the number of processors is restricted
to n 2. Quite a bit is known about such subproblems when the set of resources is
required to be empty. For example, the following two subproblems are NP-
complete 10]

MS[n 2, r 0, -< empty, z arbitrary integers];

MS[n 2, r O, -< arbitrary, each ri e {1,2}].
On the other hand, [4], [9] and [1] give polynomial time algorithms for MS[n 2,
r 0, -< arbitrary, each r 1]. We shall focus on subproblems for which r > 0.

We first observe that a polynomial-time scheduling algorithm can be given
for the case MS[n 2, r arbitrary, -< empty, each ri 1]. Given any input for
this subproblem, one can construct an m-node graph G, having each node labeled
by a distinct task, with an edge joining T to T if and only if

Rk(T) + Rk(T;) <_ Bk

for all k, < k =< r. Thus tasks T and Tj can be executed at the same time if and
only if there is an edge joining the corresponding nodes. One then applies the
maximal matching algorithm of Edmonds [3] to obtain a maximal cardinality set
E of edges from G such that no two edges share a common endpoint. It is not
difficult to see that a valid schedule exists for this input if and only if D >= m IEI.
Since we can construct G in time proportional to r. m2. log (maxj Bj) and since
Edmonds’ matching algorithm requires only time polynomial in the number m
of graph nodes, the entire algorithm just described runs in polynomial time.

We now show, however, that if we widen the class of inputs slightly by
permitting the partial order -< to be nonempty but no more complex than a
forest, then the resulting subproblem is NP-complete, even if restricted to r 1.
This problem will be shown to be NP-complete by reducing the following NP-
complete problem to it.

NODE COVER [83.
Input" Graph G (N, A), positive integer k.
Property" There exists a node cover of size k for G, i.e., a subset S of the

set N of nodes, with ISI k, such that S contains at least one
endpoint from every edge in A.

THEOREM 2.1. NODE COVER oc MS[n 2, r 1, -< a forest, each zi 1].
Proof. Given a graph G (N, A) and a positive integer k, we construct a

corresponding scheduling input I as follows" Let N-- {N, N2, "", N} and

COMPLEXITY RESULTS FOR SCHEDULING 401

A {A 1’ A2,
n=2,

Aq}, where p IN[and q [AI. The input I is specified by- {T’I <_ =< p + 2q} 1,3 {V’I =< _<_ p} U {E,, 7,’1 =< _<_ q};

all task times equal partial order is defined by

T-<T+ 1, <=i<p+2q;

Vi-.< E

Vi-< Et
single resource R1

whenever A {Ni, Nj} e A and j > i;

whenever A {Ni, Nj} eA and j < i;

with bound B 2q;

R(T)=q, <=iNk or q+k<i<=p+q;

R(T+i) R(Tp+q+)= q + i, <= q;

RI(V) q, <__ <= p;

Rt(E) R(E)= q- i, <= q"

deadline D p + 2q.
It is easy to verify that input I is in the required domain. Furthermore,

observe that it satisfies the saturated processor property and that R is a saturated
resource.

Intuitively, the V tasks represent the nodes of G, and the E and E tasks
represent the arcs, with the pair E and E both representing arc Al, one for each
endpoint. The T tasks form a chain designed to be a backbone for the entire
schedule, since in order to achieve the deadline these must be executed in sequence,
with each task T executed starting at time i- 1. Thus during each time unit
there will be a T task and one other task. Because of the saturated resource
property, the resource requirement of each task T puts strict limits on the possibil-
ities for the concurrently executed task. Thus a pattern is imposed on any valid
schedule. The first k time units must all be filled with node tasks, and the next
q time units must be filled with arc tasks, one from each pair {E, E}. Because of
the precedence constraints, neither E nor E can occur in this section unless a
node task representing one of the endpoints of arc A is present in the first section.
Thus we can have a valid schedule if and only if the k node tasks in the first section
form the desired node cover.

With this intuition, we now prove that G has a node cover S with ISI k
if and only if there exists a valid schedule for 1.

First, suppose S {s, s2, "", Sk} is a node cover for G, and let U N S
{u, u2,’", Up-k}. Then consider the function f, defined below"

f(T)= i- 1, __<i__<p+2q;

f(Vi)= i- ifNj=sieS;

f(V)= q + k+ i- ifNj= uieg;

f(E) k+ l- and f(Et) p + q+ l-

ifAt= {Ni, N},i<j, andNi=sheS;

402 M. R. GAREY AND D. S. JOHNSON

f(El) p+ q + l-- and f(El)= k+ l-

if A {Ni, Nj}, < j, and Ni Uh U.

One can easily check that f is a valid schedule for the input I.
Conversely, suppose we are given a valid schedule f for I. Observe first that,

due to the partial order constraints and deadline D- p + 2q, we must have
f(T) for < =< p + 2q. Thus the tasks of this type form a backbone
for the schedule, and, due to the saturated resource R1, each of the remaining
tasks can be executed only at certain times. To be specific, we must have

(2.1a) {f(Vj)" =< j __< p} {t’0 __< =< k} U {t’q + k <= < q + p}

and, forl __<l__<q,

(2.1b) {f(Et),f(/)} {k + l- 1, p + q + l- 1}.
We claim that S {Ni:f(V) < k} forms a node cover of size k for G. By (2.1a)

and the saturated processor property, we immediately have IS[k. Consider any
edge A= {N,Nj}eA, where i<j. By (2.1b), either f(E)= k+l-1 or

f(E) k +l- 1. In the first case, since V-< E and k +l- < q + k, we
must have f(V)< k and hence NeS. In the second case, since V-< E, we
similarly obtain Nj S. Thus in either case, we find that at least one endpoint
of A belongs to S. Since A, was an arbitrary edge from A, S must be a node cover.

Hence G has a node cover of size k if and only if the associated scheduling
input I has a valid schedule, and the theorem follows. [3

3. Three-processor sbproblems. In this section we turn to special cases of the
general scheduling problem for which the number n of processors is permitted to
be larger than 2. Again, subproblems for which the set of resources is required to be
empty have been studied previously. In [7] a polynomial-time algorithm is given
for MS[n arbitrary, r 0, -< a forest, each z 1]. In contrast, Ullman [10] has
shown that MS[n arbitrary, r 0, -< arbitrary, each r 1] is NP-complete.
However, it is not known whether there is any fixed k for which MS[n __< k, r 0,
-< arbitrary, each z 1] is NP-complete.

The principal result of this section is that if we substitute a single resource for
the arbitrary partial order in the last problem above, requiring -< to be empty,
it then is NP-complete for k as small as 3. Specifically, we show that MS[n 3,
r 1, -< empty, each z 1] is NP-complete.

We arrive at this result via a series of lemmas about scheduling problems
obeying the further restriction that all inputs have the saturated processor property
and all their resources saturated. For convenience, we use the abbreviation
P[k, j] for MS[n k, r j, -< empty, each -c 1, saturated processors, all
resources saturated]. Since the domain for P[3, 1] is a subset of the domain for
MS[n 3, r 1, -< empty, each r 1], it will suffice to show that P[3, 1] is
NP-complete.

Our first lemma is as follows.
LEMMA 3.1. For all integers k >__ 1, j >__ 2, P[k, j] oc P[k, 1].
Proof. We actually show P[k, j] oc P[k, j- 1]. The result then follows by

induction from the transitivity of . Let I be an input for P[k, j], with tasks T,

COMPLEXITY RESULTS FOR SCHEDULING 403

m, resources Rl, <= -< j, bounds B, =< j, and deadline D. (We
omit reference to those items in the input which must be the same for all inputs
to the problem under consideration, such as -< empty, each zi 1, and n k.)
The corresponding input I’ for P[k, j 1] will have

-’= {T;’I _< i=<m};

’= {R;’I <__ l__<j- 1};

B’ Bl, 2 <= <= j- 1

B’ B + B;(kB + 1)"

R’I(T’,) Ul(Ti) 2 <= <= j- 1, l<=i<=m"

R’I(T;) R,(T) + (k. B + 1). R(T), m"

and deadline D’ D.
Intuitively, this merely encodes resources R and R into the single resource

R’I. The multiplier (kB + 1) on R used in this encoding is chosen to be large
enough so that, for any k or fewer tasks which might be executed simultaneously,
their total usage of resource R’ uniquely determines the corresponding usage of
both R and R. This causes any valid schedule for I’ to be, in effect, a simulation
of a valid schedule for I.

Observe first that since I has the saturated processor property, lY-’I -I-I
and D’ D, it follows that I’ also has the saturated processor property. Similarly,
we can see that Rz through Rj_ are saturated in I because the corresponding
resources are saturated in I. Finally observe that for R’I. R’(T’)= (R,(T) + (k.B, + 1).Rj(T))

i=1 i=1

=D.B + (k.B + 1).D.Bj= D’.B’
since R and Rj are saturated in I. Thus R’ is saturated in I’ and I’ is in the input
domain for P[k, j 1].

To complete the proof, we must show that I’ has a valid schedule if and only if
! does. Suppose f is such a schedule for I. Define f’ by f’(T’i) f(T/). Clearly f’
has the proper domain and range and obeys all requirements of the definition of
valid schedule, except possibly condition (iv) for R’, since f is a valid schedule
for I. Since R1 and Rj are saturated for I, we have for all t, 0 __< =< D 1,

R’,(T’,) E (Rl(T/) q- (k. B -i- 1)-R)(T))
TEf,(t) Ti Ef(t)

B + (k.B + 1)-B; B’,,

where we recall that E.(t) {Te -’f(T) t}. Thus (iv) is satisfied for R’I also
and f’ is a valid schedule for I’.

Conversely, suppose f’ is a valid schedule for I’ and define fby f(T/) f’(T’i).
The only way f could fail to be a valid schedule for I would be for resource con-
straint (iv) to be violated for R or R). We show this to be impossible.

404 M. R. GAREY AND D. S. JOHNSON

Since R’ is saturated for I’ and f’ is a valid schedule, we know that for all t,

O<=t<=D- 1,

(R,(T)+ (k.B + 1).Rj(T))= B, + (k.B, + 1).Bj.
Ti Ef(t)

If for any we had ETieEf(t) Rj(Ti) > Bj, then since Bj and all the Rj(Ti) are integers,
we would have

R,(T)<= B, + (k.B, + 1).Bj- (k.B, + 1).(B)+ l)
TiEf(t)

-<_B1- k. B1- <0,

which is impossible since all resource requirements are nonnegative. Similarly, if

T,f(t) Rj(T/) < Bj, we would have

R,(T,)>_ B, + (k.B "3t- 1).Bj- (k.B, + 1).(Bj- l)
TEf(t)

>- B + k. B + > k. B,
which is impossible since each R(T/) __< B and]Ey(t)l-- k. Thus we must have

T.f,)R)(T/) B)for all t, 0 =<t<_ D- 1, which in turn implies that

r’,f, R (T) B for all required t. That is, neither resource constraint can be
violated, and f is a valid schedule.

Thus I’ has a valid schedule if and only if I does, and the desired reduction
has been demonstrated. 7]

LEMMA 3.2. For any integer k >= 1, P[k, 1] P[k + 1, 1].
Proof. Suppose I is an input for P[k, 1] with tasks T, _< =< m, resource

R with bound B, and deadline D. The corresponding input I’ for P[k + 1, 1]
will have

’= {T’,’I <=i <= m} [J {S,’I <= <- D};

’ {R’I} B’, 3. B,

R’I(T;) R(T), <- _<_ m;

R’(S) 2. B, <= <_ D;

and deadline D’ D.
The basic idea here is that the resource requirements of the Si-tasks insure

that no two of them can be executed simultaneously. Since there are D such tasks,
any valid schedule must execute exactly one of them during each time unit,
which has the effect of using up the extra processor.

The reader may verify easily that I’ has the saturated processor property and
saturated resource R’ and hence is in the input domain for P[k + 1, 1]. It is also
easy to see that if f is a valid schedule for I, then f’ defined by

f’(T’i) f(T), < m;

f’(S,) i- 1, -< =< D,

is a valid schedule for I’.

COMPLEXITY RESULTS FOR SCHEDULING 405

Conversely, suppose that f’ is any valid schedule for I’ and define f:-
{0, 1, ..., D 1} by f(T) f’(T’i). We shall show that f is a valid schedule

for I.
Clearly f has the proper domain and range and obeys properties (i) and (ii)

of the definition of valid schedule. For (iii) and (iv), we first observe that each
Es,(t), 0 <__ _<_ D 1, contains exactly one Si task since R’(Si) > 5B and there
are D such tasks. Thus

IEs(t)[IE,(t) T’,’I <= <= m}l k + k,

and property (iii) is satisfied. Furthermore, since R’ is saturated in I’, we have
for eacht, O=<t=<D- l,

R(T)= B’ 2B a,
TiEf(t)

so f also satisfies (iv) and hence is a valid schedule for I.
Thus I’ has a valid schedule if and only if I does and the desired reduction

has been demonstrated.
LEMMA 3.3. For each integer k >= 2, P[2k, 1] c P[k + 1, 1].
Proof. We actually show that P[2k, 1] c P[k + 1, 2], and the desired result

follows from that by an application of Lemma 3.1. Let I be an input for P[2k, 1]
with tasks T, =< =< m, resource R with bound B, and deadline D. Our con-
struction of the corresponding input I’ for P[k + 1, 2] is somewhat more compli-
cated than the preceding constructions. Define

s’= {A
_

{1,2, m} "lAl k and
jA

R(T) <= B}
with M I11. (Observe that M =< m.) In addition, let

T= {T’" _< =< m};
F= {F,j’I <=i<=M-D, <=j<=k- 1};
U-- {UA’A}; V= {VA’AI}.

The input I’ for P[k + 1, 2] corresponding to I has

-’=TUFUUUV;

B’ B Bz 2k;

R’(T’)= R(T) and Rz(T’i)=

R’,(F,,j) R’2(F,d 0

R’(Ua) R,(T) and R’(VA)= B,-
jA

R’2(U) R’2(V) k

and deadline D’= M + D.

R’(UA)

for T’ 6 T;

for Fi,i F;

for A;

for A ’;

406 M. R/. GAREY AND D. S. JOHNSON

Before embarking on the formal proof, a few intuitive comments concerning
the correspondence between valid schedules for I and I’ may be helpful. We want
single time units in the 2k processor case to correspond to pairs of time units in
the k + processor case, with each set of 2k concurrently executed tasks in the
one case partitioned into two sets of k concurrently executed tasks in the other.
We need the (k + 1)st processor and the UA and VA tasks to insure that this happens
in the right way. The resource requirements for UA and VA are designed so that
essentially only one of two things can happen: either UA and Vm are executed
together, with "filler" tasks from F occupying the remaining k- processors,
or else UA and VA are executed at different times, each together with a set of k
T’ tasks, such that the two corresponding sets of T tasks could all be executed
concurrently in the 2k processor case.

We first observe that m 2kD since I has the saturated processor property,
which implies

I-’1 2kD + (M D)(k 1) + 2M -(M + D)(k + 1).

Thus I’ has the saturated processor property. (The tasks in F are essentially
"filler" to make this the case.) The reader may verify similarly that resources

R’I and Rz are saturated, showing that I’ indeed belongs to the input domain
for P[k + 1, 2].

Suppose now that f is a valid schedule for I. Since I has the saturated processor
property, we have IEy(t)l 2k for each t, 0 =< =< n 1. Define

X(t) [i Ey(t)’l{1,2,..., i} f’l Ej.(t)l _-< k}

and
Y(t) Ef(t)- X(t)

for 0 <= <= D 1. Then Ix(t)l- Y(t)l-- k, X(t) (_J Y(t)-- Ej.(t), and both X(t)
and Y(t) belong to s/’. Let S sO’ {X(t)’0 =< _< D and label the elements
of S as At, A2,..., At_ o. We now are prepared to define the schedule f"-
{0,1,2,...,M + D- 1}. For each t, 0__< t__<D- 1, set

f’(Vxt) f’(T’i) 2t for X(t)"

f’(Ux,)) f’(T’) 2t +
To complete the definition of f’, set

for Y(t).

f’(Ua,)= f’(Va,)= f’(F,j) 2D-1 + for __<j=< k-1,

for each A S, =< _< M D. It is not difficult to check that f’ satisfies all the
properties required for a valid schedule.

Now suppose f’ is a valid schedule for I’. Define W U U V, and for each
integer/>__ 0 define

H(f’) {t’0 __< < M + D and IEj,(t) fl Wl i}.
Thus Hi(f’) is the set of integer times at which exactly tasks from W are being
executed under f’. Since Bz 2k and each w e W has R’2(w) k, we know that
H(f’) must be empty for > 2. Furthermore, since each task not in W requires
at most unit of Rz and R is saturated in I’, we must also have Ho(f’ q).

COMPLEXITY RESULTS FOR SCHEDULING 407

Thus IHl(f’)l + IH2(f’)l M + D, and, since WI 2M, it follows that [Hl(f’)[
2D and In2(f’)l- M D.
Also, for any H2(f’), we know that Ey,(t) f) T q9 because the two tasks

from W already use up the full amount ofR. Thus each T’ satisfies f’(T’i) H (f’)
and, by the saturated processor property, each Fi, must satisfy f’(Fi,j) H2(f’).

Define

MATCH(f’) {t e Hz(f’)" :1A e ’ such that {UA, VA} -- Ey,(t)}.
Without loss of generality, we may assume that f’ satisfies

MATCH(f’)I >= MATCH(f")I

for every valid schedule f" for I’. We claim that this implies that MATCH(f’)
H2(f’). For, suppose there were a o e H2(f’) such that o MATCH(f’). Let

W and W2 be members of W belonging to Ec,(to). Let W3 be such that W2, W3}
UA, VA} for some A e , and let t’ f’(W3). Notice that this and the saturated

resource property imply that

R’,(W3)-- B,- R’,(W2)= R’,(W,).

Then the function f", which is identical to f’ except that f"(W3) o and f"(W)
t’, is a valid schedule for I’ with

MATCH(f")I > MATCH(f’)I,

contradicting the choice of f’. Therefore we may assume MATCH(f’) Hz(f’).
Since MATCH(f’)= He(f’), it immediately follows that for every A 1,

f’(UA) H(f’) if and only if f’(VA) H (f’). Accordingly, let

S {A 1 "f’(Ua) n,(f’)},
and sequence the members of S as S, Sz,..., SD. We now can define a valid
schedule f for I by

Ey(t 1) {T -"f’(r’) {f’(Us,),f’(Vs,)}
for eacht, =< =< D.

The function f is a total function from 3-- to {0, 1,2,..., D- l} since
f’(T’i)

_
H (f’) for all T’

_
T. Thus f trivially satisfies properties (i) and (ii) required

of a valid schedule. Moreover, IEy(t)l 2k for 0 =< =< D- since, for each
H(f’), IEy,(t) TI k. Thus f also obeys property (iii). Finally, observe that

for eacht, 0=< <_D- 1,

RI(T)= (S’, R’,(Us/ ,))+ (U’, R’,(Vs/,))
TiEf(t)

2B’, B’I B’, B,

so property (iv) also is satisfied, and f is indeed a valid schedule for I.
Thus I’ has a valid schedule if and only if I has a valid schedule, and the

required reduction has been demonstrated.
The final lemma of this section will show that P[5, 8] is NP-complete, enabling

us to apply the preceding lemmas to obtain our main result. First, let us define
the NP-complete three-dimensional matching problem.

408 M.R. GAREY AND D. S. JOHNSON

THREE-DIMENSIONAL MATCHING (3DM)[8].
Input" Finite sets T and S

_
T T T.

Property" S contains a complete matching, i.e., a subset S’ S with IS’l TI
such that for any two members (x, y, z) and (x2, Y2, z2) of S’,
x : x2, y : Y2, and z : 22.

LEMMA 3.4. 3DM oc P[5, 8].
Proof. Let T and S c_ T x T x T be given. We may assume without loss of

generality that T {1, 2,..., N} where N TI. For integers i, k, <_ =< N,
=< k __< 3, let m(i) be the number of ordered triplets in S having their kth com-

ponent equal to i. We may assume that each m(i) >= 1, since if any m(i) O,
we would know immediately that S contains no complete matching. The corre-
sponding input I to P[5, 8] is the following"- (S[i, j, k]’(i, j, k) S} [3 (Xo[i], Yo[i], Zo(i); =<i =< N}

U{X[i;/]’I =<i=<N,l-<l<m(i)} U{Y[i;l]’l-<i=<N,l_-<l<m2(i)}

U {Z[i’/]’l -< -< N, =< < m3(i)} U {F’I __< i-< N}

A {G,’I <= [SI N};- {Ri’l _< j=< 8},
with resource bounds and task resource requirements as given in Table l, and with
deadline D IS[.

Though the input may appear rather complicated, the basic idea behind it
is quite simple. The resource requirements and bounds insure that during each
time unit of any valid schedule, the five tasks being executed will consist of one
S-type task, one Xo- or X-type task, one Yo- or Y-type task, one Zo- or Z-type task,
and one F- or G-type task. The S-type tasks each represent an ordered triple
from S. The N F-type tasks select the triples which form the matching, i.e., those
(i, j, k) for which S[i, j, k] is executed concurrently with some F-type task.
Finally, the Xo-type tasks, Yo-type tasks and Zo-type tasks are used to insure
that the N selected S-type tasks actually represent a matching. This is done by
specifying the resource requirements so that, since all resources are saturated,
the only tasks which can be executed simultaneously with F and S[i, j, k] are
Xo[i], Yo[J], and Zo[k]. Since there is exactly one Xo[i], Yo[i], and Zo[i for each i,

__<i_< N, the saturated processor property will guarantee that in any valid
schedule the selected S[i, j, k] tasks represent disjoint triples and thus give the
required matching. We now give the formal proof.

Observe first that

3 N

I-I -ISI + , , mk(i) + N + (ISI- N)
k=

IsI + 3. ISI + ISI- 5, ISI n, D,

so that I has the saturated processor property. The reader may verify similarly
that all eight resources are saturated, so I belongs to the input domain for P[5, 8].

COMPLEXITY RESULTS FOR SCHEDULING 409

Task W

S[i, j, k]
Xoi]
X[i; l]
Yo[J]
Y[j; l]
Zo[k]

F,
Gi

Bound

TABLE
Resource requirements and boundsfor Lemma 3.4

R(W) R2iW R3(W R4(W R(W) R6(W RT(W

N-i N-j N-k 0 0 0
0 0 0 0 0
0 0 0 0 0

0 j 0 0 0 0
0 j 0 0 0 0
0 0 k 0 0 0
0 0 k 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

N N N

0
0

0

0

3
0

3

Suppose S contains a complete matching S’. We must construct a valid
schedule f for I. Order the elements of S as $1, $2,"-, Sis so that S’=

__< =< N}. For each St S, let the components of S be denoted by (i(l), j(l), k(l)).
We specify f by giving the sets Er(t), 0 =< < O [SI. For _<_ _<_ N, let

E(t 1) {S[i(t), j(t), k(t)], Xo[i(t)], Yo[j(t)], Zo[k(t)], F,}.
For each t, N + =< =< ISI, define

L,(t)]{t"n + <= t’ <= such thati(t’)- i(t)}l,

L2(t) -I{t"n + <= t’ <= such that j(t’) j(t)}[,

L3(t) I{t"n + <= t’ <= such that k(t’) k(t)}].
Then for each t, N + _<_ =< IS[, let

E(t 1) {S[i(t), j(t), k(t)], X[i(t); L,(t)], Y[j(t); L2(t)], Z[k(t); L3(t)], G,_u}.
We leave to the reader the straightforward verification that f is a valid schedule
for/.

Conversely, suppose we have a valid schedule f for I. Since there are IS] tasks
of the form S[i, j, k], the constraints on resource R, and the fact that D IS]
imply that there is exactly one S[i, j, k] in each E(t), 0 __< __< D 1. Similarly,
if we let

X {Xo[i], X[i;/]’1 __< i__< N, =< < m,(i)},
Y {Yo[i], Yi;/]’1 -< =< N, =< < m2(i)},
Z {Zo[i], Z[i,/]’1 _< =< N, =< < m3(i)},

then, due to resources R5, R6, and RT, each Ei(t contains exactly one element
of X, one element of Y, and one element of Z. Since I has the saturated processor
property, we can conclude that each Ei(t) also must contain exactly one element of

{Fi’l =< =< N} U {Gi’l =< =< ISI- N}.

410 M.R. GAREY AND D. S. JOHNSON

Let us define

H {t’0 =< < D} such that E(t)
Our previous arguments imply that [H[N. Because of resource Rs, we know
that for each H, E(t) contains no tasks of the form X[i;1], Y[i;l] or Z[i;l],
and hence E(t) has the form

{S[i, j, k], Xo[i"l, Yo[J’], Zo[k’], Ft}.
Furthermore, by saturated resources R1, R2 and Rs, it must be the case that

i’, j j’ and k k’. It follows that

S’ {(i, j, k) S :f(S[i, j, k]) H}
is a complete matching for S.

Thus I has a valid schedule if and only if S has a complete matching, and the
desired reduction has been demonstrated. El

We now have our main result.
THEOREM 3.5. MS[n 3, r 1, -< empty, each zi 1] is NP-complete.
Proof. By starting with Lemma 3.4 and proceeding via an application of

Lemma 3.1, an application of Lemma 3.2, and two applications of Lemma 3.3,
we obtain

3DM oc P[5, 8] oc P[5, 1] oc P[6, 1] oc P[4, 1] oc P[3, 1].

Since 3DM is NP-complete, we conclude that P[3, 1] is NP-complete. The theorem
follows since the input domain for P[3, 1] is included in the input domain for
MS[n 3, r 1,-< empty, each zi 1].

4. Conelutling remarks. Though the two main scheduling problems which we
have proved to be NP-complete may seem rather specialized, the results immediately
imply that many other scheduling problems are NP-complete. In particular,
for arbitrary integers k >= 2 and j => 1, each of the following problems, and
any problem whose input domain contains the input domain for such a problem,
is NP-complete

1. MS[n k, r j, -< a forest, each zi 1];
2. MS[n k + 1, r j, -< empty, each z 1].
Furthermore, our results are best possible in the sense that further natural

restrictions on the input domains lead to problems which can be solved with
polynomial time algorithms. That is, if the input domains for problems and 2
above are restricted further by choosing k < 2, j < 1, or (in problem 1) requiring
-< empty, then the resulting problems can be solved in polynomial time by
algorithms which have been mentioned previously.

Our results have thus determined the "boundary" between NP-completeness
and polynomial time solvability with respect to the number of processors, number
of resources, and type of partial order. Implicit in our proofs is another restriction
on input domains for which we can determine a fairly narrow "frontier".

The NP-completeness of some problems hinges quite strongly on the fact
that one can use the expressive power of binary notation, that is, one can write an
integer of magnitude n using only log2 n symbols. For instance, MS[n k, r 0,

COMPLEXITY RESULTS FOR SCHEDULING 411

-< empty, ri arbitrary] is NP-complete for any k >__ 2; but for every polynomial p
and integer k >__ 1, MSn k, r 0, -< empty, each ri =< p(l-I)] can be solved in
polynomial time (although the degree of the polynomial depends on k and p,
and can be quite large).

In contrast, our proofs in each case can be used to construct a polynomial p
such that the problem remains NP-complete even if we include the restriction
that each R(T) _< P([-I). The other side of the frontier is provided by the fact
that for any finite set S, and integers j, k >= 0, MS[n j, r k, -< empty, each

ri 1, each Rj(T/) S] can be solved in polynomial time (although the degree of
the polynomial again can be quite large, depending on S, j, and k). Further
information is provided by the fact that MS[n 3, r arbitrary, -< empty, each
ri 1, each Rj(T) {0, 1}] is NP-complete. It is not yet known whether there
exists an integer k > 0 and finite set S such that MS[n arbitrary, r k, -< empty,
each :i 1, each RjilT/) S] is NP-complete.

REFERENCES

1] E. G. COFFMAN AND R. L. GRAHAM, Optimal schedulingfor two-processor systems, Acta Informat.,
(1972), pp. 200-213.

[2] S. A. CooK, The complexity of theorem proving procedures, 3rd Ann. ACM Symp. on Theory of
Computing, 1971, pp. 151-158.

[3] J. EoMort)s, Paths, trees, andflowers, Canad. J. Math., 17 (1965), pp. 449-467.
[4] M. FuJII, T. KASAMI AND K. NINOMIYA, Optimal sequencing of two equivalent processors, SIAM

J. Appl. Math., 17 (1969), pp. 784-789.
[5] M. R. GAREY AbeD R. L. GRAHAM, Bounds on scheduling with limited resources, 4th Symp. on

Operating System Principles, 1973, pp. 104-111.
[6] R. L. GRAHAM, Bounds on multiprocessing anomalies and related packing problems, AFIPS Conf.

Proc., 40 (1972), pp. 205-217.
[7] T. C. Hu, Parallel scheduling and assembly line problems, Operations Res., 9 (1961), pp. 841-848.
[8] R. M. KARl’, Reducibility among combinatorialproblems, Complexity of Computer Computations,

R. E. Miller and J. W. Thatcher, eds., Plenum Press, New York, 1972, pp. 85-104.
[9] Y. MURAOKA, Parallelism exposure and exploitation in programs, Ph.D. thesis, Univ. of Illinois,

Urbana, 1971.
10] J. D. ULLMArq, Polynomial complete scheduling problems, 4th Symp. on Operating System Prin-

ciples, 1973, pp. 96-101.

SIAM J. COMPUT.
Vol. 4, No. 4, December 1975

PROVING THEOREMS WITH THE MODIFICATION METHOD*

D. BRAND

Abstract. A method for proving theorems in first order predicate calculus theories with equality is
described and proven complete. Completeness of this "Modification Method" implies completeness of
Paramodulation without the functionally reflexive axioms, thus proving a conjecture of Wos and
Robinson (1969). Moreover, completeness holds with some other restrictions, such as limiting
paramodulation into variables. Experimental results using the Modification Method are included.

Key words, theorem proving, equality, predicate calculus, paramodulation, model, congruence,
transitivity, symmetry

1. Introduction and notation.
Note. This paper is a shortened version of the technical report Brand (1973).

The reader is referred there for omitted parts. Therefore we retain numbering (of
definitions, etc.) used in that technical report.

Notation. The reader is assumed to have some familiarity with predicate
calculus (see Enderton (1972)) and resolution (see Robinson (1965a) or Chang
and Lee (1973)). We will stress only points needed in this treatment.

We assume a countable language containing function symbols, predicate
symbols and at least one constant symbol. It has the predicate (equality), and we
write equations and inequalities in infix form (a b, a : b). [We use "---" for
equality in the metalanguage (a b, a b).] Logical symbols are k/, &, D (impli-
cation), (equivalence), V, ::i, -q. Usually we write, say, Px instead of Px, and
for a literal L (positive or negative atomic formula), L is the negation of L.
Parentheses are often omitted to improve readability.

Whenever we write a clause containing variables, they are meant to be
universally quantified.

We say that a term s appears on argument level if it is an argument to a
predicate P(..., s (including the case of equality, e.g., s t).

We work within first order predicate calculus without equality; i.e., equality is
a predicate like any other. In particular, a formula is consistent if it has a model
that may interpret the equality symbol as any binary relation. To express that a
formula is consistent in predicate calculus with equality, we will say explicitly that
it has a normal model. The three phrases: a formula is consistent, satisfiable and
has a model are used interchangeably to denote the same thing.

Quite often we will use a phrase such as "s is on the left of ". This refers to a
literal of the form s t. For example, in f(a)= b, f(a) is on the left of =, but a is
not.

Summary of notation.
formal equality,
equality in metalanguage,

u, v, w, x, y, z variables,
p, q, r, s, terms,

* Received by the editors June 28, 1974, and in revised form January 13, 1975.
f Department of Computer Science, University of Toronto, Toronto, Canada M5S 1A7. This

research was supported by the National Research Council of Canada.

412

MODIFICATION METHOD 413

f, g function symbols,
P, O predicate symbols,
L, K literals,
a, b, c, d constant symbols,
C, D, E clauses,
S, R set of clauses,
L[s], t[s] exhibits an occurrence of s in L, and in t,
0, b, tr substitutions,
i, k, l, m, n, N natural numbers,
B a formula,
M an interpretation, model,
m.g.u, most general unifier,
I.H. induction hypothesis,
A the axiom A (x y /x z /y z),
[3 the empty clause,
w.r.t, with respect to.

Motivation. Consider the set S {Pa, Pb, a b}, which is contradictory in
predic.ate calculus with equality. If we modify S into S {(a w/Pw), Pb, a b},
then $ is contradictory in predicate calculus without equality. This paper develops
that observation.

In 2, we show that all the equality axioms expressing the congruence
requirement are not necessary provided the given set of clauses is in a so-called
"E-form". This can be achieved by pulling norivariable terms from argument lists
as illustrated in the previous paragraph. It should be remarked that we have a
choice of modifying (Pa / Qa) either into (a v / Pv / a w / Qw) or into
(a v /Pv /Qv). Both modifications are sound and complete, and practical
considerations in choosing between them will be mentioned in 4. The effect of
resolving a # v with a b is to substitute b for a into all positions where v
appears.

Section 3 shows that the equality axioms expressing symmetry and transitiv-
ity are not necessary if the given set of clauses is in "ST-form". This leaves us only
with the reflexivity axiom x x.

Section 4 gives an effective way of modifying a set of clauses S into S which is
in "E-form" as well as "ST-form". Thus proving the inconsistency of S together_
with all the equality axioms can be replaced by proving the inconsistency of $

together with the reflexivity axiom only.
Section 5 proves completeness of paramodulation without the functionally

reflexive axioms.
Section 6 quotes some experimental results using the modification method.

2. Equality as a congruence relation. Here we prove the main result--
namely, how to ensure substitutivity properties of equality (without most of
the equality axioms). We will need to ensure that equality is an equivalence
relation; therefore, in this section we include the axioms x=x and A

(x y/x zVy z). The axiom A will be removed in 3.
We are going to define the notion of an S-interpretation (S for symmetry). In

general, by an interpretation we mean a truth assignment to all ground literals,

414 D. BRAND

and we represent it by a set of those literals that are assigned true. Since we will
always interpret equality symmetrically (the axioms A -= (x : y /x : z /y z)
and x x imply symmetry), we will include only one direction of every equation
and inequality. We choose the one with left-hand side more complex than the
right side. (This is defined precisely in Definition 2.1.) For example, an S-
interpretation will contain either f(a)= a or f(a) a but neither a =f(a) nor
a f(a). It is implied that the truth value of a f(a) is the same as that of f(a) a.
The literals of an S-interpretation will be ordered according to increasing com-
plexity; for example, P(f(a)) will be above P(a).

First we order all ground literals using G6del numbers. Assign a unique odd
natural number to every constant, function and predicate symbol of the (assumed
countable) language. This gives the basis for the following inductive definition of
G(t) for a term t. Suppose t=-f(tl,’", t,), where G(f), G(ti) have been defined.
Define

G(t) 2) fi’l"ri+l’
i=1

where Pri is the ith prime.
The only important properties of this definition are the following: Suppose

G(s) > G(t) and s is a subterm of r (including the case s r), and let r’ be obtained
from r by replacing an occurrence of s by t. Then G(r’) > G(r). (Proof by induction
on the structure of r.) Also, if is a subterm of s, then G(s)>- G(t), with equality
holding iff s t.

For a ground atomic formula L define

2e)- fi Pr ’, if L--- P(t,. t,), P not equalityi+1

G(.L) i=l

G(s) if L s t.

For a negation, G(L) G(L). The important property of this definition is that for
every literal L containing s, G(s t)< G(L[s]), except possibly for the case
L-=s=rorL---sr. (It is also not true forL--p=q orL--pCq with G(p)
< G(q); but we will not allow this in our definition of an S-interpretation.)

The G6del number G(C) of a ground clause C is the sum of the G6del
numbers of all its terms appearing on argument level (see notation). The impor-
tant property of this definition is that, if G(s) > G(t) and C’ is obtained from C by
replacing one or more occurrences of s by t, then G(C) > G(C’).

DEFINITION 2.1. An S-interpretation is an assignment of true or false to every
ground literal (L is assigned true iff L is assigned false), which interprets equality
symmetrically, i.e., s and s have the same truth value.

With every S-interpretation, we associate a consistent set of ground literals in
a natural way (we call this set also an S-interpretation, for no confusion can arise).
A literal L is in an S-interpretation M iff it is true underM and it is not of the form
t= s, s where G(t)< G(s).

A partial S-interpretation is an assignment of true or false to some ground
literals where equality is interpreted symmetrically (in particular s is defined

MODIFICATION METHOD 415

iff t=s is). In the set notation, a partial S-interpretation is a subset of an
S-interpretation. An S-interpretation is a special case of a partial S-interpretation.

The literals of a partial S-interpretation are ordered into a sequence accord-
ing to their increasing G6del numbers G; call this order "<", "below" or
"above". Literals with the same G6del number are equations and inequalities
with identical left sides (there is only a finite number of such for each left side), and
they are ordered according to the increasing G6del numbers of their right sides.

Note that if s is in an S-interpretation, then s is not a proper subterm of t.
DEFINITION 2.2. A ground clause is true under an S-interpretation if at least

one of its |iterals is true; it is false otherwise.
DEFINITION 2.3. An S-interpretation M is an S-model for a set of clauses Sitt

every ground instance of every clause from S is true under M.
Remark. S has an S-model iff S, together with the symmetry axiom x

y /y x, has any model.
DEFINITION 2.4. An E-inconsistency w.r.t, an equation s- in a partial

S-interpretation M is a pair of literals L[s], L[t] which are both true under M.
(L[t] is obtained by replacing by the exhibited occurrence of s in L[s].)

An E-inconsistency in M is a triple {s t, L[s], Lit]} such that s is true
under M, and {L[s], L[t]} is an E-inconsistency w.r.t, s t.

A partial S-interpretation is E-consistent w.r.t, s iff it contains no E-
inconsistency w.r.t, s t. It is E-consistent iff it contains no E-inconsistency.

Remark. Literals of an S-interpretation M are ordered in such a way that
if M is a model for the axioms A =(x y /x z /y-z) and x =x, and
{s t, L[s], L[t]} is an E-inconsistency in M, then L[s] is above both s and
L[t].

DEFINITION 2.5. An S-interpretation M is an E-model for a set of clauses S,
itt M is an S-model for S LI {x x}, and M is E-consistent.

Remark. M is an E-model for S iff M is a model for S together with the
equality axioms.

Proof. (). Suppose that M does not satisfy an axiom xy
/P(x,’", x,’", x,)/P(x,"’, y,’", x,). Then there are three literals.
s t, P(r,. , s,. , r,), P(r,. , t,. , r,) true under M, which contradicts
E-consistency of M w.r.t, s t. Suppose that M does not satisfy an axiom
x y /f(x, , x,- -, x,) f(x, , y,. , x,). Then there are two literals
s t, f(r, , s,. , r,) f(r,, , t,. , r,) true under M; since
[(r, , s, , r,) f(r, , s, , r,) is true, M is not E-consistent w.r.t, s t.

(<=). If M satisfies all the equality axioms, then it must interpret equality as a
congruence relation; therefore, M is E-consistent. Q.E.D.

The following definition of M[s/t] gives the basic notion used in the proof of
Theorem 2.1. Given an S-interpretation M and a pair of terms s, (s is not a
subterm of t), we construct an S-interpretation M[s/t] that will be E-consistent
w.r.t, s t. It is done by redefining the truth values of literals in M containing s,
according to the literals obtained by replacing all occurrences of s by t. For
example, P(s) will have the same truth value as P(t) and f(s) s will have the same
truth value as f(t)= t. It is done by going from the bottom to the top of the
interpretation, possibly changing signs of the literals.

DEFINITION 2.6. Let M be an S-interpretation and s, terms such that

416 D. BRAND

G(s) > G(t). We define inductively a partial S-interpretation ML for each literal
L M with the properties"

(i) for each K M, K -< L, exactly one of K, K is in M,, and no other literals
are in M,;

(ii) M,. is E-consistent w.r.t, s t;
(iii) if K =< L, then MK

M,. (i.e., M,. extends MK).

Suppose that we have defined M for every K eM, K<L. Let M
U x<,.M. Note that M Mr,,, where Lo is the predecessor of L, if L has one;

M--- 4’ otherwise.
Case 1. L does not contain s. Then define M. ----M U {L}. Conditions (i), (iii)

are clearly satisfied. Condition (ii) is satisfied because an E-inconsistency w.r.t.
s not involving L cannot be in M, by I.H., and any E-inconsistency w.r.t, s
involving L would imply that L is of the form Lit], and L[s] is true under M,,
which is not possible because Lit]< L[s].

Case 2. L does contain s. Let L’ be obtained from L by replacing any
occurrence of s by t. (Then L’ < L.) Let

M.U{L}
ML---

M’ U{L}

if L’ is true under M,

otherwise.

Note that this is a proper definition, i.e., independent of the choice of the
occurrence of s in obtaining L’. If a different choice should give a different result,
it would mean that L is of the form L[s, s] and L[s, t] has the opposite truth value
of Lit, s]. But then one of them would give an E-inconsistency w.r.t.s, s with
L[t, t] in M (contradicting I.H.).

Conditions (i) and (iii) are clearly satisfied; (ii) is satisfied because we gave L
just that truth value so as not to create any E-inconsistency w.r.t, s t. Now we
define M[s/t] ,.M M,.. It follows that M[s! t] is an S-interpretation that agrees
with M on literals not containing s, and M[s/t] is E-consistent w.r.t, s t. (But
s M[s/t] only if M.)

DEFINrrION 2.7. A clause is in E-form iff it has nonvariable terms only as
arguments of =, .

Example.
(P(x, y) V fx y) is in E-form.
(e(x, y) V w a V fx w) is in E-form.
(fa ga) is not in E-form.
(fw gw V a w) is in E-form.
LEMMA 2.1: LetMbe an S-model for a set S of clauses in E-form, containing

the axioms A and x x. Suppose that s M, G(s) > G(t). Then M[s/t] is an
S-model for S.

Proof. Suppose the contrary, and let C be a ground instance of a clause Co, so
that C has the minimal G6del number among all such clauses false under M[s/t].

Case 1. C does not contain the term s. Then the truth value of C under M[s! t]
is the same as under M, i.e., true.

Case 2. There is an occurrence of s in C in a position other than an argument
of equality. Let 4’ be the substitution such that C Co4. Since Co has nonvariable
terms only as arguments of equality, b must assign a term r[s] to a variable x of Co.

MODIFICATION METHOD 417

Let b’ be obtained from 4’ by changing the assignment to x to be r[t]. Then
G(Cob’)< G(C), hence Cork’ is true under M[s/t]. But the truth value of all
literals of C is the same as those of CoO’ under M[s/t]. Therefore C must be true
under M[s/t].

Case 3. All occurrences of s in C are as arguments of equality. But truth
values of the literals of the form s r, r s, s - r, r s are the same as in M. The
reason is, that in order for, say, s r to become false in M[s/t] from true in M, we
would have to have in Ms r, : r; but that would contradict the axioms A, x x
(in view of s M). Q.E.D.

THEOREM 2.1. Let S be a satisfiable set of clauses in E-form, containing the
axioms A (x y / x z / y z) and x x. Then S has an E-model.

Proof. Every model of S is symmetrical because of A and x x. If S did not
have an E-model, then there would be a finite subset of the Herbrand universe in
which S together with the equality axioms would be unsatisfiable. Therefore it is
enough to show that we can construct S-models of S with an arbitrarily large initial
segment that is E-consistent.

The idea is to apply Lemma 2.1 successively. The ordering of literals will
ensure that by fixing a literal, we do not spoil anything below.

Notation. M, is the initial segment of an S-interpretation M, consisting of the
first n literals (n _-> 0).

Suppose that M is an S-model for S, and M, is the largest initial segment that
is E-consistent. We construct an S-model M*, where *M,+ is E-consistent.

We have s t, L[s], L[t] in M, where L[s] is the (n + 1)st literal (L[s] cannot
be s r or s r because of the axioms A and x x).

Let M* M[s/t]. Because of E-consistency of M,, we have M,* M,. Thus to
show that M+I is E-consistent, we only need to verify that there is no E-
inconsistency involving the (n + 1)st literal of M* (which is L[s]) with some literals
below.

Suppose, to the contrary, there is an E-inconsistency w.r.t, p=q
(G(p) > G(q)). This means that L[s] also contains p. Referring to s or p below,
we will mean their occurrences in L, such that replacing s by t, we get Lit], which is
false in M,, and replacing p by q, we obtain L[q] which is true in M,.

Case 1. p is a subterm of s s[p]. Since s[p] M,, then s[q] M, (or
s[q] M, without loss of generality suppose the former). The situation inM is

L[s[p]]

L[s[q]]

sip] Mn

418 D. BRAND

s[q]=t

p=q

Then s[q] t, Lit], L[s[q]] would give us an E-inconsistency in M,.
Remark. The literals in Mn may be ordered differently from the order

suggested by the picture, but the order inside Mn is irrelevant.
Case 2. s is a subterm of p p[s]. Since p[s] q Mn, then pit] q M, (or

q p[t] Mn; again we assume the former). The situation in M is

Lip[t]]

p[s]=q

p[t]=q

Mn

We have a contradiction with E-consistency of M,.
Case 3. s and p are not subterms of each other, so the (n + 1)st literal is of the

form L[s,p]. Then M, must contain Lit, p], and also L[s,q]. But this is a
contradiction with E-consistency of M, w.r.t, s or p q--depending on the
truth value of Lit, q]. Q.E.D.

3. Equality as an equivalence relation. Here we show how to avoid including
the axiom A. A set of clauses S will be modified into S so that $ LJ{x x} is
consistent iff S U {x x, A } is consistent.

The idea is to replace every equation s in S by # w /s w, where w is a
new variable. This will take care of transitivity. Symmetry will be taken care of by
considering both sides of every equation (i.e., s and s). So s will be
modified into w /s w and s w V w.

MODIFICATION METHOD 419

DEFINITION 3.1. A clause C is in T-form (T for transitivity) iff each equation
of C is in the form s w, and C contains a literal w, where w has only those two
occurrences in C. (But w may, of course, appear in other clauses.)

DEFINITION 3.2. A set of clauses S is in ST-form (S for symmetry) iff each
clause of S is in T-form, and whenever a clause (t w V s w /C’) is in S, then
there is also a clause (s w /t w /C’) in S.

THEOREM 3.1. Let be a set of clauses in ST-form, and suppose that
(3 {x x} is consistent. Then LJ {x x, A } is consistent.

Proof. See Brand (1973).

4. The modification method. Theorems 2.1, 3.1 give us a way of proving
theorems with equality. Given a set of clauses S, containing equality, we "pull
out" nonvariable terms and make them companions. Then we transform the result
into ST-form and add x x to obtain the modification :. Then to find if S has an
E-model, we can apply ordinary resolution to find if S has any model. Since each
step of the modification process corresponds to a resolution with an equality
axiom, the whole process can be thought of as applying the equality axioms a fixed
number of times, and then throwing them away.

First we define the notion of companions. The motivation is the following:
We "pull out" a term f(a) from inside a literal Pf(a), and make it a companion.
The result will be jr (a) w /P(w), where w is a new variable, and [(a) w is said
to be a companion of P(w). The level of P(w) will be 0 (level of ordinary literals).
The level of f(a) w will be 1 (its position in the original P(fa)). Then we pull out
the a, getting a u /[(u) w /Pw. Again we call a u a companion of
f(u) w (which is a companion of Pw), and it has level increased by 1; i.e., the
level of a u is 2.

The reason for introducing the levels is to ensure that we do not get
circularity, e.g., that a literal is not a companion of itself. This will be used only for
the definition of positive resolution, which is in turn used only in 5 (paramodula-
tion); i.e., the modification method itself does not need it.

DEFINITION 4.1. A normalized clause C is a forest of literals, shch that every
literal L that is not a root is of the form s w, and the variable w has exactly one
other occurrence in C--inside the direct predecessor K of L. We call L a
companion of K. If K is of the form w (i.e., w is on the right of equality), then
we call L a T-companion of K, {L, K} is a T-companion pair. Roots are assigned
level 0, companions of a literal K are assigned level one greater than the level of K.
(Roots of C can be arbitrary literals).

A clause C is an instance Cob of a normalized clause Co. Companions and
levels are preserved--i.e., Lch from C is a companion (T-companion) of Kth iff L
is a companion (T-companion) of K in Co. (A normalized clause is a special case of
a clause).

Remark. Usually we exhibit literals in the form s r /L[r]. This is to imply
that s r is a companion (or T-companion) of L[r].

Examples.

(a b V P(b)), (jr(a, b) # w V g(w) c /P(x, c)),

(a b V c b / a b / f(b) c).

420 D. BRAND

Remark. Looking at a clause as a tree does not change the intended
meaning--it is still a disjunction of its literals. The introduction of levels is just a
syntactical tool.

Note that any set of literals can be organized into a clause; all literals are at
level 0. This would be the normal arrangement; modification then introduces
companions.

Note that if a normalized clause C contains a companion s w of a literal K
which is also a companion, then K cannot be of the form w; K must be of the
form t[w] v; otherwise w would be forced to have at least three occurrences in
C.

DEFINITION 4.2. We define the E-modification C of a clause C inductively. If
all nonvariable terms of C appear as arguments of equality, let ff C. Otherwise
let C’ be obtained from C as follows" Pick a nonvariable term s appearing on an
argument level of a predicate P (other than); e.g., P(. , s,.), or appearing
as an argument of a function, which is an argument to equality; e.g.,
f(...,s..-.) v. Then rewrite the literal L[s] into L[w], where w is a new
variable appearing nowhere else, and give L[w] a new companion s w. In our
examples P(... ,s,...) is replaced by s w VP("’, w,...), f(’.. ,s,...)

v is replaced by s w V f(" , w,. .) v. The rest of the clause is unchanged.
The E-modification of C (unique up to renaming of variables) is then the
E-modification of C’.

Example. E-modification of (Pf(a, gx) V f(x, y) g(a)) is

(a u V gx v V f(u, v) w V Pw V a z V f(x, y)= gz).

DEFINITION 4.3. Let C be a clause without any T-companions. The T-
modification C of C is obtained by replacing each equation s in C by the
T-companion pair w V s w, where w is a new variable referred to as a T-new
variable. Note that T-companions have level 1.

DEFINITION 4.4. The ST-modification of a set S of clauses with all literals
on level 0 is obtained as follows. Let S’ be the smallest set of clauses containing S
such that whenever (s V C) s’, then (t s V C) s’. All literals in S’ have
level 0. Then is the set of T-modifications of clauses from S’.

Remark. Intuitively, S’ is obtained from S by flipping equations in all clauses
of S in all possible ways. Thus a clause from S with n equations produces 2"
clauses in S’.

Example.. S ={(x y V Px, y), (f(x)= x V g(x) x), a b}; then the ST-
modification S has the 7 clauses:

yCw Vx=w VPx, y,
xw V y=w V Px, y,

V/(x) u V w V g(x) w,
x u Vf(x)= u V g(x) w V x w,

V x=u V x V g(x) w,
f(x)#u V x=u V e,(x)# w V x=w,
a#b.
DEFINITION 4.5. Let $ be a set of clauses and S’ the set of E-modifications of

clauses of S. Then the STE-modification of S is the ST-modification of S’.

MODIFICATION METHOD 421

Remark. The STE-modification of S is both in ST-form and E-form, and it
consists of normalized clauses. Further, every step in producing an STE-
modification can be done by resolution with an equality axiom (or with a clause
derivable from the axioms). Or equivalently, the modifications can be done by
resolving with the second order equality axiom x y /Px /Py (see Darlington
(1968) or Jensen and Pietrzykowski (1972)). For example, f(a)= b would be
modified into a y /f(y)= b using P <-- hx f(x)= b.

Note that if all companions of an E-modification or of a T-modification are
resolved with x x, then we obtain the original clause.

THEOREM 4.1. A set of clauses S has an E-model iff its STE-modification S
together with x x has any model.

Proof. (=). If S has an E-model, then any set obtained from S by resolving
with the equality axioms also has an E-model; in particular, does.

((=). If SU{x =x} has a model, then by Theorem 3.1 S(.J{x =x,A} has a
model; so by Theorem 2.1 LI {x x, A} has an E-model M. Every set of clauses
obtained from by resolving with x x has the same model M, in particular S
does. Q.E.D.

Practical considerations. In practice, we do not need to "pull out" a term s
which is not unifiable with any s’ appearing in s’= t, because then the companion
s : w could be resolved only with x x, which puts s right back.

The definition of E-form does not use the notion of companions. Therefore in
modifying a formula we do not need to worry about properties required for
companions, as long as the modification is sound. In particular, we can have one
companion to more than one literal. For example (Pa /Qa) can be modified into
(a w /Pw /Ow). (We do not allow this in the definition of E-modification for
simplicity. Resolving with a w would correspond to two applications of the
paramodulation rule.) In practice, this would be advantageous only if our intuition
told us that a w will be resolved only with x x. Otherwise a more awkward
(thus harder to find) proof may be required, if the natural proof would substitute
different terms for a in Pa and Oa.

In producing ST-modification, we are allowed to declare any literal a
T-companion, provided it satisfies Definition 3.1. For example, the T-
modification of C= (a # x /b x) can be C itself, rather than (a x /x
: w /b w). Thus a b and a : x V b x may be modified into equivalent
ST-forms.

5. Paramodulation. The purpose of this section is to prove completeness of
paramodulation without the functionally reflexive axioms. We will use some
special inference rules which can be simulated by paramodulation.

As usual, we assume consistent renaming of variables, so that two clauses
operated on by Rule VII (resolution) or by Rule VIII (paramodulation) do not
share any variables.

Rule VI (positive factoring). From the clause Co=(L1 /L2 /C’o) which
contains no companions, where L and L2 have an m.g.u. 0, infer C
--(LO /C’oO). All literals of C have level 0.

Rule VII (positive resolution). From a clause E=-(L /E’) without
companions, and a clause D=-(L2 /D’) where L2 has no companions, and

422 D. BRAND

0 is an m.g.u, of L and L, infer C--(E’O /D’O). Literals of C have the
same level as their ancestors in E’ and D’. If Lz was a companion of a literal
K 6 D’, then KO has one less companion in C; otherwise there is no change in
companions.

Remark. We do not require any of the literals figuring in Rules VI, VII to be
positive. We only place restrictions on the presence of companions (which are
inherently negative). Since these restrictions are very much like those of P1-
resolution (Robinson (1965b)), we call the rules positive. In fact the completeness
of these rules will be proven using hyper-resolution.

Example (companions as suggested). E =- (a b), D =- (a u / f(u) # v
/Pv) resolve into C=-(f(b) v /Pv). In C, f(b) # v does not have a companion
any more.

LEMMA 5.1. Suppose S is an inconsistent set of clauses. Then there exists a

refutation of S by Rules VI, VII.
Proof. There is a hyper-resolution proof of S (Robinson (1965b)).
Resolving a hyper-clash is done:
(i) factor the positive electrons,
(ii) factor the nucleus D,
(iii) resolve electrons against all the negative literals of the nucleus.
Step (i) is positive factoring, for electrons (being positive) contain no compan-

ions. We do not perform step (ii), because D may contain companions. Thus we
enter step (iii) with some duplicate literals in D.

Step (iii) will be performed resolution by resolution. The next resolution will
always be an electron against a literal with maximal level in the resolvent obtained
to that point. This ensures that the resolution is positive. We may have to repeat
the resolution against duplicate literals. For example, if hyper-reso|ution has the
factored nucleus (L /C’), we may be dealing with (L /L /C’). Thus we resolve
twice with (E’/L) into (E’/E’k/C’).

We add another step that will delete the duplicate remainders E’ of the
electrons from the final resolvent. This factoring is positive because the resolvent
is positive.

LFMMA 5.2. Let S be a set ofnormalized clauses and Cbe a clause derivedfrom
S by Rules VI and VII. Then C is a normalized clause.

Proof. It is enough to show that the clause produced by either of the
rules is a normalized clause whenever the input clauses to that rule are normalized
clauses.

(i) This is clear for Rule VI (positive factoring) because the clause produced
has no companions.

(ii) For Rule VII we need to verify the condition of Definition 4.1 stating that
every companion L of the resolvent is of the form s : w, and w has exactly one
other occurrenceinside the predecessor of L. Every companion in the reso|vent

results from applying the m.g.u. 0 to a companion from one of the parent
normalized clauses. Each such original companion is of the form s w by
assumption. In order that the m.g.u. 0 assigns anything to w, or it assigns w to
another variable, w would have to appear in one of the literals resolved upon. But
this cannot happen because Rule VII resolves upon literals without
companions. O.E.D.

MODIFICATION METHOD 423

For our purposes we define paramodulation as Rule VIII.
Rule VIII. From clauses D (L[s’] /D’) and E (s /E’), where 0 is

an m.g.u, of s and s’, infer C=(LO[tO] /D’O /D’O /E’O).
For a set of clauses $, we show how to simulate a refutation of

the STE-modification , which uses positive factoring and resolution
(Rules VI, VII), by a refutation of S using Rules VI, VII, VIII. Note that
Rules VI, VII constitute unrestricted resolution for a set of clauses without
companions.

This then gives completeness of paramodulation without the functionally
reflexive axioms, and with some other restrictions following from the STE-form;
for example, the only type of variables we need to paramodulate into are on the
left of =.

THEOREM 5.1. Let S be a set of clauses, which has no E-model. Then there
exists a refutation, of S t.J {x x} by Rules VI, VII, VIII.

Proof. Let S be an E-mod,fication of S. By Theorem 2.1 I3{A, x x} is
inconsistent, and by Lemma 5.1 there is a refutation of t3 {A, x x} using Rules
VI, VII. Using a hyper-resolution argument, we can replace the axiom A by Rule
IV.

Rule IV. From E (E /s t), E2 -= (E /s’ r), infer C (E’I 0 /E’20
V tO rO), where (9 is an m.g.u, of s and s’, and neither E nor E2 contain any
companions. The result C will contain no companions.

(Note that Rule IV is just a special case of paramodulation.)
So, using Lemma 5.2 together with the fact that Rule IV produces a

normalized clause, there is a refutation 6 of LI {x x} by Rules IV, VI and VII,
and & consists of normalized clauses.

We will define inductively a 1-1 correspondence q that assigns to every
clause C of & a clause C of a paramodulation proof a of S, being defined. All
literals in the proof a will have level 0.

For a normalized clause if, we define inductively a map q that assigns an
expression to every literal of (. The expression is obtained by resolving all the
literals in the subtree of L with x x (which has the effect of substituting the s
from a companion s w for the variable w).

We define q as follows: Let, 2,. , , (n => 0) be all the co.mpanions of .
Then by Lemma 5.2 each , is of the form siwi, and L is the form
[w, , w,]. Let L -= [q(L), , q(L,)]. If has level 0, then let (/_)= L;
otherwise L is of the form s w, let q()= s. (This is a definition by induction on
the tree structure. If is a leaf, i.e., n 0, then/ L.)

Note that q has been defined so that if is a companion of/, then @(/) is a
subterm of q(K).

For a normalized clause (7, we define q() as the clause q((7) {q,()l/S ,
/ has level 0} (all literals of () have level 0). Note that the E-modification and
T-modification ’ of a clause C have been defined so that q()=- C (Definitions
4.2, 4.3.).

The paramodulation proof a will consist of the clauses C---@(’), ’6 &.
Before defining a, we give an example. Corresponding clauses are written on the
same line. The thing to note is that resolution against companions corresponds to
paramodulation.

424 D. BRAND

1. aCvVfvCuVaCwVPu, w Pfa, a
2. bCvVfvCuVbCwVPu, w Pfb, b
3. a=b a=b
4. x=x x=x
5. fbCuVbCwVPu, w Pfb, b
6. b C w / P[b, w Pfb, b
7. Pfb, b Pfb, b
8. fb C u / a w / Pu, w Pfb, a
9. a # w / P[b, w Pfb, a

10. Pfb, b Pfb, b
11. [-]

original
SU{x =x}

from 2., 4.
from 5., 4.
from 6., 4.
from 1., 3.
from 8., 4.
from 9., 3.
from 7., 10.

The basis for a is constituted by the original clauses of S. These clauses
correspond to those of in the way established by the process of E-modification.

Suppose that we have defined an initial segment of a. The next step of a is
defined according to the next step of &.

Case 1 (positive factoring of o into). Since o contains no companions,
we have (70= (’o)--Co. So we perform the same factoring in Co, producing
C--(7o

Case 2 (resolution with companions corresponds to paramodulation). A
companion s’ w of [w] in/ (s’ w /[w] //)’) is resolved against s in
/ (s k//’). This involves appl.ying the m.g.u. 0 of s’. and s, and the substitu-
tion w tO. Thus the resolvent is C=-(LO[tO] / E’O / D’O).

Since contains no companions, we have E =/. And since s’ w has no
companions, q(s’ w)= s’, which appears inside (L) in D. So after applying the
m.g.u, of s’ and s, we can paramodulate from (s /E’) into D with the result C.
The correspondence q between literals of (7 and C carries over from/) and .
Note that if E (x x), then C-- D.

Case 3 (resolution upon literals with level 0). Neither of the literals resolved
upon can have any companions, so their counterparts in a are identical to them;
therefore, we can make the same resolution in a. The correspondence q carries
over from the parent clauses.

Case 4 (Rule IV produces (7 from /1 and/_). /1 E,/z--Ez because
/,/ contain no companion, so a can paramodulate E1 into E to get C .

So we have defined a, and for V! e &, the corresponding clause of a is q(I-1) VI,
which proves the theorem.

6. Experimental results. Feasibility of the method was tested on examples
from Alan et al. (1972) and from Huet (1971).

First we describe Alan’s examples. The theorems are taken from the
announcement entitled, Some new axiomatizations in group theory, on page A-547
of the Notices of the American Mathematical Society, vol. 19, 1972.

"We give axiomatizations of group theory and abelian group theory in terms
of the binary group operation f(a, b) ab’. Suppose G is a first order theory with
equality with a binary operation symbol f, whose nonlogical axioms are: (G1)
f(x, x)=f(y, y), (G2) f(x, f(y, y))= x, (G3) f(f(x, z), f(y, z))=f(x, y). Then G is
an axiomatization of group theory (1 is defined as the (unique) element f(x, x) and
xy as f(x,f(1, y))). For abelian groups, G1, G2, G3 are replaced by: (A1)

MODIFICATION METHOD 425

f(x, f(y, z))=f(z, f(y, x)), (A2) f(x, f(x, y))= y, or, by the single axiom (A),
f(f(x, y), f(f(x, z), y))= z. Some other single axioms for abelian groups are (A’)
f(f(x, f(y, z)), f(x, y)) z and (A") f(x, f(y, f(z, f(x, y)))) z. (Received March 20,
1972.)"

In Alan et al. (19"72) the following equations are introduced"
(L1) f(x, x)= 1,
(L2) f(x, 1)=x,
(L3) f(1, f(x, y))--f(y, x),
(L4) f(f(x, y), f(1, f(y, x)))= 1.

For axioms of elementary group theory (EGT),
(Axiom 1) f(x, f(1, e))= x [e is a right identity],
(Axiom 2) f(x, f(1, f(y, f(1, z))))=f(f(x, f(1, y)), f(1, z)) [associativity],
(Axiom 3) f(x, f(1, g(x))) e [right inverse],
(inverse) /x::iy f(y, f(1, x))= 1.

After e is replaced by 1 (EGT’),
(Axiom 3’) f(x, f(1, g(x)))= 1,
(L3’) f(1, f(1, x))= x [left identity],
(Comm) f(x, f(1, y))= f(y, f(1, x)) [commutativity],
(Xl) f(x, f(f(y, z), f(y, x)))= z,
(X2) f(f(x, f(f(x, y), z)), z)= y.
Statements of theorems using these axioms are in the table below.
Huet’s examples. Those are examples 1-13. In example 12a negation of the

theorem to be proven is f(a, a, b) a. Huet introduces a constant c and proves
(12a’) f(a, a, b)= c & a c.

In the experiments, we first found the proofs, as one would proceed in
practice. Not all the clauses were included; obvious simplifications, such as
f(x,x)= 1 or f(1, x)=x were left unmodified, etc. The proofs were usually
obtained without any limit parameters. In almost all cases, the human intuition on
how to modify the formula works well. After we found the proofs, the examples
were run with the full modification, and with the optimal limits on the proof.
Negation of the theorem was always used as a set of support.

The difficult examples taken from Alan were those involving Axiom 2 as a
hypothesis of the theorem. It is very complex, so many substitutions can be made.
It does not generate too many deductions; on the contrary, the strategy forces the
theorem prover not to generate anything until it finds the right substitutions. And
it may take many unifications to find the right combination. Therefore the order of
the input clauses and their literals determine the speed of the search.

Among Huet’s difficult examples were those that did not have a unit proof
(with negation of the theorem being set of support)you can tell them
immediately from the table of performance (Table 1) by the large numbers of
unifications performed.

In general, if the hypotheses are unit equations and negation of the theorem is
a unit inequality (and they have no E-model), then it is poss.ible to refute the
STE-modification by a unit proof, because each clause of S has at most one
positive literal. It is not true, however, with the set of support strategy (for
example, there is no unit proof of {a b’, b’= b, c d’, d’= d, f(a, c) f(b, d)} if
only f(a, c) f(b, d) has support). Nevertheless, all of Alan’s examples do have a
unit proof, with a set of support being negation of the theorem.

426 D. BRAND

Huet’s
example

10

11

12a

12a’

12b

13

successful

unifica-

tions

194
333

10
75

226
245

221
321

> 2943

16
10

proof

depth

no
no

yes
yes

no
no

no
no

no
yes

no
no

yes
yes

yes
yes

yes

yes
yes

17 yes
11 yes

12 yes
20 yes

limit

func-

tional

nesting

no
no

yes
yes

no
no

no
no

no
no

no
no

yes
yes

yes
yes

yes

no
no

no
no

TABLE

time

[sec.]

2.7
3.0

2.9
3.7

>29.7

0.2
0.1

0.2
0.1

no 0.2
yes 0.2

> 2814 yes yes > 29.9

unifica-

tion

attempts

stack

entries time

generated [see.]

6 0 5.9
13 5.9

855 13 18.9
1615 20

4 0 3.9
9

7 0 6.0
28 5.3

28 2 12.3
315 5

12 2 1.9
8 8.0

836 15 37.4
967 16 30.2

862 11 20.1
1134 13 44.2

>8496 >61 376.2

42 0
23

47 40.6
25

41 3 49.4
52 4

>8190 >42 208.6

Huet

clauses

generated

18

15
12

13

6
24

19
17

12
40

161

68

19

150

Tables 1 and 2 give the performance of the theorem prover (described in
Brand (1973)) on the theorems. It is given in terms of the number of literal pairs
unified (successful unifications), actual running time in seconds on IBM 370, and
the number of calls to the unification procedure (unification attempts). This last
parameter does include tests for one literal being an instance of another (sub-
sumption), and is supposed to give an idea of time requirements of the method,
independent of computing environment. The number of successful unifications
does not include these subsumption tests and is supposed to correspond to the
number of clauses generated, which is usually used for a measure.

MODIFICATION METHOD 427

TABLE 2

Theorem

L1, L2, G3 L3

L1, L2, L3, G3 L4

L1, L2, G3 Axiom 2

L1, L2, G3 = inverse

A1, A2 =G1

A1, A2=G2

L1, L2, A1, A2 = L3

L1, L2, L3, A1, A2 L4

A1, A2G3

AG1

L1, AL2

AreA2

A2, AA1

A’G1

L1, A’ L2

L1, L2, A’ A2

L1, L2, A2, A’A1

proof

successful depth

unifications limited

15
8

17
1001

77

14
8

14
7

144
9

121
614

42
140

39
296

225
503

48
15

1000
>2585

10
59

11
9

79
11

no
yes

no
yes

yes
yes

no

no
yes

no
yes

no
yes

no
yes

no
yes

yes
yes

no
yes

no
yes

no
yes

yes
yes

no
yes

no
yes

no
yes

time

0.2

unification

attempts

91
13

15
13

12.6

0.7

0.2
0.1

0.8
2.6

2.9
7.5

0.9
>29.5

53
4048

257

42
14

40
10

773
16

766
1654

154
302

256
447

7
13

826
2038

252
23

189
> 3982

39
140

65
17

stack

entries

generated

2

13
14

16
5

7
7

10
2

7
> 28

3

4

15611
16

39

428 D. BRAND

TABLE 2conanued

A"G1

L1, A" L2

L1, L2, A"A2

Theorem

A2, A"A

A1, A2 A

A1, A2A’

A1, A2 A"

L1, Axiom G2

L1, Axiom 1, Axiom 2,
Axiom 3 e

L2, Axiom 2,
Axiom 3 L3’

L1, L2, L3’, Axiom 2 L3

L1, L2, L3, L3’,
Axiom 2 G3

L2, G3, comm., Axiom 3’,
Axiom 2 A2

A2, G3, Axiom 3’,
Axiom 2 A

L1, L2, A2, G3X1

LI, XIA

A1, A2 X2

successful

unifications

553
>2904

21
591

7
15

23
3091

25
12

17
184

146
260

8
59

73
164

35
44

>4490

2-053
> 3940

75
13

11
23

63
83

193
228

15
57

proof

depth

limited

yes
yes

no
yes

no
yes

yes
yes

no
yes

no
yes

no
yes

no
yes

yes
yes

yes
yes

yes

yes
yes

no
yes

no
yes

yes
yes

yes
yes

yes
yes

time

6.9
> 29.4

0.2
19.5

0.1
0.3

25.8
>29.4

0.1
0.2

unification

attempts

1296
> 4285

76
1165

19
34

66
4754

67
18

36
350

557
515

35
135

321
444

174
213

> 9891

326
23

39
53

249
158

1154
409

33
120

stack

entries

generated

31
>28

4
10

3
28

11
7

4
4

2

>3

2
>3

23
6

MODIFICATION METHOD 429

For each proof we also indicate whether an (optimal) limit on proof depth and
functional nesting was applied (functional nesting was never limited for Alan’s
examples). The number of stack entries generated (for better explanation see
Brand (1973)) is the number of deductions that were allowed to enter the proof
process. It is a rather psychological measuremhow many clauses a person would
have to examine to follow the steps of the prover.

For every theorem, the first number gives the proof without fully modifying
the formula. The second is with full modification. Never was a shorter proof
extracted using the fully modified formula, but the generated proof may be
shorter, due to the limit on proof depth and different ordering of the clauses.

If no proof was obtained, it is indicated by the "greater than" sign, e.g.,
> 1000 successful unifications.

We do not have enough information to make any reasonable comparison
with results in the literature. Alan et al. indicate only how fast proofs were
obtained on the average. This ranges from "immediate" to 50 seconds (which was
apparently their time limit).

Huet gives execution times for each example and number of clauses gener-
ated. It is not, however, quite clear how much work is done before a clause is
generated. The number of clauses generated, given in the table below, does not
include the input clauses and will correspond to our "successful unifications" in
the case when Huet generates a clause from every successful unification.

Both Alan’s and Huet’s theorem provers are interactive and written in LIs,,
whereas our program works off-line and is written in S’ITBOL (SNOBOL). There-
fore comparing execution times is meaningless. (I understand that all Alan’s and
Huet’s results are from runs without essential human interaction, except Huet’s
example 13.)

Huet gives results from examples 4, 9, 10 from two runs with different
parameters. He proves example 12a’ rather than 12a because introducing the
constant c makes his prover perform better.

It is interesting to note that even though Huet’s program is designed for
equality he apparently finds that "pulling terms out" works better than
paramodulation. This is probably why he chose to write in example 3 (x. I(y)
z /Sx /Sy /Sz)instead of (Sx /Sy /S(x. I(y))), and similarly in example
6. Also he found example 6 harder when using equality in comparison with
expressing x y z as a predicate and thus avoiding equality.

7. Conclusions. There is no doubt about the theoretical value of the modifi-
cation method and the proof technique presented--it allowed us to prove
completeness of paramodulation without the functionally reflexive axioms. Also
experimental results are encouraging. The method’s main advantages are its
weakness (hence less chance of irrelevant inferences), and completeness with set-
of-support strategy (paramodulation with set-of-support needs the functionally
reflexive axioms for completeness). The main weaknesses are the presented
treatment of symmetry (usually it is not necessary to consider both sides of every
equation), and the oblivion of handling a well understood predicate (some obvious
simplifications should be performed in the course of a proof).

430 D. BRAND

Appendix A. Example where the modification method is weaker than
paramodulation. From

S {a , t’fa, (t’x V O(x, x)), x x}

it is possible to derive O(/a, fb) using paramodulation. From the modified set

{b w /a w), (a w /b w), (a w /PlOw), (x /Q(x, x)), x x},

resolution can derive Q(fa, fa) or O(fb, fb), but not O(fa, fb).
Remark. It is not necessary to pull fw out of Pfw because fw u could be

resolved only with x x.
The reason for this weaker deductive power is the following. Paramodulation

says: If a b, replace any occurrance of a by b. The modification method amounts
to a rule saying: If a b, replace all occurrances of a by b, and we can escape this
fact neither by generating companions for each occurrance of a (rather than one
companion for all of them) nor by pulling out variables to any finite depth.

Acknowledgment. I would like to thank my advisor, Professor S. A. Cook,
for his valuable guidance.

REFERENCES

J. ALAN, D. LUCKHAM AND G. MORELLI (1972), DSK: Report (1, JJM), Nov., unpublished.
D. BRAND (1973), Resolution and equality in theorem proving, Tech. Rep. No. 58, Department of

Computer Science, University of Toronto.
C. L. CHANG AND R. C. T. LEE (1973), Symbolic Logic and Mechanical Theorem Proving, Academic

Press, New York.
J. L. DARLINGTON (1968), Automatic theorem proving with equality substitution and mathematical

induction, Machine Intelligence, 3, pp. 113-127.
H. B. ENDERTON (1972), A Mathematical Introduction to Logic, Academic Press, New York.
G. P. HUET (1971), Experiments with an interactive proverfor Logic with Equality, .Rep. 1106, Jenning

Computing Center, Case Western Reserve University, Cleveland, Ohio.
D. C. JENSEN AND T. PIETRZYKOWSKI (1972), A complete mechanization o.f to-order type theory,

Report CSRR 2060, Dept. of Applied Analysis and Computer Science, University of
Waterloo, Waterloo, Ontario, Canada.

J. A. ROBINSON (1965a), A machine oriented logic based on the resolution principle, J. Assoc. Comput.
Mach., 12, pp. 23-41.

(1965b), Automatic deduction with hyper-resolution, International J. Comput. Math., 1, pp.
227-234.

L. Wos AND G. A. ROBINSON (1969), Paramodulation and theorem proving in first order theories with
equality, Machine Intelligence, 4, pp. 135-150.

SIAM J. COMPUT.
Vol. 4, No. 4, December 1975

RELATIVIZATIONS OF THE =? 4/ QUESTION*

THEODORE BAKERf, JOHN GILL:I: AND ROBERT SOLOVAY

Abstract. We investigate relativized versions of the open question of whether every language
accepted nondeterministically in polynomial time can be recognized deterministically in polynomial
time. For any set X, let x (resp. Ax) be the class of languages accepted in polynomial time by
deterministic (resp. nondeterministic) query machines with oracle X. We construct a recursive set A
such that a Wa. On the other hand, we construct a recursive set B such that B 4: VB.
Oracles X are constructed to realize all consistent set inclusion relations between the relativized
classes ,x, 4x, and coXx, the family of complements of languages in Xx. Several related open
problems are described.

Key words, computational complexity, nondeterministic computation, query machines,
polynomial-bounded computation

1. Introduction. An important problem in the theory of computation is to
characterize the power of nondeterministic computation. A fundamental open
question is whether r properly contains . Here is the class of languages
recognized in polynomial time by deterministic Turing machines, and 4r5 is
the class of languages accepted in polynomial time by nondeterministic Turing
machines. One reason for the importance of the ? ff question is that 5
and4are very natural classes of languages, invariant under reasonable changes
of machine model. or 4r is the same class whether defined by computations
by one-tape Turing machines, multitape Turing machines, or random-access
machines. The ? 4/’ question thus deals with the basic nature of computa-
tion and not merely with minor aspects of our models of computers.

We can formulate a question similar to - ?4 for other models of
mathematical computers. In particular, we can relativize the ? 4/’5 question
to the case of machines which compute with the aid of an oracle. When the oracle
answers membership questions about sets of binary strings, the resulting machine
class is formally quite similar to the class of Turing machines without oracle.
The main result of this paper is that the relativized .9 4r question has an
affirmative answer for some oracles but a negative answer for other oracles.

We feel that this is further evidence ofthe difficulty of the 9.4question.
By slightly altering the machine model, we can obtain differing answers to the
relativized question. This suggests that resolving the original question requires
careful analysis of the computational power of machines. It seems unlikely that
ordinary diagonalization methods are adequate for producing an example of a
language in V but not in ; such diagonalizations, we. would expect, would
apply equally well to the relativized classes, implying a negative answer to all
relativized ? questions, a contradiction. On the other hand, we do not

Received by the editors July 16, 1973, and in final revised form October 21, 1974. This work was

supported by JSEP Contract N-00014-67-A-0112-0044 and NSF Grant GK-43121 at Stanford Univer-
sity, and NSF Grant GP-38753X at the University of California, Berkeley.

" Department of Mathematics, Florida State University, Tallahassee, Florida 32306.

:t: Department of Electrical Engineering, Stanford University, Stanford, California 94305.
Department of Mathematics, University of California, Berkeley, California 94720.

431

432 THEODORE BAKER, JOHN GILL AND ROBERT SOLOVAY

feel that one can give a general method for simulating nondeterministic machines
by deterministic machines in polynomial time, since such a method should apply
as well to relativized machines and therefore imply affirmative answers to all
relativized ?X questions, also a contradiction. Our results suggest that
the study of natural, specific decision problems offers a greater chance of success
in showing - V than constructions of a more general nature.

Our model for computation with the aid of an oracle is the query machine,
which is an extension of the multitape Turing machine as described in Hopcroft
and Ullman [2]. A multitape Turing machine consists of a finite-state control unit,
a read-only input tape, a finite number of worktapes, and optionally a write-only
output tape. A query machine, described by Cook [1], is a multitape Turing machine
with a distinguished worktape, called the query tape, and three distinguished states,
called the query state, the yes state, and the no state.

The action of a query machine is similar to that of a Turing machine with the
following extension. When a query machine enters its query state, the next opera-
tion of the machine is determined by an oracle. An oracle for a set X will place
the query machine into its yes state if the binary string written on the query tape
is an element of X; otherwise the oracle places the machine into the no state.
Since there is no chance for confusion, we will identify an oracle for a set X with
the set X itself.

A query machine is deterministic if its finite control specifies at most one
possible operation for each configuration of the machine; otherwise the machine
is. nondeterministic. Certain states of a query machine’s finite control are designated
a.s accepting states. A language is recognized by a deterministic query machine
with oracle X if the machine halts on all inputs and halts in an accepting state
just when the input string belongs to the language. The language accepted by a
nondeterministic query machine with oracle X is the set of input strings for which
some possible computation of the machine halts in an accepting state.

A query machine is polynomial-bounded if there is a polynomial p(n) such that
every computation of the machine on every input of length n halts within p(n)
steps, whatever oracle X is used. For any oracle X, we denote by x the class
of languages recognized by polynomial-bounded deterministic query machines
with oracle X, and we denote byx the class of languages accepted by poly-
nomial-bounded nondeterministic query machines with oracle X. The class of
languages whose complements are in /5x is denoted by co V’x.

Every query machine can be converted to a polynomial-bounded machine
by attaching a clock which terminates every computation of the machine that
exceeds some predetermined polynomial time bound. We can thereby produce a
list ofpolynomial-bounded query machines which perform all possible polynomial-
bounded computations. We will denote by Pi the ith deterministic polynomial-
bounded machine in this list and by NPi the ith nondeterministic polynomial-
bounded query machine. Without loss of generality, we can assume that pi(n) is
a strict upper bound on the length of any computation by P or NP with oracle X
on an input of length n, where p(n) + hi. We indicate by use of a superscript
when an oracle has been specified for a query machine; thus NP and p/X denote
query machines using oracle X.

We encode each finite sequence of binary strings x l, x2,’", x,, into the

RELATIVIZATIONS OF THE =.9 QUESTION 433

binary string (Xl, X2, Xm) that is obtained from the string xa * x2 * * X
(over the alphabet {0, 1, *}) by replacing each occurrence of 0, 1, and * by 00, 01,
and 11, respectively. Both the encoding and decoding can be performed in time
bounded above by a linear function of Ixxl / Ix21 / / IXml. Note that
Ixil <-_ I(xa, X2, Xm)l for every/=< m.

Consider the canonical enumeration of binary strings" A, 0, 1, 00, 01, 10,
11,000, When convenient, we will identify the natural number with the ith
string in this enumeration. As usual, if x is a binary string, then x" denotes x con-
catenated with itself n times.

In 2 we shall construct an oracle A such that a /-A. By contrast, in
3 we shall construct an oracle B such that n 4: n. We shall also show that

many other relations between the relativized , 4/N, and cof classes can be
shown to hold for certain oracles. In 4, we describe open problems concerned
with the relativization of the Meyer-Stockmeyer N-hierarchy [6].

Some of the results of this paper have been discovered independently by
M. J. Fischer, R. Ladner, A. R. Meyer, and H. B. Hunt III. We have acknowledged
these independent contributions in the body of the paper.

2. = A/’, relativized. In this section we construct a recursive oracle A
such that A ,A. We also prove that if A is any polynomial-space complete
language, then A 4A. We conclude the section by showing that whenever
A= A, there is a deterministic procedure using oracle A which finds an
accepting computation of NP.A, on input x, provided NP.A, accepts x" the running
time ofthis procedure is bounded above by a polynomial ofthe maximum computa-
tion time of NP on input x.

Our first observation is that for every oracle X, the class x contains
polynomial-complete sets.

DEFINITION. Let 5 be a class of languages. A set K in 5 is Cook-polynomial-
complete (or simply Cook-complete) in 5e if every language in 5 can be recognized
by a polynomial-bounded deterministic query machine using oracle K. A set K
in 5 is Karp-polynomial-complete (or Karp-complete) if for every set S in 5
there is a functionf(x) computable in polynomial time such that x S ,,f(x) K.

Every Karp-complete set is Cook-complete. Ladner, Lynch, and Selmon [4]
compare the polynomial-bounded reducibilities of Cook and Karp. Note that if
K is Cook-complete in 5e, then 5e

_
#/.

LEMMA 1. For any oracle X, define the language K(X) to be {(i, x, 0")" some
computation ofNP: accepts x in fewer than n steps}. Then K(X) is Karp-complete
in dl/x. In particular, x dVx ifand only ilK(X) #x.

Proof Clearly K(X)Vx. Now suppose S Vx, say S is accepted by
NP. If we let f(x)= (i, x, 0P’tlxl)), then f(x) is computable in polynomial time.
Now x S NP.x, accepts x ,, NP accepts x in < P(lxl) steps ,, (i, x, 0p’tlxl))
K(X). Since S was arbitrary, we conclude that K(X) is Karp-complete inUx.

Clearly, ifVx x, then K(X) x. Conversely, suppose K(X) x. Then
#ttx)

_
x, and dV#x

_
#/tx)because K(X) is Cook-complete in ,x. There-

forex
_
x Q.E.D.

Remark. If/(X) is defined by {(i,x)’NP accepts x}, then/(x) does not
belong to x, since there is no uniform polynomial bound on running time of

434 THEODORE BAKER, JOHN GILL AND ROBERT SOLOVAY

machines NPi. Thus, although every language inx can be reduced to/(X)
in polynomial time,/(X) is not polynomial-complete.

The following result was also discovered, independently, by Albert Meyer
with Michael Fischer and by H. B. Hunt III.

THEOREM 1. There is an oracle A such that A
Proof We construct an oracle A such that A K(A). Let A {(i, x, 0")"NP.A,

accepts x in < n steps}. This is a valid inductive definition ofa set. In a computation
of length < n, no string of length >_ n can be queried. To simulate NPA on input x
for < n steps, we need know only which elements of length < n __< 1(i, x, 0")l
belong to A. Therefore A is well-defined, and by definition A K(A). Since
K(A) A)A, we conclude a ,/]/,,A by Lemma 1. Q.E.D.

Remarks. Kleene’s recursion theorem can also be used to produce a recursive
oracle A such that A K(A). The oracle A constructed in Theorem can be
recognized deterministically in exponential time.

We shall next show that there are naturally occurring languages A such that
A__

A language is said to be recognizable in polynomial space ifthere is a polynomial
p(n) and a deterministic Turing machine which recognizes the language and uses
no more than p(n) worktape squares on any input of length n. We denote by
the family of languages recognizable in polynomial space. We could define
to be the family of languages accepted in polynomial space by nondeterministic
Turing machines. But this definition is unnecessary because Savitch [9] has shown
that V’#5e Se; every language accepted nondeterministically in space p(n)
can be recognized deterministically in space p(n)2.

A language S is log-space reducible to A if there is a functionf(x) computable
in space log (Ixl) such that x S ,co,f(x) A. The language A is polynomial-space
complete if every language in #Se is log-space reducible to A. Since every function
computable in log space is computable in polynomial time, every polynomial-
space complete language is Karp-complete in Se. If A is polynomial-space
complete, then ’5 ,a.

One example of a polynomial-space complete language is 1EQ, the set of
valid sentences in the first-order theory of equality. Other natural examples of
word problems which represent polynomial-space complete languages are given
by Stockmeyer and Meyer 10]. An artificial example of a polynomial-space
complete language is A {(i, x, 0")" deterministic Turing machine Pi recognizes
x in space < n}.

THEOREM 2. IfA is polynomial-space complete, then A [/’A.
Proof Suppose A is polynomial-space complete. Then A 5and5

_
A.

Also 4/A

_
V’Se, since every query made of the oracle for A can be answered

in polynomial space without recourse to the oracle for A. But r6e ’6.
Therefore dt/A

4/’6 #6

_
A. Q.E.D.

When A= tA, then every language S in y#A can be recognized in
polynomial time by some deterministic query machine with oracle A. In fact,
this deterministic machine P] can be constructed so that it "simulates" a non-
deterministic machine NP that accepts S; whenever NP on input x reaches a
nondeterministic branch point in its computation, the simulating machine P
correctly decides which branch to follow.

RELATIVIZATIONS OF THE .9 /’ QUESTION 435

LEMMA 2. Suppose A is an oracle such that kA #/’A. Then for each non-
deterministic query machine NPi there is a deterministic query machine Pj such
that P’] on input x produces as output an accepting computation ofNP on input x,
whenever NP accepts x.

Proof A computation of a query machine NP is a sequence of instantaneous
descriptions of the machine. An instantaneous description is an encoding of the
total configuration of the machine, including the state of the finite control, contents
ofthe tapes, and locations oftape heads. A sequence Io, 11 ..., I,, ofinstantaneous
descriptions ofNP represents a computation ofNP if Ik encodes a configuration
of NP which can be reached in a single step from the configuration encoded by

We define COMP (X) to be the set of accepting computations of query
machines with oracle X. Specifically, COMP (X)
Io,I,... I is an accepting computation of NP on input x}. Note that
COMP (X)e x, and m < pi(]x[).

Let INIT (X) be the set of partial computations which are the initial parts
of accepting computations by machines with oracle X; that is,

INIT (X) (i, x, 0’(11), Io, I, ..., I,) there exist I,_ , ..., I such that
m p,(lx[) and (i, x, 0ei(), Io, I, ..., I) e COMP (X)}.

Then INIT (X)e Wx.
If A= A, then INIT(A) can be recognized by some deterministic

polynomial-bounded query machine with oracle A. Now suppose NP accepts
x. Then (i, x, OP(Ixl),[o) INIT (A), where Io is the instantaneous description of
the initial configuration of NP with input x. We can find an accepting computa-
tion ofNP on x as follows’

We wish to determine a computation Io, I a,"", I such that m < p(lx])
and (i, x, 0p’(II), Io, I, ..., I,) e INIT (A) for each k _N m. To find I, suppose
we have already found Io, I,
INIT (A).

Determine in polynomial time an instantaneous description I, such that
(i, X, 0pi(lx]), I0, Ik_ 1, Ik) INIT (A). (There are only finitely many possibilities
for I, since I, must be the instantaneous description of a configuration of NP
reachable in one step from the configuration described by I_.) Since NP
accepts x, we have (i, x, 0p’lxl), Io, I, "’", I)e COMP (A) for some m < p,(]x]).
Therefore we will find an accepting computation of NP on input x in a number
of steps at most a polynomial of p(lx]). Q.E.D.

We shall use the method of the proof of Lemma 2 in the proof of
Theorem 6.

3. # dV, relativized. In this section we show that there exist recursive
oracles X such that #xg Vx. (G denotes proper containment.) We shall
construct recursive sets B, C, D, E, and F such that

(i) B _: /B;
(ii) ,Ac is not closed under complementation;

436 THEODORE BAKER, JOHN GILL AND ROBERT SOLOVAY

(iii) o #o buto is closed under complementation"
(iv) e # .A;e and E Ve fq co
(v) F g yF f’)CO yF and /F # CO

(Recall that cox is the class of languages whose complements belong to
.A;x.) By suitable choices of oracles, all consistent set inclusion relations among
the relativized classes , V, and co can be realized.

For any oracle X, define the language L(X) {x" there is y X such that
lYl Ixl}. Clearly L(X)Vx. In fact, L(X) can be accepted in linear time by a
query machine that writes on its query tape a nondeterministically chosen string y
of the same length as input x, then accepts x if and only if y belongs to X.

The following result was obtained independently by Richard Ladner.
Although the next theorem follows immediately from Theorems 4-7, we include
a direct proof in order to illustrate the basic techniques of this section.

THEOREM 3. There is an oracle B such that
Proof. We construct a set B such that L(B) does not belong to n. The

construction of B proceeds in stages. We denote by B(i) the finite set of strings
placed into B prior to stage i. Recall that pi(n) is an upper bound on the lengths
of computations by P and NP for all oracles X and all inputs of length n.
Let no 0.

Stage i. Choose n > ni so large that pi(n) < 2n. Run query machine Pi with
oracle B(i) on input xi On. If P(accepts On, then place no strings into B at this
stage. Otherwise, if p/n(rejects 0n, then add to B the least string (that is, the earliest
occurring string in the canonical enumeration of binary strings) of length n not
queried during the computation of P(on input On. (Such a string exists because
not every string of length n can be queried by p{i on 0n;in p(n) steps, p/m can
ask at most pi(n) questions, and we have chosen n so that pi(n) < 2 the number
of strings of length n.) Finally, let ni+ 2n. (This will ensure that no string of
length =< 2 is added to B at a later stage.) Go to the next stage.

The computation of P on input xi is the same whether B or B(i) is used as
oracle, because no string queried by P{ on input x is later added to or deleted
from B. At stage i, we ensure that Pf does not recognize L(B); by construction,
pi and hence Pf rejects xi iff some string of length Ix[belongs to B, that is, iff
xi L(B). Therefore L(B) does not belong to n. Q.E.D.

The set B constructed in the proof of Theorem 3 is sparse; for every n, there
is at most one string x in B such that n __< Ixl < 2n. An obvious modification of the
proofofTheorem 3 yields the following result" there are arbitrarily sparse recursive
sets such that 5n -=

Richard Ladner has shown that there are oracles B recognizable deter-
ministically in exponential time such that # V.

The proof of Theorem 3 makes use of the fact that we can query an oracle
about any number of length n in approximately n steps. We can therefore conclude
that L(B)e VN. Alternate models for query machines involve the notion of
oracle tapes. In one model, a query machine is supplied with a tape on which
are written the strings in the oracle set, separated by asterisks and listed in increas-
ing order. A variation of this model is obtained by supplying the query machine
with an oracle tape on which is written the characteristic function of the oracle
set. With these models of query machines, our proofs of Theorems 1-3 are no

RELATIVIZATIONS OF THE i =.9 1/’ QUESTION 437

longer valid. Paul Morris [7] has pointed out that with the oracle-tape models
for query machines, if ,/V, then x y,x for every oracle X.

From Theorems and 3 we see that the answer to the question x ?x
depends on the oracle X. Kurt Mehlhorn [-5-] has shown that the family of oracles X
for which x yx is a "meagre" set in a space of recursive oracles. In this
sense, "most" oracles satisfy x x.

The next result follows from Theorem 6, but again the direct proof is much
simpler.

THEOREM 4. There is an oracle C such thatc is not closed under comple-
mentation.

Proof By a construction very similar to that of Theorem 3, we generate an
oracle C such that ,c does not contain E(c), the complement of L(C). Let C(i)
be the set of string placed into C before stage i, and let no 0.

Stage i. Choose n > n so that p(n) < 2". (Thus n is greater than the length
of every string queried earlier in this construction.) Run nondeterministic query
machine NPi with oracle C(i) on input xi 0". If NP) accepts 0", then choose
any accepting computation and place into C some string of length n not queried
during this computation. Otherwise, place no string into C at this stage. Let
n+l 2", and go to next stage.

By construction, NPc accepts x iff some string of length Ixil belongs to C,
that is, iff x L(C). Consequently NP does not accept E(C). Therefore E(C)
does not belong to c. Q.E.D.

The next result is due to Albert Meyer with Michael Fischer and, inde-
pendently, to Richard Ladner.

THEOREM 5. There is an oracle D such that o :/: ro but dt/ is closed
under complementation.

Proof. It is easily seen that dl/’x is closed under complementation if and
only if (X) /x, where (X) is the complement of the Karp-complete
language K(X). We shall construct an oracle D such that (i) L(D) dV o
and (ii) u o iff u is a prefix of some string v in D such that Ivl 2lul. Then
o :o from (i); and K’(D)V from (ii) and so U is closed under
complementation.

At stage n in the construction, we decide the membership in D of all strings
of length n. In the course of the construction, some strings will be reserved for D,
that is, designated as nonmembers of D. An index will be cancelled at some
stage when we ensure that pO does not recognize L(D). As usual, D(n) denotes
those strings placed into D prior to stage n.

Stage n 2m. For every string z of length n 2m not reserved for D at an
earlier stage, determine the prefix u of z of length m. If u encodes a triple (i, x, 0),
then place z into D iff NP.,") does not accept x in fewer than steps.

Stage n 2m + 1. Let be the least uncancelled index. If any string of length
>_ n has been reserved for , or if p(n) >_ 2m, then add no elements to D at this
stage. Otherwise, run Pi with oracle D(n) on input 0" and reserve for D all strings
of length >=n queried during this computation. If pgt,) accepts 0", then add no
elements to D. But if pot,) rejects 0", then add to D the least string of length n
not queried (and so not reserved for). Finally cancel index i.

Every index is eventually cancelled, and when index is cancelled at some

438 THEODORE BAKER, JOHN GILL AND ROBERT SOLOVAY

stage, we have guaranteed that P does not recognize L(D). Therefore L(D)
lo o.

At any odd stage 2m + 1, at most p(n) < 2" strings are reserved for D, and
so fewer than 2o + 2 + + 2 < 2 strings of length 2m can be reserved
for D at odd stages before stage 2m. Therefore every string u of length rn is the
prefix of at least one string v of length 2m which is never reserved for D. By
construction, ueK’(D) iff u prefixes a number reD of length 21ul, and so
K(D) e f-o. Q.E.D.

The next theorem gives an answer to a question posed by Albert Meyer.
THEORE 6. There is an oracle E such that V’ and -4f-I co dV.
Proof The construction of E is considerably more complicated than that of

the preceding oracles. As usual, we guarantee that L(E) is not in E and so e
va Ve. But we must also ensure that whenever both S and its complement $
belong to g’e, then S in fact is in ’e.

The rough idea of the proof is the following. By adding infinitely many new
elements to an oracle A such that A A, we obtain an oracle E such that
e :/: E. Now if we could quickly recognize the set E A, then e g’e.
Although we cannot quickly recognize the entire set E A, we can arrange the
construction so that whenever both S and its complement are accepted in
polynomial time by nondeterministic query machines with oracle E, then we can
quickly recognize relevant portions of the set E A, so that we can then combine
the machines accepting S and S into a deterministic machine to recognize S.

Define e(n) inductively by e(0) 0 and e(n + 1) 22"). Choose any oracle A
such that a= Va. Without any loss of generality, we can assume that A
contains no elements of length e(n) for any n > 0. The oracle E is obtained by
adding to A at stage n at most one string of length e(n). Let E(0) A and let E(n)
denote the set of numbers placed into E before stage n. There are two types of
requirements to be satisfied in the construction of E. An unsatisfied requirement
(i, i) is vulnerable at stage n if pi(e(n)) < 2e("). An unsatisfied requirement (j, k)
withj -Ta k is vulnerable at stage n if there is a string x such that e(n 1) < log2 (Ixl)
<= e(n) <= max {pj(lxl), pk([xl)} < e(n + 1)and neither NPjnor NP with oracle E(n)
accepts x. We agree that requirement r has higher priority than requirement r2
just when r < r2.

Stage n. We satisfy the requirement of highest priority that is vulnerable at
stage n. To satisfy requirement (j, k) with j 4: k, we simply add no string to E at
this stage. To satisfy requirement (i, i), we run Pi with oracle E(n) on input 0e(").
If P") rejects 0e"), then we add to E the least string of length e(n) not queried by
P") on input 0e") otherwise we add no new element to E.

Every requirement (i, i) is eventually satisfied, since there are only finitely
many requirements of higher priority. Suppose requirement (i, i) is satisfied at
stage n. Then P rejects 0e(") iff there is a string in E of length e(n), and so Pf does
not recognize L(E). Therefore L(E) g .

Now suppose S and $ belong to 4/E. We must show that S e ,e. Assume
NP accepts S and NPf accepts $. Note that requirement (j, k) is never satisfied,
else there would be a string x accepted by neither NPf nor NP. Let m be so
large that

RELATIVIZATIONS OF THE i __? dl/’ QUESTION 439

(i) for every x such that [xl > e(m) there is at most one n such that log2
<= e(n) <__ max {pj([xl),

(ii) if a requirement of higher priority than requirement (,j, k) is ever satisfied,
then it is satisfied before stage m.

We can decide S deterministically in polynomial time using oracle E by the
following procedure"

With input x, if Ix] < e(m), then use a finite table to decide if x e S. Otherwise

Ixl > e(m). Calculate the least n such that e(n) > log2 Ix[. Determine which elements
were added to E before stage n by querying the oracle E about all strings of lengths
e(0), e(1), ..., e(n 1). Only O(Ix]) strings need be queried here, since e(n 1)
-<_ log2 Ixl.

Now there are two cases. If e(n) > max {pj(Ixl), Pk(lXl)}, then no computation
of either NP or NP can query oracle E about any string of length >= e(n). There-
fore the computation ofNPion input x is the same with oracle E(n)as with oracle E.
Since we have already calculated E(n)- A, we can produce a query machine

NW")-i(,) which simulates NP(") but makes no queries about strings of length e(m)
for any m < n; these queries are answered without recourse to the oracle E(n) by
using the finite table of elements of E(n) A. Clearly NPi(,) on input x gives the
same result with oracle A as with oracle E(n). Therefore NP accepts x if and only
if N/,,) accepts x, that is, iff (i(n), x, 0p(I’I)) K(A). (We can easily make sure
that NPi(.) has the same running time bound as NPi, and that the length of the
index i(n) is at most a polynomial of Ixl.) Since K(A) belongs to A, we can now
determine in polynomial time if NP accepts x.

In the other case, e(n) <__ max {p(Ixl), Pk(IX[)}. If neither NP nor NPk with
oracle E(n) accepted x, then requirement (j, k> would be satisfied at stage n.
But requirement (j, k) can never be satisfied, for then both NP and NP would
reject x. Therefore at least one of NP(") and lVrk accepts x. As in the first case,
since we know E(n)- A, we can discover in polynomial time which machine
accepts x.

ITDE(n) accepts x, the argu-Suppose, to be definite, NPf") accepts x. (In case ,,k
ment is similar.) We must now determine if NP accepts x, where E might contain
a string of length e(n) not in E(n).

Since iA ,/]/"lia and since we have already calculated E(n) A, we can
use the method of Lemma 2 to find an accepting computation ofNP’) on input x.
Now we examine this computation to see if it represents a valid computation
when oracle E is used instead of E(n). Whenever a string y of length e(n) is queried

NpE(n)by _._; on x, we consult oracle E about y. There are two subcases.
If no such y belongs to E, then the computation ofNP(’ on x is the same as

the computation of NP on x. Now NP(") accepts x, and so NP also accepts x.
We conclude that x 6 S.

NpE(n)In the other subcase, .._j on input x queries some string y of length e(n)
which belongs to E. By construction, there is at most one number in E of length
e(n). Thus we have correctly calculated E(n + 1) E(n). Earlier we found E(n) A,
so we now know E(n + 1) A. Using the method of the first case above, we can
finally determine which of machines NPj and NPk with oracle E(n + 1) accepts x.
Since e(n + 1)> max {pj(lxl),pk(lXl)}, no number of length >__e(n + 1) can be
queried by NPf or NPf on x, so NPf accepts x iff NPf’’+ 1, accepts x. Q.E.D.

440 THEODORE BAKER, JOHN GILL AND ROBERT SOLOVAY

The next result accounts for the only remaining relation between relativized
classes and

THEOREM 7. There is an oracle F such that F
_
ffF CI CO t/’F

Proof. We outline the construction. Let LI(F) {x:lxl is even and there is
y e F with lyl- Ixl}, and let L2(F) {x:lxl is odd and there is a string 0y e F
with 10yl- Ixl}. Modify the construction of Theorem 4 so that
-co ff5F and L2(F) e4 f) coF 5F. TO force L2(F)e/F fq co /-F,
we require that for every odd n there is a string 0y of length .n in F iff there is
no string y of length n in F. We omit the details. Q.E.D.

In this section we have constructed oracles X such that Nx
_
,-x. The

principal method for showing that rx properly contains x is to ensure that
L(X) 4/x- x. It is easy to modify the proof of Theorem 3 to obtain an
oracle X for which L(X)e A/x, but every deterministic query machine, with
oracle X that recognizes L(X) requires exponential time for all but finitely many
inputs.

4. Open problems. We shall describe several open problems suggested by
Albert Meyer. First we recall another characterization of ff [6.

LMMA 3. A language L belongs to ,4/ iff there is a polynomial p(n) and a
predicate R(x, y) in such that x L (:ly)[[y _< p(Ixl) & R(x, y)].

Proof. (.,=) Suppose x L . (:ly)[[y =< p(Ix[) & R(x, y)]. Then we can accept L
in polynomial time by nondeterministically selecting a string y such that
<= p(Ixl) and accepting x if R(x, y) is true.

() If LI/’, then L is accepted by some query machine NPi. Define
predicate R(x, y) to hold iff y encodes an accepting computation ofNP on input x.
Clearly R(x, y) belongs to . We then choose a polynomial p(n) large enough that
lYl < p(Ixl) whenever y encodes a computation of length =< pi(Ixl). Q.E.D.

One can draw analogies between the class of languages recognizable in
polynomial time and the class of recursive (decidable) languages. We may
consider a language "practically" decidable if it can be decided by some deter-
ministic polynomial-bounded procedure. From Lemma 3, / contains exactly
those languages definable by polynomial-bounded existential quantification over
predicates in . Similarly, co ff contains those languages definable by poly-
nomial-bounded universal quantification over predicates in . Thus t/ corres-
ponds to Z in Kleene’s arithmetic hierarchy [8], while co corresponds to H

Meyer and Stockmeyer [6] have defined a polynomial-bounded analogue
of the arithmetic hierarchy, the -hierarchy. They define Z o IIo Ao to be
the class . Then E ’+ is the class of languages definable by polynomial-bounded
existential quantification over predicates in FI; that is, LZ+a iff there is a
polynomial p(n) and a predicate R(x, y) in FI/ such that x L (:ly)[ly =<
& R(x, y)]. Similarly, FI+ contains exactly those languages definable by poly-
nomial-bounded universal quantification over predicates in E. (Equivalently,
L E/ iff there is a polynomial p(n) and a predicate R(x, yl, "’", Y) in such that
x L, (:lyl)(Vy2)... (Qyi)[lyll, ly21, "’", lYil <= p(lxl)& g(x, Yl,’", Yi)], where
there are alternations of polynomial-bounded quantifiers.) Aft+ is defined to be
the class of languages recognizable in polynomial time with the aid of an oracle
for some language in E if;that is, L Aff+l iff L s for some S in E. The ’-

RELATIVIZATIONS OF THE # =.9 /"/ QUESTION 441

hierarchy is {Zf, I-If, Af’i >_ 0}.
The -hierarchy shares several of the properties of the arithmetic hierarchy"
(i) LeZfEe 1-I;

(ii) Z U 1-I
_
A+ Z+ 0 H+ 1.

However, it is not known if any of the inclusions in (ii) are proper; the -hierarchy
may consist of only a single class, namely,Z Hff A . One of the results
of [6] implies the following.

LEMMA 4 (Meyer-Stockmeyer). If2 Hfor any 1, thenZf nf zf
for every j i. In particular, if , then E H Af for every i.

From Lemma 4 we see that proving E Hf for any 1 is a dicult
problem since is an immediate consequence.

It is easy to relativize the -hierarchy. For any oracle X, let Eft’x Hff’x

_-A,X Nx. Then E e’x+ is the class of languages definable by polynomial-
bounded existential quantification over predicates in H’X"also. He’xg+ is the class
of languages definable by polynomial-bounded universal quantification over
predicates in E’x; and Af; contains languages L such that L es for some
S e E’x. The , X-hierarchy is {E’x, H’x, A’X’i . 0}.

Properties (i) and (ii) hold for relativized -hierarchies, as does Lemma 4.
For the oracle A of Theorem 1,a a, hence the , A-hierarchy collapses
entirely. If D is the oracle of Theorem 5, then Eft’ Ef’ Hf’; the ,D-
hierarchy consists of only two levels. If E is the oracle of Theorem 6, then E ’e
Ef’ Ef’ (since Hf’ Ef’e) andE’e Ef’e 0 Hf’e.

Several questions can be asked about relativized -hierarchies.
,X(i) Does there exist an oracle X such that E’x N Ei + for all i, that is, such

that the , X-hierarchy contains infinitely many distinct classes?
(ii) Does there exist an oracle X such that E_e’x NE.’x E+,e’x that is,the, X-hierarchy extends exactly levels?
(iii) Does there exist an oracle X such that the N, X-hierarchy is not trivial

but Zf,x Af; Z ,X Oi+ H+ for all 9.
(Only question (i) has an armative answer for the arithmetic hierarchy.)

An interesting open question, less general than (i)-(iii) is
n,x9(iv) Does there exist an oracle X such that Ef’x -2

We were unable to settle (iv) by the methods of this paper.

Acknowledgments. We wish to thank Richard Ladner, Albert Meyer, and
Michael Fischer for allowing us to report their results in this paper. We are
especially grateful to Albert Meyer for suggesting Theorem 6 and the open problems
of 4. We thank the referees for their corrections and suggestions.

REFERENCES

[1] S. A. CooK, The complexity oftheorem-proving procedures, Proc. Third Annual ACM Symposium
on the Theory of Computing, Shaker Heights, Ohio, 1971, pp. 151-158.

[2] J. HOPCROFT AND J. ULLMAN, Formal Languages and their Relation to Automata, Addison-Wesley,
Reading, Mass., 1969.

[3] R. M. K,RP, Reducibility among combinatorialproblems, Complexity of Computer Computations,
R. E. Miller and J. W. Thatcher, eds., Plenum Press, New York, 1972, pp. 85-104.

[4] R. LADNER, N. LyNch aND A. SELMAN, Comparison ofpolynomial-time reducibilities, Proc. Sixth
Annual ACM Symposium .on the Theory of Computing, Seattle, Wash., 1974, pp. 110-121.

442 THEODORE BAKER JOHN GILL AND ROBERT SOLOVAY

[5] K. MEHLHORN, On the size of computable functions, Proc. 14th IEEE Symposium on Switching
and Automata Theory, Iowa City, Iowa, 1973, pp. 190-196.

[6] A. R. MEYER AND L. J. STOCKMEYER The equivalence problemfor regular expressions with squaring
requires exponential space, Proc. 13th IEEE Symposium on Switching and Automata Theory,
1972, pp. 125-129.

[7] P. H. MORRIS, personal communication.
[8] H. ROGERS, JR., Theory of Recursive Functions and Effective Computability, McGraw-Hill,

New York, 1967.
[9] W. J. SAVITCH, Relationships between nondeterministic and deterministic tape complexities, J.

Comput. System Sci., 4 (1970), pp. 177-192.
[10] L. J. STOCKMEVER AND A. R. MEYER, Word problems requiring exponential time." preliminary

report, Proc. Fifth Annual ACM Symposium on the Theory of Computing, Austin, Texas,
1973, pp. 1-9.

SIAM J. Cor,tx.
Vol. 4, No. 4, December 1975

PRESERVING PROXIMITY IN ARRAYS*

ARNOLD L. ROSENBERG"

Abstract. Efficiency of storage management ifi algorithms which use arrays is often enhanced if
the arrays are stored in a proximity-preserving manner; that is, array positions which are close to one
another in the array are stored close to one another. This paper is devoted to studying certain qualita-
tive and quantitative questions concerning preservation of proximity by array storage schemes (or,
realizations). It is shown that fully extendible array realizations cannot preserve proximity, in any
global sense, not even proximity along a single direction (say, along rows). They can, however, preserve
proximity in certain local senses; and realizations which are optimal in various senses of local preserva-
tion are exhibited. Partially extendible array storage schemes can preserve proximity in a global way;
bounds on their "diameters of preservation" are derived, and optimal schemes are exhibited.

Key words, array, array realization, extendible array, storage allocation

1. Introduction. Algorithms which operate on arrays usually access an array
by local groups of positions; that is, the array position accessed after position t

usually lies within a small neighborhood of ft. For instance, the conventional matrix
multiplication scheme traverses matrices along rows and columns, as do many
table-searching algorithms. Strassen’s matrix multiplication scheme [8] does not
proceed along rows or columns, but it does (at the bottom of the recursions) access
matrices in blocks of four positions. The overhead for storage management or
bookkeeping in such algorithms can be decreased materially if the arrays to be
manipulated are stored so as to preserve proximity, that is, if positions which
are close to one another in the array are stored close to one another. Preservation
of proximity is especially important when dealing with arrays which are very large
or which, by means of a series of extensions, can become very large. When dealing
with such a (potentially) large array, one must plan for the contingency that the
array cannot be accommodated, in its entirety, in main memory; that is, the array
might have to be segmented, relegated to some backup store, and processed in
main memory in pieces. Since transfers in and out of auxiliary memory tend to be
costly, efficiency in such a paging environment is enhanced if the array segments
which are brought into main memory admit significant processing before a new
segment is needed. To the extent that the above-mentioned tendency to access
arrays in local groups of positions is accurate, efficiency in a paging environment
is thus enhanced by storing arrays in a proximity-preserving manner. Our purpose
in this paper is to investigate certain qualitative and quantitative questions
concerning the preservation of proximity by computed-access schemes for
allocating storage for arrays.

We investigate three classes of arrays, finite arrays, prism arrays which are
finite in all but one direction, and orthant arrays which are infinite in every direction.

Received by the editors June 14, 1974, and in revised form October 25, 1974.

" Mathematical Sciences Department, IBM Thomas J. Watson Research Center, Yorktown
Heights, New York 10598.

We say that an array storage scheme uses computed access if it determines the address assigned
to array position rr from rr’s coordinates, as a displacement from the address assigned to position
(1, 1,..., 1).

443

444 ARNOLD L. ROSENBERG

We consider infinite as well as finite arrays to accommodate our notion of exten-
dibility in array realizations [5]" We say that an array allocation scheme is exten-
dible in a given direction if it realizes an array which is infinite in that direction;
thus, full extendibility resides in realizations of orthant arrays. We prove that fully
extendible array realizations cannot preserve proximity globally, not even in a
single direction (say along rows in two dimensions). They can, however, preserve
proximity locally, according to various criteria; and we derive realizations which
are optimal in certain senses of local preservation. We show that realizations of
prism ind finite arrays can preserve proximity in a global sense; and we derive
lower bounds on the diameters of preservation of such realizations. We give a
recipe for constructing prism realizations which achieve the prism array lower
bound. We do not know if the finite array lower bound is achievable, but we note
that it is approachable.

The global results on orthant and prism arrays are obtained by studying
functions which linearize the shift chains introduced in [5]. One benefit of using
this intermediary notion is that our results have application to questions concern-
ing preservation of proximity when linearizing data structures other than arrays,
for example, infinite trees, lists of infinite lists, and other infinite "filamentous"
structures. (These linearizations need not, of course, be for the purpose of assign-
ing addresses. They might represent a schedule for "dovetailing" processes, or a
route for threading the filamentous structure, for instance.)

Rather diverse problems concerning computation can be formulated as
questions about the integer lattice points in Euclidean d-space. In addition to
our current study of preservation of proximity in arrays, Stockmeyer [7] and the
author [5], [6] have studied questions concerning the cost of extendibility in array
realizations in terms of questions about the discrete positive orthant of d-space.
Mylopoulos and Pavlidis [4] were led by consideration of picture processing and
pattern recognition to study certain topological properties of discrete spaces.
Wong and Maddocks [9] were led by problems concerning multimodule computer
memory organizations to study discrete d-dimensional spheres. Karp, McKellar,
and Wong [2] were concerned with distance-minimizing arrangements of records
on a two-dimensional grid. This variety of applications lends hope that results
obtained in this area may have broader implications than the motivating problems
suggest.

2. Basic notions
2.1. Background. Let N denote the positive integers; for nN, let

N. 1, ..., n} for d N, let Na denote the set of d-tuples of positive integers.
We let e ambiguously denote the tuples (1, ..., 1), relying on context to remove
ambiguity.

For each n Na, we denote by n the ith coordinate of n (so e for each
i). Four functions on tuples will be useful in the sequel" Say n e N. Then E(n)

=t hi, 1-I(n) 1-I= ,, m() min {hi} M() max
For each d N, we have use for the following set of functions from N

Ma {Sidli Nd} {S’dli Nd}.

PRESERVING PROXIMITY IN ARRAYS 445

For each r Nd, and each Nd,

zj+ ifj=i,
(Sid(Tr,))

7j ifj 4: i"

Zrj--1 ifj---i) ifzri> 1,
(S’id(Z))j- Zrj ifj 4:

undefined otherwise.

Thus sd (resp., s’ia) can be viewed as the successor (resp., predecessor) in the axis
direction in the d-dimensional positive orthant.

2.2. Arrays and their realizations. We are concerned with computed-access
schemes for storing arrays. (See footnote .) Accordingly, we study the formal
notion of array scheme, which is basically the set of positions of an array (i.e., an
array with no data items); for mathematical simplicity, we view an array scheme
as being imbedded in the positive orthant of Euclidean space (of appropriate
dimensionality) with its positions at the integer lattice points. A realization of an
array scheme is then just a one-to-one map of the positions of the array scheme into
N, normalized so that position e is assigned address 1. This normalization is not
necessary for our development, but it does somewhat simplify certain computations
later (specifically, the proofs ofTheorems 5.2 and 5.3); it also has the aesthetic merit
of making our realizations "begin" at the origin position.

(2.1) A d-dimensional array scheme (array for short) is a set A C x
x Cn of positions. Each coordinate set C is either the set N or the
set N, for some n e N.
When C C2 Cd N (i.e., A Nd), we call A the d-
dimensional orthant array, and we denote A by fd.
When one C N, and all others are finite, we call A a prism array.

Our array schemes are rectangular--that is, A is the cross product of its
coordinate setsin conformity with convention. We allow our arrays to be infinite
in some or all coordinates in order to accommodate our formal notion ofextendible
array realization.

(2.2) A realization of the array scheme A C x x Cd is a total
one-to-one map r:A N such that r(e) 1.
If C N, then we say that r is extendible in direction i.
If A fd, then we say that r is fully extendible, and we call r a d-
dimensional extendible array realization.

Very informally, we associate extendibility in an array realization r with the
realization’s assigning addresses for an array which is infinite in directions of
"easy extendibility." Expansions along these directions of a finite array stored
by r can be accommodated without changing the (computational) form of r and
without moving the already stored positions. We equate this stability with easy
extendibility. We refer the reader to [5], [6] for further discussion of the rationale
behind our notions of "array scheme" and "extendible array realization."

446 ARNOLD L. ROSENBERG

3. General results. In this section we establish certain general results which
we specialize later to study preservation of proximity in arrays.

3.1. Neighborhoods in the positive orthant. Position p of an array is within
distance r of position rc if p lies in the radius r neighborhood of t. Many of our results
concerningpreservation ofproximitycanbe deducedfromknowledge ofthe volumes
(in number of integer lattice points) of these discrete neighborhoods. We envisage
arrays as being traversed, in general, along the axes, i.e., with sequences of moves
from Ma; accordingly, we study only neighborhoods defined in terms of the
rectilinear (or L1) metric, diStl (n,p)= Ei[7i- Pl. Had we chosen another
standard metric--say the Euclidean (or L2) metric, dist 2 (rt, p) (Ei(r pi)2)1/2,
or the maximum (or L) metric, dist (re, p) max {Irci Pil}--our investigation
would have changed in detail but not in concept. (We refer the reader who is
curious about the changes involved in switching metrics to [2] and to 5.4.)
(3.1) Let r be in Nd. The radius r neighborhood of re, denoted N(rt" r)

(r e N U {0}), is defined as follows.

N(rc’O) {re}"
N(rc r + 1) N(rt r) [.J {s() s s Md and N(rt r) domain (s)}.
The volume of N(rt; r) is A/(rc r) # N(rc; r).

N(rc; r) is thus the set of all lattice points in N reachable from rc in r or fewer
moves. (The use of the rectilinear metric is reflected in the fact that only "moves"
from Me are allowed.)

We now estimate the volume of neighborhoods.
THEOREM 3.1. Let n be in N.

;r) o(a) For all r N U {0},
d

(r+d) (r+d-(b) For all reN_ U {0}, ; r) > +
d d

In any case, ; r) O(re).
Proo Fix on an arbitrary r e N U {0}.
(a) Lower bound. It is obvious that, for all e Ne, ;r) e;r). One

easily verifies that N(e; r) { e. Neld N 2() N r + d}. The cardinality of this set

r+d)is seen to be as follows" Lay out r + d markers a line. Insert, an
d

arbitrary pattern, d separators, each immediately to the right of some marker
(so at most one separator separates adjacent markers). Discard all those markers
which are to the right of the rightmost separator. The remaining configuration
specifies a unique element of N(; r), and every element is so specifiable.

Upper bound. It is not hard to see that, for all e Ne,
(;r) N ((r + 1).e; rl.

[Note that N((r + 1). e;r) is an entire radius r d-sphere; that is, one can pro-
ceed r steps in any direction from (r + 1).e (r + 1,..., r + 1) without
being interrupted by a boundary of the orthant.] Indeed, equality obtains precisely

By g(n) O(f(n))" we mean that there exist positive constants K and K such that K .f(n)
< g(n) < K. f(n) for almost all n.

PRESERVING PROXIMITY IN ARRAYS 447

when r < re(n). Wong and Maddocks [9] show that the volume ofa radius r d-sphere

(b) Let M {n e NelM(n) > r}. Let rc((k e Ne) be that element of M such
that r + 1, and for k. It is not hard to verify that, for all e M,

" r) r). (Intuitively,(has the least space to grow in, amongelements
of M.) Now, N(r) can be partitioned into the two sets

A { 6 N((k) r)lk r + },
B {N(tk);r)lZk < r + 1}.

The first set, A, is isomorphic to N(e; r) under the correspondence C N(e; r)
sj() A.3 The second set, B, is isomorphic to N(e;r 1) under the corres--2+)() B. Part (b) now follows from the lowerpondence N(e, r 1) Skd

bound argument of part (a).
Remark. The interested reader can easily verify the following extensions to

Theorem 3.1. (i) The lower bound of part (a) is achieved precisely when
(ii) The upper bound of part (a) is achieved precisely when m(=) > r. (iii) The bound
of part (b) is exact (i.e., equality holds) whenever d of ’s coordinates are 1.

Remark. The fact that N(; r) has volume O(r) is insensitive to the choice of
the L or L2 or L metric. us, at least in a gross sense, our results are independent
of the metric employed. Ofcourse, those results which depend on the actual growth
rate as opposed to just its order are not insensitive to the chosen metric.

3.2. Preserving proximi shift chains. Certain results concerning preserva-
tion of proximity in infinite arrays do not depend on the cross-hatched move
structure ofarrays (as exposed by Md), but rather on the presence oflong "filaments"
or chains in the arrays. We now abstract the arguments needed to prove these
results, and we consider the problem of preserving proximity in shift chains. This
abstraction serves two purposes. First (and foremost) it exposes the essence of
certa of our arguments about arrays. Second, it establishes results about lineari-
zations of infinite filamentous data structures other than arrays, for example,
infinite trees or infinite lists of lists. As we mentioned in the Introduction, the
linearizations of these data structures need not be for the purpose of assigning
addresses they may be for the purpose ofthreading the structures, of "dovetailing"
processes, etc. The reader should have no problem in transporting our results into
a variety of settings related to such linearizations.

Let s be a transformation of a set S, i.e., a (possibly nontotal) function from
S into S. For arbitrary a, z S, we say that a s-precedes zwritten a < rif
stk)(a) Z for some k N (see footnote 3). Clearly <s is a transitive relation.

(3.2)The transformation s of S is a shift (of S) if the following conditions hold.
(a) s is one-to-one.
(b) < is cycle-free--for no k e N does stk) have a fixed point.
(c) Each a e s(S) (the range of s) has an s-predecessor which is not

in s(S).

Generally, str) is the r-fold composition of the function s. Obviously, tr) is one-to-one.Okd

N(e" k) is empty for k < 0" Stk a) S,tna).

448 ARNOLD L. ROSENBERG

The relation <s yields a set A(s)
_

S of atomic elements which are not in the
range of s. When s is a shift, S is partitioned in a natural way into shift chains"
For each A(s), there is a shift chain C()= {} U {sk)()lk N} which is
linearly ordered by <s. (The proofs of linearity and of partition are left to the
reader.)

Remark. Each axis successor sin is a shift of every d-dimensional array. In
two dimensions, the shift chains resulting from s12 and s22 are called columns and
rows, respectively.

The decomposition of S into shift chains affords us the desired analogue of
neighborhood.

(3.3) Let s be a shift of,the set S. For r S and n N U (0}, the n-slice ofS
generated by s based at a is denoted S(a; n) (s will always be clear from
context) and is defined inductively as follows.

;0) {o};

S(a’k + 1)
U if tr domain sk+l)

if tr domain S(k + 1).

An n-slice is thus a one-sided one-dimensional neighborhood.

(3.4) Let s be a shift of the set S, and let f" S --. N be a total function. We say
that f preserves the n-slices generated by s (n e N) if there is a d, e N
such that, for all tre S and all re, p e S(tr; n), If(rt)- f(P)l < d,. The
smallest such d, is called the diameter (of preservation).

The diameter of preservation is the size of the smallest interval capable of holding
the images under f of s’s n-slices; i.e., at. measures the extent to which f spreads
out the slices. (3.4) formalizes and quantifies our notion of preserving proximity
in shift chains.

(3.5) The shift s is l-limited [1 e N I,,J {0}] (resp., unlimited) if the relation <s
gives rise to precisely (resp., infinitely many) infinite shift chains.

Remark. With a prism array, one axis successor is (l > 0)-limited and all
others are 0-limited. With an orthant array, all successors are unlimited.

THEOREM 3.2. Let s be an unlimited shift of the set S. If there exists n e N such
that the total function f" S N preserves the n-slices generated by s, then f is not
one-to-one.

Proof. Assume that f is one-to-one and preserves n-slices with diameter d,.
Let A

_
A(s) comprise the atomic elements of the infinite shift chains of <s.

Since A is infinite and f is total, there exists b e N such that the set B { e AIf(a)
__< b} contains at least d. elements. Since f is one-to-one and all the shift chains
associated with elements of B are infinite, each chain C() with e B must contain
elements t for which f(a) __> b + d,. For e B, let/() be that element stk)() of C()
for which (i) f(#(t)) >_ b + d,, and (ii) < k implies f(st)()) < b + d,. Let v(a)

stk-)(). By choice of b, v() exists; by (ii), f(v()) < b + d.. Now, f preserves

For any function s’S S, s) is the identity transformation on S.

PRESERVING PROXIMITY IN ARRAYS 449

n-slices with diameter d, "therefore, f(u(s)) f(v(s)) < d., so that f(v(s)) must lie
in the interval ! {b + 1, b + 2, ..., b + d, }. Since s was chosen arbitrarily
from B, the interval I must contain the images f(a) of at least d. elements a e S.
We must conclude either that f is not one-to-one, or (since d, was arbitrary) that
f does not preserve n-slices, l-I

Remark. If one views f as assigning addresses to S, then Theorem 3.2 says
that distance in storage is not functionally related to distance along shift chains.
Ifone views f as specifying a schedule for visiting the elements of S, then the theorem
says that one cannot plan to visit the shift chains within bounded intervals (i.e.,
one cannot plan to visit each individual chain at intervals of k or fewer time units).

When the shift s is limited, one can preserve n-slices for all n. The technique
used in the proof of Theorem 3.2 permits us to bound tightly the diameter of pre-
servation in the limited case.

THEOREM 3.3. Let s be an l-limited shift of the set S. Say that the one-to-one
total function f’S --. N preserves n-slices generated by s with diameter d.. Then
d,>=l.n+ 1.

Proof Let A
_

A(s) comprise the atomic elements of the infinite shift chains
of < let m max {f(s)ls A}. (m exists since f is total.)

Assume, for contradiction, that f preserves n-slices with diameter d. __< 1. n.
Then, since fis one-to-one, the interval I {m + 1, ..., m + d, must contain
images of fewer than n elements from some shift chain C(so) with So A. (1 con-
tains fewer than 1. n integers, hence fewer than I. n images.)

For k N [.J {0}, denote by s the element s s)(So) C(so). Let u >= 0
be the largest integer for which f(s,) _< m. Let v > u be the smallest integer for which
f(s) >= m + d.. Clearly v u =< n, or else the interval I would contain the images
of (at least) n elements of C(so), contrary to assumption. But, if v u =< n, then

so e S(s,; n); and then the fact that If(so) f(s.)l >= d. would contradict either the
fact that f is one-to-one, or the assumption that f preserves n-slices with diameter
d, < l.n + 1. fl

Remark. The lower bound ofTheorem 3.3 is best possible since it is achievable
whenever A A(s). To wit, if A {el, "’", Sl} (ignoring the notation of the pre-
ceding proof), define f" S N by" f(s()(sj)) k. + j for k N U {0} and j N.
One verifies easily that f is one-to-one and total and that f preserves the n-slices
generated by s with diameter d, I. n + 1.

4. Global preservation of proximity. The results of 3 allow us to settle
completely the question of globally preserving proximity when realizing arrays:
Global preservation is possible with finite and prism arrays and is impossible for
arrays which are extendible in more than one direction;in the former cases, tight
lower bounds on diameter of preservation can be derived.

Our formal notion of global preservation of proximity follows (3.4).

(4.1) Let r be a realization of the array scheme A. We say that r globally
preserves n-neighborhoods (n N) if there is a d, e N such that, for all
rce A and all p, tr e N(rc; n) A, Ir(p) r(tr)l < d.. The smallest
such d. is called the diameter (of preservation).

As with (3.4), the diameter d. is the size of the smallest interval capable of holding

450 ARNOLD L. ROSENBERG

the image under r of any n-neighborhood within A (i.e., the portion of the neighbor-
hood that lies within A). Since we shall be concerned only with global preservation
in this section, we shall omit the qualifier "global" in what follows.

4.1. Finite arrays. Every realization of a finite array preserves neighborhoods.
Thus the question ofpreserving proximity in finite arrays can be resolved by bound-
ing from below the diameter of preservation and determining whether or not the
derived bound is achievable.

Let A N, x x Nld be a d-dimensional finite array. We call ’A (Ix,
-’, ld) the size vector of A.

THEOREM 4.1. Let r realize the finite array A c Na. There is a constant c > 0,
depending only on d, such that, if r preserves n-neighborhoods with diameter d,,
then d, > c. n. m(,,A)d- whenever n < m(2A).

Remark. The growth rate of d can be exposed in more detail, but only at
the cost of investigating cases. In an attempt to enhance readability, we leave the
theorem in its gross form and relegate the casewise analysis to the proof. The
interested reader can easily refine the statement of the theorem.

Proof For zt e A and n e N, let A(zt; n) N(zt; n) f3 A denote that portion
of rt’s n-neighborhood which lies within A. We proceed in two steps to bound
A(zt; n) and, thereby, bound d..

LEMMA 4.1. For all rc A and all k, n N, # A(rt; kn) < 2kd,.
Proof (Lemma 4.1). We show by induction (on k) that the image r(A(rt; kn))

ofA(c; kn) lies within an interval ofsize less than 2kd,. (An interval is a set ofintegers
of the form {a, a + 1, a + 2, ..., b} .) Since r is one-to-one, the lemma will follow.

k 1. Since r preserves n-neighborhoods with diameter d., it follows that
r(A(rc n)) lies within an interval of size not exceeding d. < 2d..

k + 1. Assume now that r(A(zt; kn)) lies within an interval of size less than
2kd,. Note that each point A(rt; (k + 1)n)resides in a neighborhood A(q; n)
for some r/e A(t; kn). Therefore, r’s preservation of n-neighborhoods with diameter
d, forces us to conclude that the smallest interval containing r(A(r; (k + 1)n))
contains fewer than 2d, points more than the corresponding interval for r(A(zt; kn));
that is, r(A(rc; (k + 1)n)) must lie within an interval of size < 2d, + 2kd.. [3

Notation. For any real number x, Ix] denotes the integer part of x, and x]
denotes the smallest integer not less than x.

LErVIM, 4.2. For each n N, let e(n) max # A(rt; n)lzt e A}.

(a) Forn<m(2),(n)> (n+d)d

(b) For n < min {m(2A), M(2A)/2]}, o(n) > +
d d

(c) For n < m(2A)/2 e(n) >_ Lo

In all three cases, there is a constant bfor which o(n) > .b. n
Proof (Lemma 4.2). We invoke Theorem 3.1. When n is as specified, then:
(a) N(e; n) = A;
(b) if M(2a) li, then N(n; n) = A where i 112], and j for j i;
(c) N(;n) = A, where

PRESERVING PROXIMITY IN ARRAYS 451

Return to proof Lemmas 4.1 and 4.2 combine to yield: There is a constant
b such that, for all k, n N with k. n < m(2A), b. (An)a < (kn) < 2kd,. Letting
k m(2a)/n 1, one obtains the gross bound of the theorem. [-1

We do not know if the bounds of Theorem 4.1 are achievable. Certainly the
schemes in common use do not attain these bounds. The diameter of preservation
of a conventional d-dimensional scheme (see [3, 2.2.6]) is of the form d, 2n

I-Iisli / 1, where the set S is either Nd_ or Nd {1}. Such diameters of pre-
servation arise naturally since, as we noted in [5], these schemes do not store just
a finite array; they actually store a prism array with either Cd N or C N
(which alternatives lead, respectively, to the choices for S). We now turn our atten-
tion to preservation of proximity by schemes for storing prism arrays.

4.2. Prism arrays. Since prism arrays are infinite in one direction, their
realizations need not preserve neighborhoods. For those prism realizations which
do preserve n-neighborhoods, we can derive a precise lower bound on the diameter
of preservation. This lower bound is achievable and, in fact, is the diameter of
preservation of the "sequential allocation" schemes described in [3, 2.2.6].
Thus the schemes used by conventional compilers for ALGOL, FORTRAN, etc.,
are optimal in their preservation of proximity among all schemes for realizing
prism arrays.

Let A C1 x x Cd be a prism array with C N and Cj N, (1 N)
for j -- i. The base (area) of A is B(A) I-Ij,ilj.

TH,OREM 4.2. Let r realize the prism array A. If r preserves n-neighborhoods
with diameter d., then d, >= 2n. B(A)+ 1. Moreover, this lower bound on d. is
achievable.

Proof The lower bound on d, follows directly from Theorem 3.3: If A C1
x x Ca and Ci N, then the axis successor sin (cf. 2.1) is a B(A)-limited
shift of A; and the diameter of preservation for n-neighborhoods can obviously
be no less than that for 2n-slices generated by sin, since S(sl-")(r0; 2n) N(zt; n).
(See footnote 4.)

Using the prescription in the remark following Theorem 3.3, we can construct
prism realizations which preserve proximity optimally. Consider any realization r
of A which, for each ce N, assigns the addresses (c- 1). B(A)+ through
c. B(A) to positions {r s Alxi c} in such a way that r(sia(r0) r(rc) + B(A) for
all rc e A. (The "sequential allocation" schemes of[3] operate in this way.) Consider
the diameter of preservation of such an r: Let 7z e A be arbitrary, and let p be in
N(rc; n) f’l A. Let a (re1, -.., rci_ 1, Pi, 7z+ 1, "’", ra). We distinguish two cases.

(a) p tr (so one of 7t, p is in the n-slice generated by sia, based at the other).
In this case It(z) r(o)l Irci Ol" B(A) __< n. B(A).

(b) p 4: tr. In this case (i)Irci Pil < n, or else p would not be in N(rc; n)--note
the use of the L1 metric; (ii)Ir(p) r(a)l < B(A) by construction of r. Therefore,

Ir(rc)- r(p)l -< It(re)- r(r)l / Ir(p)- r(tr)l < (Irc- p,] / 1). B(A) =< n. B(A).

In either case, Ir(rQ r(p)] _< n. B(A). It follows that, if we choose two arbitrary
points , r/e N(rc; n) f’) A, we find that

Ir()- r(r/)l < Ir(Tz)- r()l + Ir(Tz) r(r/)l 2n. B(A) < 2n. B(A) / 1.

452 ARNOLD L. ROSENBERG

By definition then, r preserves n-neighborhoods with diameter 2n. B(A)+ 1,
whence the lower bound is achievable.

4.3. Doubly extendible arrays. If the array A is extendible in two or more
directions, then no realization of A can preserve neighborhoods.

THEOREM 4.3. Let A C x Ca, and say that C C3 N (i q: j). Let
n N be arbitrary. No realization ofA preserves n-neighborhoods.

Proof. Both sa and s3a are unlimited shifts of A. The theorem thus follows from
Theorem 3.2 since S(zt; n) N(zc; n) for slices generated by any shift of A.

The theorem can also be derived from Theorem 4.1, where the lower bound
on the diameter of neighborhood preservation is shown to grow with the size of
the array.

COROLLARY. Let d > and n N be arbitrary. No realization of fd preserves
n-neighborhoods.

In fact the nonpreservability ofn-slices generatedby unlimited shifts (Theorem
3.2) can be interpreted as saying that realizations of orthant arrays cannot preserve
even one-sided unidirectional neighborhoods.

5. Local preservation of proximity. The corollary to Theorem 4.3 asserts
that there is no function D:N N which yields, for each n N, the diameter of
the intervals into which radius n neighborhoods are mapped by extendible array
realizations. However, if one allows the diameter-specifying function to operate
locallythat is, let D map N Nd into N, D(n, re) being the size of the smallest
interval containing the image of N(rc; n)--then obviously such a function D exists
for every realization. In this section we consider the rate of growth of these local
diameters of preservation. We show that realizations can be found which cause D
to grow optimally slowly for an individual point re, but that no realization can have
ideally slow growth for more than one ft. We then establish a lower bound on the
rate of growth of local diameters of preservation, but we do so in terms of a "cumu-
lative" version of the function D, which tends to smooth out the possible erratic
behavior of D; many realizations of fa achieve this growth rate. Finally, we discuss
the effect on our results of replacing the L metric by some other metric.

Throughout this section, when discussing fd, we shall understand d > 1.

5.1. Measures of local preservation.
(5.1) Letrbearealizationoffl.DefinethefunctionsDr:N Nd - Nand D*r "N Na N as follows"

(a) For each n s N and s Nd,
Dr(n, z) max (r(N(. n))) min (r(N(7 n))) + 1.

Dr is called r’s local diameter ofpreservation for each n, 7, Dr(n,
is the size of the smallest interval which contains the image of
N(z:; n).

(b) For each n N and Nd,

D*(n,)= max {D,(n,)IM() <= M()}.
D* is called r’s cumulative local diameter of preservation.

The qualifier "local" will be understood in what follows; and the subscript
"r" will be elided whenever r is clear from context.

PRESERVING PROXIMITY IN ARRAYS 453

The role of D* is to average out the possible erratic behavior of Dr which
results from our considering all possible realizations of fn. This erratic behavior
is discernible in the possibility of a realization’s centering its layout of storage
about a single point in the orthant.

5.2. Central points of realizations. Clearly, D(n, 70 can never be smaller than
(; n) since realizations are one-to-one functions; moreover, D(n, z) can be
that small only if an entire interval is dedicated to the image of N(;n). Given
any single z s N, one can construct a realization of 2 which is centered at in
the sense that it does dedicate entire intervals to the neighborhoods of. However,
these centered realizations can be monotone only when z e. Moreover, no
realization r can so optimize the function D for more than one 7.

(5.2) Let r be a realization of fn. We say that r is centered at r e N
(or that r is the center of r) if, for all n e N and all p, r e N(g; n),
]r(p)- r(r)] < (;n).

Remark. z is the center of r iff D(n, r) 4(z n).
Remark. That centers need not accompany even onto realizations is immediate;

for instance, the onto realization r(r)= 2’-x(2z2 1) of 2 is easily seen to
have no center.

Definition (5.2) leaves us with two obligations. First, we must show that the
definition is well-founded; that is, we must show that centers may exist. Then we
must show that the article "the" is not misleading;that is, we must show that a
realization cannot have more than one center.

THEOREM 5.1. For every r Na, there are realizations r ofn which are centered
at

Proof sketch. We describe in broad terms a realization r which is centered
at r. We discuss how r lays out storage rather than how r is computed.

(a) r(e) by definition (2.2) of realization.

(Z;(r)d-(b) r0z)= +X(e;Z(z)-d- 1)= 1 +
At several points in what follows, we shall wish to refer to the set of points

which are exactly distance n from point , so we establish the following notation.

For n e N and rce N, A(rc; n) N(t; n) N(r; n 1).

(c) Returning to the description of r, let s Z(r) d 1, let U {2,.-.,
(e; s)}, and let V N- U- {1, r0z))= {2 + (e; s),.-.}. For each n N,
r assigns addresses to the points in A(r; n) as follows. The points in A(;r; n) f-] N(e; s)

{e} get assigned the largest hitherto unassigned integers from set U-recall that
e has already been assigned an address; the points in A(r; n) N(e; s) get assigned
the smallest unassigned integers from set V. The details of these assignments are
immaterial as long as they are one-to-one. By design, no two points in N(r n) are
allocated addresses which are more than yV’(r n) 1 apart, so by induction on n,
r is shown to be centered at . Figure may be useful in visualizing the allocation
scheme just described.

454 ARNOLD L. ROSENBERG

3-V

3-V 2-V

z-v

5 2"U I-U i_()U3-U 2-U

3-U

2-V

FIG. 1. The partitioned shells used to center a realization at re. Each position is labeled "p X,"
where p is the position’s distance from rr (= shell number), and X U or V according as the position
is closer than rr to or not.

FiG. 2. A monotonic realization of’ which is centered at .

PRESERVING PROXIMITY IN ARRAYS 455

The most familiar (and, perhaps, the most useful) centered realization is
probably the two-dimensional diagonal realization,

ra(t) (E(t) 1)((rt) 2)/2

which is centered at e (see Fig. 2).
The scheme r described in the proof sketch is not the simplest (to describe)

realization centered at 7z" One could simply treat the sets A(rt n) as units rather
than partition them as we did. Our choice of layout was dictated by an attempt
to construct an r which, at least for small arrays, was close to being monotonic.6

However, any attempt to discover a centered r which is actually monotonic is
bound to fail unless n e. (The diagonal realization rd demonstrates that realiza-
tions centered at e can be monotonic.) A preliminary lemma is useful in establishing
this claim.

LEMMA 5.1. Let r be a realization of d which is centered at n Nd. For all
n >= E(n) d, r(N(n n)) { 1, 2, ..., Y(n; n)}. Thehefore, for all such n,

min r(A(n; n + 1)) > U(n; n).

Proof Since e N(n; E(n) d), min r(N(n n)) r(e) for all n > Z(n) d.
By definition of center, then, it follows that max r(N(n n)) __< V(n; n); inequality
is impossible since r is one-to-one. [3

Note that Lemma 5.1 contains our first use of the assumption that r(e) 1.
The reader may find it instructive to derive a version of this lemma which does
not depend on this assumption and to note how this more general lemma com-
plicates the proofs of Theorems 5.2 and 5.3 (which both remain true).

THEOREM 5.2. Let the realization r of fd be centered at t Nd. If n 4: e, then
r is not monotonic.

Proof Say, with no loss of generality, that ra > 1. We exhibit specific pairs
of points where r’s nonmonotonicity is discernible. For each n >= E(z) d, let
p, sn)(n) A(n n), and let a, s’xd(p,) A(n n + 1). By Lemma 5.1, r(p,)
=< (n; n) < r(a,). Since p, sad(a,), these inequalities demonstrate that r is not
monotonic. Figure 3 may aid the reader in visualizing the described layout. [-1

\
\
\
\
\
\
\
\

FIG. 3. The relative positions of zt, p, and a, in the proof of nonmonotonicity of realizations centered
at rc :/: e.

f. N N is monotonic if, for all rr N and all sin Mn, f(sin(zr)) _>_ f(rr).

456 ARNOLD L. ROSENBERG

A proof not unlike the preceding one shows that a realization can be centered
at no more than one point.

THFOREM 5.3. A realization of)a can have at most one center.

Proof Assume, for contradiction, that the realization r of a is centered at
both and p - . We distinguish two cases.

(a) 7 Pk for some k. Then, for all n e N, a, s)(7)e N(7; n) N(p; n),
while T, s)(p) e N(p n) N(7; n). See Figure 4(a).

n

(a)

n+l

(b)
FIG. 4. The relative positions of the alleged centers rc and p, and the contradiction-lending points

and " (a) when 7r and p share some coordinate" (b) when rc and p differ in all coordinates.

(b) nk 4: Pk for any k. Let m min {in Pil} > O. With no loss of generality,
say that m nl- P so that n > p. Let p i,lni- Pil >-_ (d 1)m m. Now,
for all n 6 N, a, sl)(n) N(n; n) N(p;n + 1). (In fact, a, A(p;n + p + m).)
By similar reasoning, for all n N, z, sl] + 1)(p) N(p n + 1) N(n; n). (Specifi-
cally, z, A(n; n + p- m + 1).)See Fig. 4(b).

Coalescing cases (a), (b), for all n, there exist a, N(n;n)- N(p; n’) and
z, N(p n’) N(n; n); n’ n in case (a), and n’ n + 1 in case (b). By Lemma
5.1, then, it follows that, for all n >_ max {E(n), E(p)} d, the following inequalitities
hold. On the one hand, dff(p;n’)< r(a,)=< dV(n; n), while on the other hand,

PRESERVING PROXIMITY IN ARRAYS 457

ff(n ;n)< r(z,)__< (p ;n’). These inequalities are clearly absurd, .so we con-
clude that r cannot be centered at both and p.

5.3. Growth rate of local diameters of preservation. In this section we establish
an upper bound on the rate of growth of local diameters of preservation and a
lower bound on the rate of growth of cumulative local diameters. Both bounds
are achievable by a large family of realizations.

Let 6(n, p) be the (L1) distance between n, and p; that is, p A(Tr; 6(r, p)).
LEMMA 5.2. Let r realize)d. For all n, p N and all n N,

Dr(n, r) <__ Dr(n + 6(r, p), p).

Proof N(r; n) c N(p; n + 6(r, p)).

THEOREM 5.4. For all d N, there is a realization r ofdfor which

< ’() + n
Dr(n

Proof Let r be centered at e. Invocation of Theorem 3.1 and Lemma 5.2
yields the theorem since 6(e, r) (r) d.

Our lower bound on local diameter of preservation is in terms of D* rather
than D. A reasonable (almost everywhere) lower bound on the growth rate of D
has eluded us and remains an inviting challenge. In certain cases, the growth
rate of D reflects more accurately the behavior of r than does that of D, since
the former rate ignores the perturbations possible in unconstrained realizations.
This rationalization is not intended to downplay the desirability of determining
D,’s growth rate, but only to suggest that the rectangularity of arrays might well
render D the more important measure of the efficiency of r. Moreover, our
universal lower bound for D does yield an infinitely-often lower bound on the
growth of D,.

THEOREM 5.5. Let d N be arbitrary. There is a constant c > 0, depending
only on d, such that,for all realizations r ofa, andfor all n
> c. n. (max {M(), n})a- 1.

Proof (a). If n M(), then the bound on D* follows from Theorem 3.1
and the obvious fact that D* majorizes D.

(b) Let Nn be arbitrary, and let n N be such that M() > n. Let r be
any realization of fl. By definition of D*, it follows easily that the (functional)
restriction r’ of r to the finite array A (N())n has the following property"
r’ realizes A and globally preserves n-neighborhoods (n < M()= m(2a)) with
diameter D(n,). By Theorem 4.1, then, D(n,) > c. n.(m())d- for some
constant c depending only on d.

Parts (a) and (b) combine to yield the theorem.
COROLLARY. For all d N there is a c > 0 such that, for all realizations r of

a and all n N, D,(n,) > c n M()d- for infinitely many points N.
Many of the "nice" realizations of fin discussed in 5], [6] come within a

constant factor of attaining the lower bound of Theorem 5.5 and are, in this sense,
optimal in preserving proximity among extendible realizations. Notable among
these are the diagonal realizations which linearize the partial order [p iff

458 ARNOLD L. ROSENBERG

E(n) =< E(p)]--a two-dimensional version appears in Fig. 2hand the cubic shell
realizations which linearize the partial order In =< p iff M(n)=< M(p)]. In two
dimensions one cubic shell realization is given by r(n)= (M(n)- 1)2 + M(n)
+ n2 n see Fig. 5.

FIG. 5. A realization of) which is centered at under the L metric.

5.4. Converting to other metrics. The results and proofs of 5.3 depend, in
their gross form, only on the rate of growth of d-dimensional neighborhoods
(as determined in Theorem 3.1). Therefore, these results and proofs would be
unaffected--except in the determination of specific constants--by a change to
any other metric whose radius n d-dimensional neighborhoods enclose O(nd)
lattice points; specifically, they would remain (grossly) valid for the L2 and L
metrics. The results and proofs in 5.2, on the other hand, depend heavily on the
specific metric used to define "neighborhood." We now indicate very informally
how 5.2 would change with adoption of a new metric.

1. Theorem 5.1 and its proof depend only on the finiteness of neighborhoods.
Thus, realizations centered at an arbitrary point exist under both the L2 and L
metrics also; and their construction might proceed as described in the proof of
Theorem 5.1.

2. The nonmonotonicity of realizations centered about points other than e
(Theorem 5.2) results from the "shape" of d-spheres. The result as stated holds
when the spheres have no "fiats" along the axes; that is, every line tangent to a
sphere in the direction of an axis passes through at most one lattice point belonging

PRESERVING PROXIMITY IN ARRAYS 459

to the sphere. Thus, for example, the result, and at least the skeleton of the proof,
remain valid under the L2 metric, but they fail for the L metric. In fact, for the
L metric, monotonic realizations centered at any point can be found.

3. Finally, our proof of the impossibility of centering a realization about two
points (Theorem 5.3) depends on the way spheres overlap. Specifically, for any
pair of points n and p, there must be "large" integers a and b--the analogue to
Lemma 5.1 will tell just how large--such that the radius a sphere about n and
the radius b sphere about p each contain points not contained by the other.
Such conflict-exposing radii can be found for the L2 metric as well as for the L
metric: When n and p share a coordinate, the proof for L2 proceeds as does
part (a) of the proof of Theorem 5.3 when n and p differ in all coordinates, the
proof is similar to part (b) of the proof of Theorem 5.3, with "n + m" replacing
"n + 1" everywhere; details are left to the reader. (The interested reader can verify
that the prooffor L2 extends directly to any Lp metric.) An analogue ofTheorem 5.3
cannot, however, be proved for the L metric. In fact, the cubic shell realization
of Fig. 5 is centered at both (1, 1) and (2, 1).

6. Directions for further research. The development in this paper has left
unresolved a number of interesting questions about realizations of orthant
arrays. We mention only a few of the important ones.

1. Higher-dimensional storage. All of our attention in this paper and in
[5], [6] has been focussed on computer memories which are linear in structure;
that is, our realizations map array schemes into N. Certain memory devices,
disks being a prime example, are, to within a reasonable approximation, two-
dimensional in structure; and one can easily envisage memory devices which, at
least in certain locales, are e-dimensional for arbitrary fixed e. Thus, there is some
motivation for reexamining the question of how to store arrays, in the context of
memory with the structure of N for e > 1. With respect to the current paper, it
is certain that analogues of Theorem 4.3 and 5.1 can be proved for arbitrary
"realizations" ofd in e, with appropriately adjusted notions of "neighborhood
preservation" and "center." (In fact, the proof of Theorem 4.3 which is based on
Theorem 4.1 goes through intact .for arbitrary e < d.) Can one establish analogues
ofTheorems 5.2-5.5 in this more general setting? Certain extensions are immediate,
but others appear quite challenging. More generally, it would be interesting and
valuable to see how (and if) one could generalize the results in [5], [6] to arbitrary
e-dimensional storage. 7

2. Centered realizations. An extendible realization can have one center, but
none can have two centers. In response to an "open problem" in an earlier
version of this paper (IBM Rep. RC-4874, 1974), D. Bollman 1] has shown that
a realization can have any finite number of quasi-centers: Points nl, "’", nk Nd

are quasi-centers of the realization r of fa if, given any points p, a, It(p) r(a)l
< k. min V’(ni; max {6(hi, p), 6(hi, a)}). Bollman’s result indicates that "approxi-
mate" centers can exist in extendible realizations and raises the interesting
question of whether such points can be present in realizations which afford one
efficient traversal of arrays [5], [7] or which approach optimality in utilization of

Some related questions are considered in S. AMOROSO AND I. J. EPSTEIN, Maps preserving the
uniformity of neighborhood interconnection patterns in tessellation structures, Inf. Contr., 25 (1974),
pp. 1-9.

460 ARNOLD L. ROSENBERG

storage [6]. Obviously this question requires further formulation before it can be
answered. Investigation of this issue would advance the effort in [7] to determine
to what extent various types of optimality can coexist in extendible array realiza-
tions.

3. Growth rate of D(n, rt). The local diameter of proximity preservation
D(n, re) is a quantity fundamental to the understanding of injections of N into N.
It would be interesting to determine if the rate of growth of D(n, re) can be bounded
below tightly. Almost assuredly, our present lower bounds (the obvious universal
bound D(n, re) >= (n;n) and the infinitely-often lower bound of the corollary
to Theorem 5.5) can be strengthened. Our initial conjecture that the strengthening
of the bound could take the form of an almost-everywhere version of the corollary
has been refuted by D. Bollman [1]. Specifically, she has found, for each dimension-
ality d, a realization r of fa, and an infinite sequence of points rtl, 2, in N
such that, for all m N and all n <__ m, D(n, rt,,) 4(rc,, ;n). Her results about
and discussion of this problem merit the attention of anyone interested in this
area of investigation.

4. Complexity of realizations. As a final note, we raise the persistent problem
of how one might gauge the computational complexity inherent in realizations of
fa. Of course, should one be able to bound this complexity from below, he then
faces the problem of relating this measure of complexity to other measures such
as efficiency of traversal [5], [7], efficiency of storage utilization [6], and efficiency
of local preservation of proximity (as measured, say, by the rate of growth of D
or of D*).

Acknowledgment. The suggestions, criticisms, and encouragement ofNicholas
Pippenger, Larry Stockmeyer, and Shmuel Winograd are gratefully acknowledged.

REFERENCES

[1] D. BOILMAY, Some tailor-made extendible array realizations, IBM Rep. RC-5121, Yorktown
Heights, N.Y., 1974.

[2] R. M. KARl’, A. C. McKEIaI aYD C. K. WONG, Near-optimal solutions to a two-dimensional
placement problem, IBM Rep. RC-4740, Yorktown Heights, N.Y., 1974.

[3] D. E. KYUTH, The Art of Computer Programming I: Fundamental Algorithms, Addison-Wesley,
Reading, Mass., 1968.

[4] J. P. MYLoPouos ,rrD T. PAVLIDIS, On the topological properties ofquantized spaces I, H, J. Assoc.
Comput. Mach., 18 (1971), pp. 239-246, 247-254.

[5] A. L. ROSEYBG, Allocating storage for extendible arrays, Ibid., 21 (1974), pp. 652-670.
[6] --, Managing storage for extendible arrays, this Journal, 4 (1975), pp. 287-306.
7] L. J. STOCKMEYER, Extendible array realizations with additive traversal, IBM Rep. RC-4578,

Yorktown Heights, N.Y., 1973.
[8] V. Sa’assN, Gaussian elimination is not optimal, Numer. Math., 13 (1969), pp. 354-356.
[9] C. K. WOyG AyI T. W. M,ODOCKS, A Generalized Pascal’s triangle, Fibonacci Quart., 13 (1975),

pp. 134-136.

SIAM J. COMPUT.
Vol. 4, No. 4, December 1975

RESPONSE TIME OF A FIXED-HEAD DISK TO TRANSFERS OF
VARIABLE LENGTH*

EROL GELENBE’, JACQUES LENFANT AND DOMINIQUE POTIER

Abstract. Due to the practical complexity of addressing variable length records placed in arbitrary
locations of a fixed-head disk (or drum), and because of difficulty of managing secondary memory
space in such cases, variable length records are often stored with their first address at a fixed location
of the magnetic support. We present a queuing model of such a scheme, assuming a Poisson arrival
stream and arbitrary distributed record lengths. The stationary probability distribution of the number
of transfer requests in queue and the expected response time are obtained. Numerical examples
illustrating the results are presented.

Key words, imbedded Markov chains, disk units, input-output, memory management

1. Introduction. Even though the trend in modem computer systems is to
replace rotating secondary memory devices by core or semiconductor memories,
drums and more particularly fixed-head disks remain in wide usage while assuring
important input-output functions in newer systems. The analysis of their per-
formance remains of interest also because newer "rotating" memory devices
such as magnetic bubble memories retain some of their information accessing
and transfer characteristics.

The purpose of this paper is to analyze the response time of a fixed-head
(as opposed to moveable arm) rotating secondary memory device when the length
of the records to be transferred obeys some arbitrary distribution function and
when the records are transferred in first come, first served (FCFS) order. The
method of analysis of such devices, and the results obtained, will depend to a large
extent on the scheduling algorithm used as well as on the nature of the transfers.
Thus Coffman [1] has examined the behavior of a drum whose circumference is
divided into equal sized sectors each containing a page, and for which page trans-
fers are requested singly (as opposed to batched requests). In his model, the drum
(or fixed-head disk) is scheduled using the Eschenbach scheme [2] with one queue
per sector. In [3], an algorithm for optimally scheduling variable length transfers
for a drum has been given and it has been shown that it is a solution of a special
case of the traveling salesman problem. A comparison of the algorithm in [3]
with the classical SLTF (shortest-latency-time-first) algorithm has been presented
by Stone and Fuller [5].

Received by the editors August 13, 1973, and in final revised form October 4, 1974. This work
was performed in cooperation with Compagnie Internationale pour l’Informatique.

" Laboratoire de Recherche en Informatique et Automatique, Institut de Recherche d’Informatique
et d’Automatique, 78150 Rocquenfort, France, and Chaire d’Informatique de l’Universit6 de Li6ge,
Li6ge, Belgium.

:]: Laboratoire de Recherche en Informatique et Automatique, Institut de Recherche d’Informatique
et d’Automatique, 78150 Rocquencourt, France, and Departement de Math6matiques et Informatique,
Universit6 de Rennes, Rennes, France.

Laboratoire de Recherche en Informatique et Automatique, Institut de Recherche d’Informatique
et d’Automatique, 78150 Rocquencourt, France.

461

462 EROL GELENBE, JACQUES LENFANT AND DOMINIQUE POTIER

In this paper, in addition to our assumption of arbitrarily distributed length
of records to be transferred, we also suppose that the starting address on the drum
is at a fixed angular position on the circumference for all records. This is a realistic
assumption in some operating systems (e.g. UNIX [13) which use a similar policy
because of the great ease and simplicity it implies. The records to be transferred in
such a system might be segments, file records or groups of pages belonging to the
same program or system module for which "pre-paging" is used.

In the sequel, we shall obtain the long run probability distribution for the
number of requests waiting for transfer in the system we have described and use it
to compute the expected response time of the disk with the assumptions we have
made regarding its operation the arrival process ofrequests for transfers is assumed
to be Poisson and the length of each transfer obeys an arbitrary distribution with
finite first and second moments.

Assuming that the starting addresses of records are drawn from a uniform
distribution around the circumference of the disk, Fuller [11] obtains the mean
response time with the shortest-latency-time-first and other "optimal" schedules
for given probability distribution functions of the size of records to be transferred
using simulation experiments. We provide numerical results to compare the per-
formance of our policy with that of a first in, first out (FIFO) schedule (with which
it seems to compare favorably) and with these optimal policies.

2. The model. The system we wish to analyze is shown in Fig. 1. A fixed
starting address at a given angular position is established on the surface of the
fixed-head disk (or drum, henceforth called the disk) for all records. For the cylin-
drical drum this address would correspond to a line, along the axis of rotation,
on its surface. Concentric circles on the disk correspond to tracks. Even though
the physical length of the tracks diminishes as the center of the disk is approached,
they all contain the same number of words. A record beginning on one track may
span several of them.

The lengths of records to be transferred are independent and identically dis-
tributed random variables with an arbitrary distribution function F(x) having
finite first and second moments. We shall define the probability r, that a record is
transferred in n rotations of the disk, beginning from its starting address"

r, Prob [(n- 1)T < x <= nT]
(1)

F(Tn) F(T(n 1)), n 1,2,...,

where T is the time necessary for one complete disk rotation. We have implicitly
assumed that the length x of a record is given in units of time, and that it is equal
to the time necessary for the disk heads to move from its starting address to its

ending address.
We assume that the interarrival times of transfer requests are independent

and identically distributed random variables with distribution function

G(t) e

so that the probability of k arrivals in time T is

_;T(2T)k

(2) a e
k!

k =0,1,2,.-.

RESPONSE TIME OF A FIXED-HEAD DISK 463

Starting Address Marker

Read-Write Heads

Tracks

/

(a) Fixed-Head Disk

Read-Write Heads

Starting Address Marker

Track

(b) Drum

FIG.

At an instant of time, t, let M(t) be the number of requests awaiting transfer
(including the record being transferred). The process {M(t)} is not a Markov chain,
unless F(x) is an exponential distribution function. Since we cannot compute
directly the distribution of M(t), let us adjoin the supplementary variable N(t)
to M(t) and consider the process {M(t), N(t)}, where the disk revolution for the
record being transferred is the N(t)th. {M(t), N(t)} is not, in the general case, a
Markov chain either. We may consider, however, the Markov chain C imbedded
in {re(t), N(t)} at time qT, q 0, 1, ..., just after the heads pass over the start-
ing address marker of the disk. For convenience, we say that N(t) is undefined
when M(t) O.

The state of C takes the following values:

0 ifM(qT)=O,

(m, n) if M(qT) m > 0 and the disk resolution starting at qTis the nth for
the record being transferred,

forq=O, 1,2,...andn= 1,2,....

464 EROL GELENBE, JACQUES LENFANT AND DOMINIQUE POTIER

That C is a Markov chain is easily verified. Its transition probabilities are
obtained as follows"

(3) Pr [010] ao,

(4) Pr [(m, 1)10] am, m >= 1,

where Pr [vlu] is the probability of entering state v of C at time (q + 1)T given that
the chain is in state u at qT. We also have

(5) Pr [(m, n)l(m j, n 1)] ajc,_

(6) Pr [(m, 1)l(m j + 1, n)] aj(1 c,)

(7) Pr [01(1, n)] ao(1 c,),

where

(8)

form> 1, n>_2, 0<j<m

form> 1, n> 1 O<j<m

c. Pr Ix > Tnlx > T(n- 1)]

F(Tn)
F(r(n- 1))"

Notice that we also have

(9) c. j=.+l

j=n rj

The transition probabilities arc zero for all cases not covered by equations (3) to (7).
If i, j are states of C (i,j {0} U {(m, n)} where m _>_ 1, n => 1), let I-I(i,j, q) be

the q-step transition probability of C from to j. From [4] we know that

I-Ij lim 1-I(/,j, q)

exists and is independent of if
(a) C is aperiodic and irreducible, and
(b) there exist real numbers H > 0 satisfying the equations

Hi=I,
all

l-lj Hill(i, j, 1) for each j.
all

That C is aperiodic and irreducible is easily verified" it suffices to show, using
(3) to (7), that there exists an integer k > 0 such that

II(i,j, q) > 0

for all q >= k [41, for all i, j. If (a) and (b) are satisfied, we say that C is ergodic.
THEOREM 1. Denote IIiby;(m, n)ifi (m,n)andbyT(O)ifi O. lfE{n}2T < 1,

where

e{"} Z

RESPONSE TIME OF A FIXED-HEAD DISK 465

then C is ergodic and

1-

Furthermore, P.(z) the generating function

P.(z) y(m, n)z"
-"1

is given by

for n >= 1, where

ak being given by (2). Also

where

P.(z) F((n 1)T)]P(z) [A(z)]"-

A(z) akzk e T(-z)

k=O

A(z)- -]P,(z) y(O)z
z Z (())j’

R(z) r,z".
n=l

Theorem 1, as well as the next result we present, will be proved in later sections.
The result we give above yields the joint probability distribution, at the sta-

tionary state, for the number of records awaiting transfer and for the index of the
current revolution for the record being transferred, at instants of time right after
the disk heads pass over the starting address. We would also like to have informa-
tion regarding the number of records awaiting transfer at any instant of time. For
this purpose, we proceed as follows.

Let p.,(u) be the stationary probability of finding m records waiting to be
transferred at instants of time qT + uT, q 0, 1, 2, ..., where 0 < u < 1. Let
P(z, u) be the generating function

(10) P(z, u) 2 Pro(u)zm"
m-O

Consider the function P(z) defined as the mean of P(z, u) over the interval [0, 1]"

P(z) P(z, u) du.

The expected number of requests waiting for transfer (including the one being
transferred) at an arbitrary instant of time is then E{M}, given by

E{M} lim ff---P(z).z--

466 EROL GELENBE, JACQUES LENFANT AND DOMINIQUE POTIER

THEOREM 2. If;tTE{n} < 1, then

E{M} 2T[E{1} + 1/2 + (2T) E{n 2)
2 1

where, x being the length ofa transfer, is given by

and

x/T

n=l

Remark. It is known that certain results on the queuing analysis of input-
output devices can be obtained as corollaries ofa theorem ofSkinner [7]. Theorem
of this paper cannot be obtained from Skinner’s results, but Theorem 2 can be
deduced as a special case from [7].

3. Proof of Theorem 1. We omit the proof that C is aperiodic and irreducible.
We shall only show that there exist numbers 1-I > 0 satisfying the equations

and

1-li
all

Y n,n(i,j, 1)
all

for each j under the conditions stated in Theorem 1. Adopting the notations of
Theorem 1, we have

(1 l) 7(0) aoT(O) + ao(1 c,)7(1, n)
n=l

from (3) and (7). Equations (4) and (6) yield for m >= 1,

(12) 7(m, 1)= a,,7(O)+ aj(1 c,,)y(m-j+ 1,n).
j=On=l

Finally, from (5) we have

m-1

(13) 7(m,n)= ajc,_7(m-j,n- 1)
j=O

form>= 1, n> 1.
We now use these equations to compute the generating functions P,(z)"

P,(z) 7(m, n)zm.
nl=l

RESPONSE TIME OF A FIXED-HEAD DISK 467

From (11) and (12) we have

(14)

z[7 o) + P Iz)] ao O)z + n)
n=l

+ aj(1 c.)7(m j + 1, n)]
j=On=l

z’(O)A(z) + (1 c,,)A(z)P,,(z).
n--I

Using (13), we obtain for n > l,

m-1

(lS) P.(z) ajc,_ y(m j, n 1)z"
m=l j=O

yielding

P,(z) c,_ IA(z)P,_ l(z),

which when solved gives us for n > 1,

(16) P.(z) [nfil cjlPl(z)[A(z)jn_
Lj

Notice that by (8)we have

so that P.(z) is of the form

n-1

1-I cj- 1-F(T(n- 1))
j=l

(17) P.(z) F(T(n 1))]Pl(Z)[A(z)]"-1

which was to be shown.
From (14) we obtain

Pl(z) A(z) ,(0) +- (1 c,,)P,,(z) ?(0)
Zn=l

and using (17), we have

(1 c,)P.(z) P(z) F(T(n 1))] (1 c.)[A(z)]’- 1.
n=l

But (1) and (8) yield

and

n=l

[1 F(T(n- 1))](1 c,)= r.

R(A(z)) r,[A(z)]".
n=l

n=2,3,...

468 EROL GELENBE, JACQUES LENFANT AND DOMINIQUE POTIER

Therefore Pl(z) is of the form

Pl(z) v(O)A(z) / I_p(z)R(A(z)) v(O)
Z

(8)

z(O)k (A(z))
which was to be shown. To obtain 7(0) we use the equality

7(0) + lim P,(z)=
z--’ n=

which means that the sum of stationary probabilities over all states is 1. Using (17)
we have

Therefore

lim P.(z) P, (1) I1 F(T(n 1))]

P,(1) 2 r
n=l j=l

=P,(1) Z Z rj
n=lj=n

P,(1) Z hr..
n=l

7(0) E{n}PI(1).
We compute P,(1) from (18) applying l’H6pital’s rule to obtain

T
P,(1) 7(0) 2TE{n}"

Finally

7(0) 2TE{n}.
To insure egodicity we must have 7(0) > 0, therefore the condition

2TE{n} <
must be satisfied.

4. Proof of Theorem 2. Consider the generating function P(z, u) defined in
(10). p,,,(u) is given by the following equation, in which aj(u) is the probability ofj
arrivals in time uT"

p,,,(u) y(O)a,,(u) + Z (1 g.(u))y(k, n)a,,,_,(u)

(19)
n=lk=l

+ g(u)7(k, n)am_+ (u),
n=l

RESPONSE TIME OF A FIXED-HEAD DISK 469

where g.(u), the probability that a transfer is no longer than T(n + u) given
that it is longer than T (n 1), is given by

F(T(n- + u))- F(T(n- 1))
(20) gn(u)

-F(T(n- 1))

Let Au(z be the generating function

(21) Au(z) aj(u)z e:’ru(z-1).
j=O

Then P(z, u) is obtained from (19) and (21) as

(22) n(z, u)= y(O)Au(z + (1 g.(u))Au(z)n.(z + g,,(u)Au(z)P’(u--)
7.

and

(23)

Notice that

E{M} lim P(z u) du

lim
c

z-.1 -dz A"(z) 2Tu

and that

v(0).
n--1

Using these relations, we obtain after some algebra that-- + zzP"(Z)]z=l du gn(u)Pn(1).
0

Notice from Theorem and (21) that

Pn(1)g.(u) [F(T(n + u)) F(T(n 1))]PI(1)

and

We also have

---=1

du P.(1)g. PI(1) [F(yT)- F((n- 1)T)] dy.
-1

du P.(1)g,,(u) PI(1) (1 F(yT)) dy + (1 F((n 1)T))

2T (1 -F(yT))dy+ nG(n)
n=l

where we have used PI(1) 2T and where

G(n) V(nT) F((n 1)T)

470 EROL GELENBE, JACQUES LENFANT AND DOMINIQUE POTIER

is the probability that a transfer will be complete during its nth rotation, and we
have used the fact that

F((n- 1)T)= G(m).

Notice that

f(yT)3 dy -- F(u)-]

U fo U

T[1 F(u)]lo + -dF(u)
is obtained by a change of variables and an integration by parts. This yields

[1 F(yT)] dy E{/},

where x being the length of a transfer, is given by x/T. We now have

E{M} + 2rE{l} 2TE{n} + P,(z)]=.
=1

The remaining algebra to complete the proof of Theorem 2 is straightforward, and
we omit presenting it here.

5. Numerical examples and conclusions. In this paper, we have analyzed the
behavior of a fixed-head disk or drum used for storing variable length records.
The initial address of each record corresponds to a fixed angular position on the
disk surface (or drum circumference). This placement method has considerable
advantages over "optimal" scheduling methods because it simplifies the addressing
problems of the secondary memory device.

It is also known that SLTF or optimal schedules for variable length records
cannot be implemented efficiently unless special hardware features, which are
often nonexistent on commercially available equipment, are installed. The major
disadvantage of the policy we have analyzed seems to be the wastage in disk space
which may be incurred, although it avoids the complicated placement algorithms
one would use if an attempt were made to minimize wasted space on the disk.

The policy we propose has to be compared with other placement policies or
scheduling methods with respect to three points:

(a) the response time,
(b) the wastage (or internal fragmentation) of disk space,
(c) the complexity of the addressing and scheduling policy.
It is clear that with respect to (c) it is difficult to find policies more economical

than ours. For (a) we have compared on Figs. 2 and 3 our results with Fuller’s 11]
simulations of various "optimal" scheduling strategies. In 11 the initial addresses
of the records are assumed to be uniformly distributed along a disk track. On
the same figures the performance of a FCFS scheduling algorithm with the same
assumptions regarding the distribution of records lengths and the distribution

RESPONSE TIME OF A FIXED-HEAD DISK 471

3.0

2.0

1.0

W
Expected Resonse Time
(In disk revolutions) ///

First-Come-First- ,// Fixed Initial / Shortest-L.atency-Time-
lrst

0.1 0.2 0.3 0.4 0.5 0.6 0.7

FIG. 2. The expected response time when the records are uniformly distributed from zero to a full
disk revolution

3.0

2.0

1.0

W

Expected Resonse Time // /(In disk revolutions)

First-Come-First- /? Fix"ed Initial/
Served /// Addres/// Shortest-Latency-Time-First

Schedule

0.1 0.2 0.3 0.4 0.5 0.6 0.7

FIG. 3. The expected waiting time when all the records are 1/2 the disk’s circumference in length

472 EROL GELENBE, JACQUES LENFANT AND DOMINIQUE POTIER

of the initial address of records is shown. For all of the cases considered we see
that our policy yields mean response times which are slightly better than with
FCFS but considerably worse than "optimal" policies with the same distribution
function of record lengths.

In [11] results for large record lengths are not given" in this case one might
expect that optimal policies will yield response times comparable to that of
FCFS scheduling.

Suppose that records are transferred on a FCFS basis from the disk, and that
they are located at random on the disk surface. The appropriate model in this
case is the M/G/1 queue [4] with a service time which is the sum oftwo independent
random variables" an access time uniformly distributed between 0 and T, and a
transfer time x with distribution function F(x). By a straightforward application
of the formula of Pollaczek and Khintchine we obtain the disk response time as"

(24) WR T.E{1} +- + 2T2(2T(1/2 + E{I}))]"
Using Little’s formula and Theorem 2 we obtain the expected response time for
the algorithm we have analyzed"

[E{n2} ’]2TE{N})
(25) Wv= T E{1} + + T2(
Let us compare Wg and Wv for exponentially distributed record lengths. Normaliz-
ing to T we set F(x) e-, so that E{I} p-, E{12} 2/.t -, and we
derive

(26) E{n} (1 e-U) -’, E{n} (1 + e-U)(1 e-U) -z.
For large average record lengths, that is p << 1, it is easily seen that

E{n} #- + 1/2, E{n2} 2p-2 + p--
correct to O(p) so that WF - WR. The approximation is very good even for moderate
values of average record length (p- of the order of 4 or 5).

As far as point (b) is concerned, first note that for small average record sizes
with random placement, the "2/3 rule" of Knuth [9], 10] will come into effect so
that on the average one third of disk space will be wasted due to the phenomenon
of external fragmentation. An exact analysis of this is unavailable for primary
storage since it is a very difficult problem and we do not attempt to solve here the
still more complex case for disk space. For small average record size (smaller than
T) our policy will waste an amount of space which is large compared to the utilized
area. However, for large average record lengths, the wasted space will be approxi-
mately one half sector per record" one of the authors has shown elsewhere [12]
that this result is exact for probability density functions of record lengths which
have rational Laplace transforms (or equivalently which can be expressed as con-
vex combinations of Erlang densities).

REFERENCES

1] E. G. COrVMAN, Analysis ofa drum input/output queue under scheduled operation in a paged com-

puter system, J. Assoc. Comput. Mach., 16, (1969), pp. 73-90.

RESPONSE TIME OF A FIXED-HEAD DISK 473

[2] A. WEINGARTEN, The Eschenbach drum scheme, Comm. ACM, 9 (1966), pp. 509-512.
[3] S. FULLER, An optimal drum scheduling algorith’m, IEEE Trans. Electronic Computers, C-21

(1972), pp. 1153-1165.
[4] W. FELLER, An Introduction to Probability Theory and its Applications, vol. 1, 3rd ed., John Wiley,

New York, 1968.
[5] H. S. STONE AND S. n. FULLER, On the near-optimality of the shortest-latency-time-first drum

scheduling discipline, Comm. ACM, 16 (1973), pp. 352-353.
[6] S. H. FULLER AND F. BASKETT, An analysis ofdrum storage units, Tech. Rep. 26, Digital Systems

Laboratory, Stanford Univ., Stanford, Calif., 1972.
[7] C. E. SKINNER, A priority queuing system with server-walking type, Operations Res., 15 (1967),

pp. 278-285.
[8] J. ABATE AND H. DUBNER, Optimizing the performance of a drum-like storage, IEEE Trans.

Electronic Computers, C- 18 (1969), pp. 992-996.
[9] D. E. KNUTH, The Art of Computer Programming, Volume I." Fundamental Algorithms, John

Wiley, New York, 1969.
[10] E. GELENBE, The two-thirds rule for dynamic storage allocation under equilibrium, Information

Processing Letters, (1971), pp. 59-60.
[11] S. H. FULLER, Random arrivals and MTPT disk scheduling disciplines, Tech. Rep. 29, Digital

Systems Laboratory, Stanford Univ., Stanford, Calif., 1972.
[12] E. GELENBE, J. C. A. BOEKHORST AND J. L. W. KESSELS, Minimizing wasted space in partitioned

segmentation, Comm. ACM, 16 (1973), pp. 343-349.
[13] D. M. RITCHIE AND K. THOMPSON, The UNIX Time-sharing System, Operating Systems Review

(ACM-SIGOPS), 7 (1973), p. 27.

SIAM J. COMPU-r.
Vol. 4, No. 4, December 1975

THE ENUMERATION OF GENERALIZED DOUBLE STOCHASTIC
NONNEGATIVE INTEGER SQUARE MATRICES*

D. M. JACKSONf AND G. H. J. VAN REES

Abstract. The problem of enumerating generalized double stochastic integer square matrices is

considered. The superposition theorem is used in conjunction with Schur functions to obtain the
counting series for the 5 5 and 6 6 cases.

Key words, enumeration, stochastic matrices, generating functions, partitions, Schur functions,
symmetric group

1. Introduction. Let Hm(n be the number of m m matrices over
N {0, 1, 2,...} with line sum n N. The purpose of this paper is to give the
ordinary generating functions 5(t), 6(t) for the sequences {Hs(n)} and {H6(n)}
respectively with the anticipation that these additional sequences may be of service
in determining the relationship among the i(t). The sequences for
(H4(n)} have been given by Sloane [1], together with references to the papers in
which they first appear. The theorems supporting the computational method are
given in 2, while 3 contains examples and a special case. The initial segments
of sequences {Hi(n)} and the generating functions i(t) are tabulated in 4 for

2, 3, 4 (for completeness) and for 5, 6. Use has been made of Theorem 2,
which is amenable to automatic computation.

2. Main theorem. The following result permits the computation of Hm(n)
by polynomial interpolation. The symmetry relation reduces the number of
values of n at which Hm(n) need be computed for interpolatory purposes.

CONJECTURE (Anand-Dumir-Gupta [2]).
(i) Hm(n) is a polynomial in n ofdegree (m 1)2.

(ii) Hm(n) (- 1) 1Hm(- rn- n).
Proof See Stanley [3].
Values of Hm(n) may be computed according to the following theorem.
THEOREM 1. Hm(n N(h’ * h"), where
(i) h, is the cycle index polynomial in the indeterminates xl...x, for the

symmetric group S,
(ii) if A(x), B(x) are two multivariate polynomials in x x, such that

A(x) EaiXi,
(i)

B(x) bixi,
(i)

where the summation is over all partitions (i)= i12i2... lin of 1% then the

Received by the editors June 17, 1974. This work was supported by the National Research
Council of Canada.

f Department of Combinatorics and Optimization, University of Waterloo, Waterloo, Ontario,
Canada N2L 3GI. This work was done while the author was visiting at Department of Pure Mathe-
matics and Applied Statistics, University of Cambridge, Cambridge, England.

:I: Department of Combinatorics and Optimization, University of Waterloo, Waterloo, Ontario,
Canada N2L 3G1.

474

THE ENUMERATION OF SOME MATRICES 475

inner product A * B is defined by

A(x) * B(x) aibig(i)xi,
(i)

where g(i) (li’2i2 ni,)ix !i2 in
(iii) N(A(x)) A(x)l,,=l,x 1).

Proof See Read [4].
The use of Theorem 1 is illustrated by Example of 3.
Since h," is a symmetric function, the cornputation of Hm(n may be simplified

by expressing h, as a linear combination of Schur functions and by using the
orthogonality relation for Schur functions.

Let {2} be the Schur function associated with the partition (2) of n. Then
h, {n} gives the representation of the cycle index polynomial for S, in terms of
Schur functions.

LEMMA 1. h’ t)z{2}, where the summation is over all partitions of mn.
Proof h"," is a symmetric function.
LEMt 2 (Orthogonality relation).

1 /f(2)= (#),N({2}*{/}) O otherwise.

Proof See Littlewood [5].
THEOREM 2. Hm(n) Ez) .
Peoof The proof is direct from Theorem 1 and Lemmas 1 and 2.
The remaining problem of expressing a symmetric polynomial as a linear

combination of Schur functions may be carried out by a method given by Little-
wood [5].

Let {2} be the Schur function corresponding to a partition (2)of r. To evaluate
{2} {n}, construct the Young diagram for (2) using "asterisks". Add to this diagram
n "dots" in all possible ways, subject to the conditions

(i) resulting diagram is a Young diagram in the two symbols,
(ii) no two "dots" lie in the same vertical line.

The expansion of {2} {n} is the sum of the Schur functions corresponding to the
partitions of r + n generated in this manner. Example 2 of the following section
illustrates this procedure.

3. Examples.
Example 1. Theorem 1 may be usefully employed for small values of n, for

which the exponentiation of the polynomial h, is readily constructed. We shall
compute Hm(2). Now h2 1/2(x21 + x2), the cycle index polynomial for $2. Therefore

H,,(2) N(h" * h’) N x2 - x2) * --(mX1 -- X2)

(m 2

4" ix
12i12i2(2il)!(iz)!

il,i2>-O
il +i2=m

(m!)2 2 -i

2 (m-)v ixil----0

476 D. M. JACKSON AND G. H. J. VAN REES

This is in agreement with known results.
Example 2. We shall compute H3(2 using Theorem 2.
We shall represent {#} by [G(#)], where G(#) is the Young diagram for (/),

and write {/} [G(#)].
Then {2} [* *], so

{2}’=[**..]+[.]+[-.],

whence

{2}2= {4} + {3, 1} + {22}.
Finally

{2}3= {2}2{2} {4}{2} + {3, 1}{2} + {2z}{2}
{6} + 2{5, 1} + 3{4,2} + 2{3,2, 1} + {4, 12} + {32 } + {23 }

Thus, from Theorem (2),

H3(Z)=N({2}3.{2} 3)= 12 +22 +32 +22 + 12 + 12 + 12 =21.

4. Tabulation of {H,.(n)}, I)m(t). The generating function for {Hm(n)} is
given by

n=O

(1 t)(’- 1)2+

TABLE
Tabulation of ui(") for m 2, 3, 4, 5, 6

m 2 3 4 5 6

i0
14 103

2 87 4306
3 148 63110
4 87 388615
5 14 1115068
6 1575669
7 1115068
8 388615
9 63110
10 4306
11 103
12
13
14
15
16
17
18
19
2O

694
184015
15902580
567296265
9816969306
91422589980
490333468494
1583419977390
3166404385990
3982599815746
3166404385990
1583419977390
490333468494
91422589980
9816969306
567296265
15902580
184015
694

THE ENUMERATION OF SOME MATRICES 477

(m- 2 .(m)wherefm(t) i=o 1)m)alm)t and all.i are integers.
Note that

is a consequence of

fm(t t(m-1)(m- 2)fro(t- 1)

Hm(n (- 1) Hm(- n m).

The values of alm) are given in Table 1, while Table 2 contains the initial segments of

TABLE 2
Initial segments of H,,(n) for m 2, 3, 4, 5, 6

m H,,(n)

1,2,3,4,5,6,7,8,9,10,11,12
1,6,21,55,120,231,406,665,1035,1540,2211
1,24,282,2008,10147,40176,132724,381424,981541,2309384,5045326
1,120,6210,153040,2224955,22069251,164176640,976395820,4855258305,

2085679285,79315936751
1,720,202410,20933840,1047649905,30767936616,602351808741,8575979362560,

94459713879600,842286559093240,6292583664553881

REFERENCES

[1] N. J. A. SLOANE, A Handbook of Integer Sequences, Academic Press, New York, 1973.
[-2] H. ANAND, V. C. DUMIR AND H. GUPTA, /1 combinatorial distribution problem, Duke Math. J., 33

(1966), pp. 757-770.
[3] R. P. STANLEY, Linear homogeneous diophantine equations and magic labelings of graphs, Ibid.,

40 (1973), pp. 607-632.
[4] R. C. READ, The enumeration of locally restricted graphs L J. London Math. Soc., 38 (1963), pp.

433-455.
[5] D. LITTLEWOOD, The Theory of Group Characters, Clarendon Press, Oxford, 1950.

SIAM J. COMPUT.
Voi. 4, No. 4, December 1975

ON SCHEDULING CHAINS OF JOBS ON ONE PROCESSOR
WITH LIMITED PREEMPTION*

JOHN BRUNO? AND MICHA HOFRI

Abstract. A scheduling rule is given for determining the processing order of tasks which have the
precedence structure of chains. It is assumed that the service times follow known distributions, that
they are all independent, that costs are accrued by tasks at a constant rate until their service
requirements are satisfied, that all the tasks are available at time 0 and that the service is interruptible
at task-specific sets of points. The rule consists of computing for each chain an "optimal assignment"
for its tasks and a rank function which depends on this assignment. Choosing at each point in time the
chain with the smallest rank produces an optimal schedule. It is proved that the "optimal assignments"
have the desirable property that as long as a task does not exceed its allotted service time, no
preemption should take place.

Key words, preemptive scheduling, priority scheduling, precedence relations, stochastic service,
rank schedule, mean flow time, linear costs

1. Introduction.
1. In this paper we consider a collection of n chains of tasks where the service

requirement of each task is distributed according to some known distribution law
and accrues cost at some constant rate until it completes its service requirement.
There is a single server, and a finite number of preemptions are allowed. Our
objective is to construct a scheduling policy which obtains, over all allowable
policies, the minimum expected total cost.

2. Sevcik [6] and Schrage [5] have considered the case where all the tasks are
independent and defined a "rank" function which they used to determine the
optimal service assignments. The addition of order constraints in chains alters the
cost structure of the problem in the sense that, if we view a chain of tasks as a single
unit, the cost accrual rate of the chain varies with time; i.e., it decreases as
individual tasks in the chain complete and depart. We have been able to extend
the use of a rank function and the interchange argument used by Sevcik to handle
chains of tasks.

3. A nonpreemptive, deterministic version of our problem has been studied
[3], [7], and it is known that one must minimize a rank function over all prefixes of
chains in order to determine an optimal assignment. Thus we were led to try to
extend the idea of rank to prefixes of chains in the nondeterministic case with the
criterion that this rank reduce to the known rank function for the deterministic
case. More general precedence structures, such as trees, can be handled in the
deterministic case, but we have been unable to extend the notion of rank to these.
We shall number paragraphs and equations continuously through the paper and
separately in the appendices. P1 is paragraph number and (2) is equation
number 2.

2. Description of the problem.
4. We consider a scheduling problem with the following characteristics: a

single server; a set of n chains of tasks; the ith chain holds k, tasks (tasks in a chain

* Received by the editors April 8, 1974, and in final revised form November 25, 1974.
? Computer Science Department, Pennsylvania State University, University Park, Pennsylvania

16802.
$ Computer Science Department, Technion-Israel Institute of Technology, Haifa, Israel.

478

ON SCHEDULING CHAINS OF JOBS 479

must be executed in a given order; one task may not start until all the tasks that
precede it in the chain are completed). All the tasks are available at 0, and no
further arrivals are taken into account. Cost is incurred by any task from time 0
until its service requirement is satisfied, at a constant rate w,j for task Tj, 1 (1)n,
j 1(1)/i. The service requirement of a task, S,, is distributed according to a
known law, F(-). We also assume that tasks may be interrupted and preempted
at a set of instants {t},, with (the attained service) measured only when T, is being
serviced. Suppose {t}i {1, 3, 4, 9}. When the processor is assigned to T for the
first time, we may preempt Tj (assuming T0 does not finish) only after it has
attained exactly 1, 3, 4 or 9 time units of service. If Ti is preempted at, say, time 3,
then the next time the processor is assigned to T, the service may be preempted
only after T has obtained a total of exactly 4 or 9 time units of service. If at any
time a task completes service, the processor may be assigned to another task even
though we are not at a preemption point for T,.

5. We have found it necessary to choose between two classes of preemption
epochs. One can imagine these as determined by the system (the server), where
these epochs could be end of a shift, regeneration points of some internal cycle,
and other examples where the status of the serviced task is not consulted. It is also
possible to imagine these epochs as task-controlled; preemption may occur only at
some opportunities during the service, and are defined by the stage of service of
that task. In particular, in this approach a task service termination is always a
preemptible epoch, whereas in the former it may not be. The analysis we pursue
will always assume the latter structure.

6. We shall also assume that once a chain is preempted, it is immediately a
candidate for assignment. No cost is incurred by preemption. If preemption occurs
while a task (i, j) is being served, that task will be considered as the first in the
remaining chain i, and to require a service, having already been served for a
duration t, which is distributed according to the law Fls,>,(.).

7. Our aim in scheduling these tasks is to minimize the expected total cost
incurred, C =Yi=l k’--1 wjE(di), when di is the time of departure of the (i, j)th
task. When w 1, this minimizes the expected mean flow time of the tasks.

8. We propose to show the optimal scheduling policy. We shall do it,
however, under conditions which limit the total number of possible schedules to a

finite number. Under this restriction, we shall prove the existence of a ranking
method hich at any occasion specifies which task is to be processed first, in order
to minimize C.

9. The restriction to a finite policy space is done through the following two
assurnotions.

(a). Time is "discrete"mby which we mean that when a task is assigned, a
finite time - must elapse before it can be preempted.

(b). There is a finite M such that Fj(M) 1 for all and j. Note however that
since the only requirement is that n, ki, and M be finite, with no explicit
restriction imposed, the proposed method will handle correctly arbitrarily large
system with any service distributions and preemption times that can be specified
in practice. Note that we would obtain exactly the same result if nothing is said
about M, but we only require that the sets {t} be all finite, and allow any task
which has exhausted its preemptible epochs to be served to completion. We still

480 JOHN BRUNO AND MICHA HOFRI

require, though, E(Sij) <
10. An assignment consists of selecting a chain i, letting its first task get

served up to a maximum time ql(ql {t}il). If the task is not concluded, the chain is
preempted and a new assignment has to be made. If the first task is concluded
before time ql elapsed, the second task is immediately initiated and given a
"quantum" of service not longer than q2(q2G{t}i2 [,-J {0}), whence the same
procedure is recursively followed. A chain is preempted perforce if a quantum in
the assignment is given the value 0. Otherwise it is either serviced to completion of
all the tasks or is preempted when any task is not concluded within its allotted
quantum.

11. A schedule consists of an initial assignment and subsequent assignments.
Since we must prescribe an assignment for any possible realization, a schedule can
be described as a tree. In P20 we shall elaborate on this specification.

3. The rank of a chain and its properties.
12. The schedule we advocate is done on the basis of a rank defined for each

chain. Define the random variable L as the number of tasks completed during an
assignment, as described in P10. L can range for the ith chain from 0 to k, initially.
We define rank as

(1) r(i) min r(i, q), qj {t}, {0}, q (q, q2, , qk,),
q

(2) r(i, q): E,. E r, +qL+l {/,,-EL[W,t+,]},
tj=l

ki
(3) ’V/,r Y. w,j. ’ij E(S,j[S. <-_ q) and %+, __a 0.

j=r

13. Note that P(L =/)= P(S,,<-ql)P(S,2<-q2) P(S.<=q,)P(S.+I>q,+,).
for /=l(1)k-l. Then P(L=O)=P(S,>q) and P(L=k)=P(S,I<=q,)

P(S,, _<- %). A representation of r(i, el) we shall find convenient is obtained by
writing P(l) for P(L l) and P(1) for P(L -_> l). Then

(4) r(i, q)= E P(l)q,+, + , P(l)r, E P(l)w,
1=0 /=1 /=1

14. When the discussion concerns a single chain--as it does, e.g., when we
discuss the properties of the function r(i, q) and in Appendices A and C--we shall
omit the chain index.

15. There is no direct intuitive interpretation for r(i, q), although it arises in a
very natural fashion when oneexamines the relative merit of assigning two chains
in alternative sequences (this will be clarified in P33). We note that or the case of
single-task "chains", Sevcik [6] does impute to r(i, q) some intuitive meaning,
which may be carried through to our situation if we interpret the sum of the cost
accrual rates of the tasks as the cost accrual rate of the chain. Then the
denominator of (4) represents the decrease in the cost accrual rate of the chain due
to the assignment q. The numerator can be interpreted as the expected time the
chain will occupy the server when assigned with quanta q.

ON SCHEDULING CHAINS OF JOBS 481

16. We present in the form of theorems the properties of the rank that we
shall require for our main argument. First we note that the minimization indicated
in (1) is done, by P9, over a finite set of finite intervals (as isolated points), so that a
minimum exists. Its evaluation, however, may be a lengthy procedure. (See also
P39-P41). A little help can be offered by the following.

THEOREM 1. The value of q which minimizes the rank of a chain with qz
forced to be zero will be also the optimal value when the restriction is relaxed.

A proof and a discussion of the theorem are given in Appendix A.
Some reflection of the meaning of optimal quantataking into consideration

the stochastic independence of services to different tasksmay convince the
reader that Theorem 1 is valid.

17. Another interesting property of r(i)a property we shall find essential
for our main argumentis given by Theorem 2.

THEOREM 2. The rank ofan assigned chain cannot increase during the service
time, as long as the rank-quanta, q*, are not exceeded, where q* are the quanta on
which r(i, q) obtains its minimum value.

18. The intuitive idea of a rank which is possible in the degenerate cases of
P15 would lead one to expect this result. It was gratifying to find it holds also in the
more general case. A proof of Theorem 2 is given in Appendix B.

19. Finally we observe the following property which we conjecture to be
true.

PROPERTY 3. Let a chain be preempted (either because it exceeded a rank
quantum or a task was finished and the next rank quantum has length 0); its present
rank is no lower than it was when last assigned.

Again, this is natural if we allow for the intuitive ordering property of a rank.
There is more about it in Appendix C.

4. Optimality of smallest rank (SR) schedules.
20. A schedule is a labeled binary tree where the labels correspond to

assignments. If v is a vertex, than (v) denotes the chain assigned at that vertex;
i.e., 1 -< a (v) -< n, and/3 (v) is the service allotment to be given the first task in chain
a(v). If the task is not completed within time fl(v), then it is preempted and
subsequent assignments are made according to the left subtree of v, called the
no-completion (sub)schedule of v. Otherwise, as soon as the task completes its
service requirement, the remaining assignments are made according to the right
subtree of v, called the completion (sub)schedule of v.

Not every schedule is valid for a given problem--it is natural to require that
there are no parts of a schedule which are useless and that it provides for all
contingencies. When we use the word schedule we mean a valid schedule.

21. Two schedules will be called equivalent if they give rise to precisely the
same performance under all circumstances. Let S be a schedule and v a vertex of
S. We say that v is a unit assignment if/3(v) is as small as possible; S is a unit
schedule if every vertex in S is a unit assignment. Clearly, any schedule can be
transformed into an equivalent unit schedule (Fig. 1).

A binary tree consists of a finite set of elements called vertices and is either empty or consists of a
distinguished element called the root and a partition of the remaining elements into two binary trees,
called the left and right subtrees of the root.

482 JOHN BRUNO AND MICHA HOFRI

22. Let S be a unit schedule and v a vertex of S. We say that v is an SR vertex
if r(a(v)) <- r(i) for all nonempty chains i; a unit schedule S is SR if every vertex in
S is SR. A schedule is said to be an SR schedule if its corresponding unit schedule
is SR.

23. The following theorem is the main result of this paper.
THEOREM 4. LetP be a schedulingproblem. A schedule forP is optimal ifand

only if it is an SR schedule.
Proof. The number of possible assignment intervals for a task is called the

index of a task. For example, a task which cannot be preempted until it obtains its
service requirement has an index of 1, a task with one preemption point allowed
has index 2, etc. The index of a scheduling problem is the sum of the indices of its
tasks.

The proof is by induction on m, the index of a scheduling problem.
24. Basis. Clearly, the theorem is true for all scheduling problems with

index 1.
25. Induction hypothesis. Let m > 1 and assume the theorem is true for any

scheduling problem whose index is less than m.
Induction Step. Let P be a scheduling problem with index m. If P consists of a

single chain, we are finished. Accordingly, we assume there are at least two
nonempty chains. The rest of the proof will work as follows:

(A) We show that if S is an optimal schedule for P, then S is an SR schedule,
and

(B) All SR schedules for P have the same cost.
Arguments for (A) and (B) suffice to prove the theorem.

26. Let S be an optimal schedule and assume S is not SR. We shall consider
the schedule decomposed to its equivalent unit schedule. By the assumption on S,
not all the vertices can be SR. Working our way up from the leaves of the tree, we
find a vertex v in S such that v is not SR and the completion and no-completion
schedules of v are both SR schedules.

becomes

N

S S
2

.>

N S2--.-UNIT
ASSIGNMENTS

NC/
’ SS

q ql+.-.+qs
C Completion subschedule

NC= No-completion subschedule
FIG.

ON SCHEDULING CHAINS OF JOBS 483

27. The idea of the proof is to show that since S is not SR, it can be modified
in a manner that will decrease the expected cost associated with it. We know how
to evaluate the change in cost between two schedules only when they differ by a
single exchange. An exchange is the operation that transforms a schedule which
assigns at a particular situation chain for quanta vector q and starts its completion
and no-completion schedules by assigning chain j for quanta p into a schedule that
at the same situation starts by assigning j for p, and continues, both upon
completion or no-completion, by assigning for q. A representation of an
exchange is given in Fig. 5.

P28-P32 present the groundwork necessary for this exchange.
28. The no-completion sequence of v is a sequence of vertices)1, , Ok such

that v v, v+ is the root of the no-completion subschedule of v, a(v) a(v) and
k is maximal. By the induction hypothesis, all the nonempty completion sub-
schedules of v,-. ", v can be taken to be equivalent (see P21) to a fixed
nonempty SR schedule S’, since they all operate on the same set of tasks, at the
same stages of execution, and are of the same index. If all the completion
subschedules of Vl, ", v are empty, then we take S’ to be empty. Let S denote
the no-completion subschedule of v. We can collapse the sequence Vl, ", v into
a single vertex with assignment specifying chain a(v) for a service interval not
to exceed q =/3(Vl)+ +/3(v) (Fig. 2).

29. The process just described is applied repeatedly to S’ as long as a (root of
S’) a(v). The result of this transformation is shown in Fig. 3.

30. Since was not an SR assignment at vertex v, there exists a chain fl J # i,
which has the lowest rank value r(/’) at vertex v. By the induction hypothesis, we
can arrange to have all the nonempty schedules among $1,’" ", S,+1 begin by
assigning chain j. Let pl,’" ", p be its corresponding rank quanta, where p > 0,
l <-l<=b, l <=b <__k.

N becomes

FIG. 2

N

S S’

484 JOHN BRUNO AND MICHA HOFRI

N

S

S2

FIG. 3

Sa S
a+l

31. Let S be a nonempty schedule 1 -< I-< a + 1 (there must be at least one
because of P25). By the induction hypothesis and Theorem 2, the no-completion
sequence of the root of S must assign at least the rank quantum pl to the first task
in chain]. We can restructure S, if necessary, such that the root assigns chain] for
the service interval p, where the no-completion subschedule of the root is
denoted S.1 and the completion subschedule S. Using Theorem 2, we can apply
this restructuring to S’ (b- 1) additional times, resulting in the schedule shown
in Fig. 4.

32. In Fig. 5(a) we show the complete restructuring of S in which, for the
sake of simplicity, we have neglected the possibility of empty subschedules. Our
plan is to examine the effect of an interchange as explained in P27. This
interchange is shown in Fig. 5(b) and, as indicated, it is always possible to resume
the appropriate schedule Sx. such that E(A), the difference between the expected
cost before and after the interchange depends only on the interchanged service
intervals and no subsequent modifications result.

33. In order to calculate A, we define the random variables L and M as the
number of tasks of chains and], respectively, that are completed during the
assignments q and p. Since the only difference in the costs of the schedules
represented by Fig. 5(a) and Fig. 5(b) results from the change in residence time of
the tasks of chains and], we have, using notations of P12, with A conditioned on

ON SCHEDULING CHAINS OF JOBS 485

L and M only,

A =cost before exchange-cost after exchange

=W., ", +q,+, + /u, +4,,+,q+,
1=1

=1 m=l

m=l m=l

/=1 l=

)(6) , +q+ (.- .+)- 5 + p+ (.- .+l).
/=1

From (6), the independence of L and M, and (2), we obtain that

(7) E() > 0r(i, q) > rff, p).

Hence, if the original S was not SR, it could not have been optimal. This completes
the proof of (A).

34. (B) Let S and S be unit SR schedules for R Let v and v be the roots of
S and S, respectively. If (v)= (v), then, by the inductive hypothesis, the
completion and no-completion subschedules of both v and v are optimal and
incur indentical costs, and therefore the expected cost of S is equal to the
expected cost of S.

35. Assume (v) j (v). Obviously r(i) tO’), since both schedules
are SR. Our goal is to transform S into S using an interchange in such a way that
at each stage the cost decreases. Since by symmetry we could have just as easily
transformed S into S, we can conclude that the cost of S is equal to the cost of S.

S. becomes,,= N

S, "..

S

FIG. 4

St, b si, b+l

486 JOHN BRUNO AND MICHA HOFRI

C

N

N

Sl,I
N

S
Sl ,b I,b+l

"’.

Sa +1"1-.
N

"’"
N

Sa+l,b Sa+l,b+l

Sa,b S
a,b+l

F(3. 5(a). Before interchange

NC/

C

NC ".
$I,I " NCc

Sal Sa+l,I

c

"..
NC

N

Sa,b+l Sa+l,b+l.. cc
Sa,b

F. 5(b). Alter interchange

ON SCHEDULING CHAINS OF JOBS 487

36. To transform Sl into &, we exhibit Sl as in Fig. 5(a), where p,. ., pb are
the rank quanta for chain j. The induction hypothesis enables us to have chain j at
the root of all the no-completion schedules of the tasks of i. Thus the interchange
(Fig. 5(b)) yields a schedule S’ with cost no larger than S. The no-completion and
completion subschedules of the root of S’ can be taken to be SR schedules without
increasing the cost, and using the induction hypothesis, we can go to $2, again,
without an increase in cost; hence the costs of Sa and $2 are equal. I

5. Discmsion.
37. We have extended a result for optimal scheduling of independent jobs to

the case where they a,re arranged in a number of chains. To facilitate the proofs,
time was considered discrete and the service requirements were bounded. These
two restrictions seem to us inessential, in the sense that the result carries over to
cases where they are not satisfied. We would require, though, finite service
expectations (the main difficulty would then be the existence of service contribu-
tions that would specify infinitesimal quanta as the optimal ones. That would be
usually the case with DFR distributions and, more generally, in situations where
the expected remaining service time is an increasing function of the attained
service time). In these cases, "processor sharing" will have to be introduced.
Permitting this, the arbitrariness allowed in the time scale we used indicates that a
schedule based, on the same rank will be optimal.

38. A more interesting extension will be to cases where arrivals are expected,
whether of individual tasks to existent chains, or of whole new chains. Here a
completely different approach is necessary. We note in passing that a finite
number of expected arrivals is more likely to produce an unmanageable problem
than a stationary input process. It can be shown that the determination of the
optimal, schedule in a deterministic context, when one arrival is expected, is
"polynomial-complete" [4].

39. The minimization implied in the definition of a rank in (1) can prove to be
a major problem, and the value of Theorem 1 is quite limited in the case of a long
chain. This problem can be shown to be a special case of a problem treated in [1],
and the efficient algorithm presented there can be applied in the present case.

Appendix A. Proof of Theorem 1. The value of q that minimizes r(q) when
q2 0 is the value that minimizes

(A.1) r(q)=[(1-P)q +P’]/Pawl,

where P P(S <-_ q,), ’ U(S, IS, <= q,). Using the modification of (2) as in P13, we
can write for the expression for the rank r(q), with a chain of k tasks,

Y P(L j) , + q,+, + P(L k)
(A.2) r(q) ==

j=l

Substitute P(L j) P,P... (1 +) for j 1(1
P(L k) P,P P; P(L j)= P, , and we obtain, after we separate

488 JOHN BRUNO AND MICHA HOFRI

from the rest and note that Y’=l P(L j)= PI,

(A.3) r(q)
ql(1 P) + P17"1 +

() +._____T

where O, T and W arise from qi and -i, respectively, for i>= 2, do not depend in
any way on q, and are nonnegative. This assures that the same value of ql that
would minimize r(ql) would also be the first component of the q vector that will
minimize r(q)in (A.3).

Unfortunately, this manipulation cannot be extended any further. As a
demonstration, we show that the value of q2 that will minimize r(q) may depend on
whether or not q3 is forced to be zero. Suppose the first three tasks had
deterministic service requirements a, b and c, and cost accrual rates w, w2 and w3.
Then the ranks when one, two or three quanta may differ from zero are

r(ql) a/w1, r(ql, q2) man {a/w, (a + b)/(wl + w2)},
(A.4)

r(ql, q2, q3): min {a/w1, (a + b)/(w + w2), (a -k-b-f-c)/(w-- w2-- w3)}.

It is a simple matter to find values for these parameters so that we shall have
ql* a, q2* (a, 0) q* (a, b, c), as asserted. The values a c 1, b 2, w w2

1, w3 4 satisfy this.

Appendix B. Proof of Theorem 2.
1. Consider a chain having at time 0 a rank ro, obtained with the rank-quanta

assignment q. Let % some rank-quantum, be equal to a + b, a -> 0, b > 0. Theorem
2 states that at time t,, after the chain has been serviced and the i- 1 first tasks
finished within their allotted quanta, and task was processed for time a and not
terminated, the rank of the chain, r,, is no greater than ro.

2. We shall consider assignments with the following quanta: at time 0, the
assignment q gives rise to the rank ro. The assignment q’, with qi a only and
otherwise equal to q, gives the rank-value r)>= ro. At time t, there is an optimal
assignment l which gives rise to the rank r,, and we shall also consider the
assignment then of (b, qi+l," ", @,) which gives rise to the rank-value rb ->_ r.

3. Using the interpretation of the rank given in P15, we write

(B.1) ro T/ W, r’o T’/ W’, rb T/ W.
We use the independence between the service durations to different tasks to
further write

(B.2)

where

and

T ’ + P17"a+b + PIPa+bT"2,

’rl is the expected time spent on first i- 1 tasks,
P is the probability task is reached,
-,+ is the expected time spent on task i,
P.+b is the probability that task terminates within a + b,

J’2 is the expected time spent on the last k- tasks.

ON SCHEDULING CHAINS OF JOBS 489

Similarly,

(B.3)

where

and

W W1 + P,P.+,w, + PPa+,W2,

is the expected decrease in accrual rate from processing the first i-1
tasks,

(B.5)

(B.6)

where

W2 is the expected decrease in accrual rate from processing the last k-i
tasks.

And likewise,

(B.4) T’ ’ +P’a + PIP,za,

with obvious meanings for ’, and P,,

W Wl -’1- PIP,,w, + PIP,W2,

T ’ + P’z, W Pw, +PW2,

’=E(S,-ala<S,<-_a+b)+b P(S,>a+b[S,>a)
(B.7)

=(z.+,-’r.)/(1-P.),

(B.8) P P(S, <- a + blS, > a)= (P.+-P.)/(1 -P.).

4. Using these values, we obtain

ro (71 d- PiTa+b + PIP+bT2)/(W1 d- PiP,+bw + PiPa+bW2)
(a.9)

ar+ (1- a)r,

with t (Wa + PIP(w, + Wz))/(W / PPa+(w, + W)), as substitution readily
shows.

Since obviously P,+ _-> P, _-> 0, we have that 0 _-< a <_- 1, and thus in (B.9), ro is a
convex combination of ro and r. Since by definition ro <to, we must have
ro -> r _-> r,, as required.

Note that a =0 corresponds to the special case of rank after a service
termination.

Appendix C. Discussion of Property 3.
1. In spite of its intuitive content, we have not been able to fully prove

Property 3 of the rank as it is stated in P19. We can show part of it: if the rank of
the chain

I q22 n-lq"-I q"n n+lq"+l I. .I k-l
iq"- qk

is obtained at q q*, with q,+l* 0 and r r*, and when the chain was assigned for
the first task it carried through and completed the first n tasks within their allotted
quanta, then the rank of the remaining part is larger than r*. Suppose the rank of

490 JOHN BRUNO AND MICHA HOFRI

the remaining part, r., is obtained at 1, which is (0n+l,’’’ Ok), with .+1 >0.
Define r(q) by (4) as

n--1 k--1 k

P(1)q/l+ P(l)+ P(l)q/l+ P(l)Tl
(C.1) r(q)

/=0 /=1 l=n /=n+l

ff(l)w,+ fi(l)w,
/=1 /=n+l

where the first n components of q are those of q*, and the last k n are , we can
write then, denoting the value of r* from (4) as the ratio A/B:

A + P(n) P.+l(l)O,+, +
l=n l=n(C.2) r(q)

B +P(n) Y P.+,(l)w,
/=n+l

where P.+l(/) P (task is the last one completed within its quantum, starting with
the (n + 1)st task). P.+(I) is defined accordingly, as in P13. Since with this notation
r. can be written as

(C.3) r.

k-1

2 P.+,(l)Ot+, + 2 P,,+,(1).,
l=n l=n

Z
/=n+l

we have

(C.4) r(q) A+Dr. B r*+ D
B+’-D-- B +-- B +D

r,,

which is a convex combination. Since by definition r(q) _>- r*, we must have r. -> r*,
as claimed.

REFERENCES

[1] J. BRUNO, E. COFFMAN AND D. JOHNSON, On batch scheduling o]’jobs with stochastic service
and cost structures on a single server, Tech. Rep. 159, Dept. of Computer Sci., Pennsylvania
State Univ., University Park, 1974.

[2] R. W. CONWAY, W. L. MAXWELL AND L. W. MILLER, Theory of Scheduling, Addison-
Wesley, Reading, Mass., 1967.

[3] W. A. HORN, Single-machine job sequencing with treelike precedence ordering and linear delay
penalties, SIAM J. Appl. Math., 23 (1972), pp. 189-202.

[4] R. KARP, Reducibility among combinatorialproblems, Complexity of Computer Computations, R.
E. Miller and J. W. Thatcher, eds., Plenum Press, New York, 1972, pp. 85-104.

[5] L. SCHRAGE, Optimal scheduling disciplines]’or a single machine under various degrees of
information, 44th ORSA Conf., Boston, April 1974.

[6] KENNETH C. SEVCIK, Scheduling]:or minimum total loss using service time distribution, J. Assoc.
Comput. Mach., 21, pp. 66-75 (1974).

[7] JEFFREY B. SIDNEY, Decomposition algorithms for single-machine sequencing with precedence
relations and deferral costs, Operations Res., 23 (1975), pp. 283-298.

SIAM J. COMPUT.
Vol. 4, No. 4, December, 1975

A CONVERGENCE THEOREM FOR HIERARCHIES OF MODEL
NEUONES*

M. D. ALDERS-

Abstract. The threshold logic unit (T.L.U.) has been proposed as a model for a single neurone;
other substantially cognate terms are "perceptron" and "adaline". Networks of these elements have
been advanced as tentative models of some aspects of brain functioning. In particular, hierarchical nets
appear to exhibit a sufficient flexibility to make them iteresting both as plausible models of learning in
the central nervous system and also as general objects of study in connection with pattern recognition
and artificial intelligence.

In this paper, we discuss the well-known "perceptron convergence theorem" in a fairly general
setting, and consider variations appropriate to nets of such units. A certain familiarity with the relevant
chapters of Nilsson’s Learning Machines [1] and also with current mathematical formalism is
presupposed.

Key words, model neurones, perceptron, learning machine

1. Introduction. There are two prerequisites for reading this paper" the first
is Nilsson’s Learning Machines [1] and the second is some familiarity with current
mathematical formalism. Some care has been taken in what follows to explain the
formalism and mitigate its abstraction, but there are limits to how far one can go in
this direction (if there were not, the formalism would be pointless).

The reason for citing 1 as prerequisite is mainly motivational. This paper is,
it is hoped, self-contained logically, but this introduction can only very briefly
recapitulate the development. Together, [1] and the review [6] by H. D. Block of
Minsky and Papert’s "perceptrons" indicate why perceptrons or threshold logic
units (T.L.U.’s) are of interest in machine learning and brain modeling.

To date, a great deal has been written on the shortcomings of the single unit
both as a trainable pattern classifier [3] and as a model of perception [4]. The
virtues of the T.L.U. are first that it is strongly reminiscent of various models of
adaptive behavior in the central nervous system, and second that it constitutes a
simple, well-defined "trainable" object. It might reasonably be hoped that nets of
such units would overcome the objections of inflexibility that are leveled against
the single unit, but little appears to have been done in this direction. Although
there is no hope of rescuing the perceptron as a model for perception, nets of
perceptron like elements would appear to be interesting objects of study in
artificial intelligence and brain modeling. The central problems appear to be: first,
what configurations of net are capable of adaptive behavior, and second, how does
one train such a net? Given a procedure for training a single unit and a net of such
units, how does one select a particular unit from the net to be corrected, when the
net as a whole is in error?

In this paper, two types of nets are considered, committee nets and hierarchy
nets. A simple algorithm is specified and a convergence theorem proved. In 2, a
careful formalization of the problem is given. Section 3 contains a new proof of the

* Received by the editors October 6, 1972, and in revised form October 12, 1974.
? Department of Mathematics, University of Western Australia, Nedlands, Western Australia

6009.

491

492 M.D. ALDER

perceptron convergence theorem, mainly to indicate the terminology and
methods of the net theorem, which appears in 4, as Theorem 4.24.

2. Terminology, notation, conventions.
Remark 2.1. I shall rely heavily on modern, pure mathematical formalism; it

is powerful and convenient and leaves no serious alternative. Since this paper is
not written for pure mathematicians, however, it seems appropriate to explain
some of the definitions verbally and informally, and I shall do this. Initially we set
up the language.

Notation 2.2. So denotes the two point set {- 1, 1}, N" the space of n-tuples of
real numbers, N the set of natural numbers.

DEFINITION 2.3. A data set on " is a map f D - So where D is some finite
subset of ".

Remark 2.3.1. This simply means we pick out a finite set of points in N",
calling some negative (- 1) and some positive.

Remark 2.4. It is a triviality that any affine map from N" to N can be described
by n + 1 numbers: for n 2 the general affine map sends (x, y) to ax + by + c,
where a, b, c, three constants, determine the map. In general, any affine map from

" to sends the vector (Xl, x2, .x,) to Y.i=l., aixi + c, where the n + 1 numbers
al, a2, , a,, c, determine the map. The kernel of this map is the subset of N" that
gets sent to zero, i.e.,

{(x, x,..., x,)a" Y. a,x, +c =0},
provided not all the ai are zero, this is a hyperplane in " of dimension n- 1; in
particular it is a line in 2. We shall work in the space of affine maps from " to .
Specifying each of them by n + 1 numbers in the above manner, we see that we can
think of this space as "being" "+1, and we shall henceforward make this
identification without further comment. More formally we have the next defini-
tion.

DEFINITION 2.4.1. Let X, denote the space of all affine maps from " to .
Clearly X, is isomorphic to ["+. It is called the "weight space" in [1].

DEFINITION 2.5. Let sgn -{0} S be the map sending x to x/Ixl, i.e.,
sgn (x) is + 1 or -1 according to the sign of x.

DEFINITION 2.6. Given a data set f and x 6 D dom]’, we shall say that
L X*, correctly classifies x if f(x) sgn L(x).

DEFINITION 2.7. If :iL X, f(x) sgn L(x) Vx dom f, we shall say that f
is linearly separable.

Remark 2.7.1. In English, if there is any affine map which correctly classifies
all points of a data set, then it (the data set) is linearly separable. Clearly the affine
map has kernel coming "between the two types of point".

DEFINITION 2.8. A training sequence for a data set f is a map tr D, where
D dom f, such that for all x D, o--(x) is infinite.

Remark 2.8.1. We merely wish to have a sequence of all points in the data set,
each one "called" as often as is necessary. Hopefully, convergence of the training
procedure means that after some number, no correction is necessary; the unit has

HIERARCHIES OF MODEL NEURONES 493

converged. Since we cannot say in advance when this point is to be reached, we
allow an infinite set of possible "calls" of each data point.

DEFINITION 2.9. Let ,,* denote X, with the constant affine maps removed.
Alternatively contains only those affine maps from [" to R that are surjective.

is isomorphic to a subset of N,+I, and we shall make this identification without
further comment. These are the maps having kernels precisely the hyperplanes of
dimension n 1 in [". We shall drop the n in X, and ,,,* from now on; it is excess
baggage. We shall use A xB to denote the Cartesian (set) product, and the
notation

H A
j=l,n

for the Cartesian product of a set of sets.
DEFINITION 2.10. A training procedure or correction procedure or correction

algorithm for a data set f, is a map

satisfying the relation

sgn (O(x, L))(x) f(x) Vx D,

where D dom f.
Remark 2.10.1. This is stronger than is necessary and requires that given a

point of the data set x and any affine map L in ,*, we have provided a (possibly
the same, possibly new) map O(x, L) which now correctly classifies the point. We
might have demanded only that some iterate of (using the same x) should
correctly classify the point. We shall in fact work with a standard procedure
described immediately below which is a correction procedure in our sense. The
results in this paper do not in general depend strongly on the correction proce-
dure.

Remark, 2.11. A point x dom f, f a data set, determines in X* a hyperplane
passing through the origin and dividing X* into two halves, the sets X+ and X_
defined by:

LX+ iff sgnoL(x)=f(x).

The hyperplane determined by x we shall call . Now we define the standard
correction procedure.

DEFINITION 2.12. The standard correction procedure or standard correction
algorithm is the map

D X* - X*given by

cI)(x, L)= L if sgn L(x)= f(x)

494 M.D. ALDER

and

[(1+ c). (, L)]
(x, L) L- x otherwise,

where c is any real number such that 0 < c < 1, and is the normal vector in
X* =[,+1 to the hyperplane determined by x (obtained by augmenting the
vector x with a 1 in the (n + 1)th place, in the obvious representation of X*). (d, L)
is the usual inner product in "+.

Remark 2.12.1. The definition of 40 is pernaps not very natural at first sight.
The point x, f(x) determines in X* the oriented hyperplane . L is on the "wrong
side" of and is just a point in X*, so we proceed simply to "reflect" the point L in
the hyperptane to obtain a new L. A full reflection wouid correspond to c 1; it
is convenient to "dilute" the reflection so that the point changes sides of the
hyperplane but finishes up closer to it. It is easy to verify that b accomplishes
precisely this.

DEFINITION 2.13. Let o-" NN- D be a T.L.U. training sequence. Then
generates an action on)*, i.e., a map Z that assigns to each number n , that
map from)* to itself sending L to (o-(n), L) in *.

Formally we have: Z" - (X’*, .*). (where (X, Y) is the set of maps from X
to Y), given by Z(n)" .* *, ’qL ’*, sends L,,,O(cr(n), L, VL f*. If is
the standard correction procedure, Z is called the standard action for

Remark 2.13.1. We "call out" the points of the data set in some sequence,
and corresponding to each number we have a data point. This data point now tells
us how to "move" any given affine map until it correctly classifies the point, i.e.,
the data point determines a map from * to *.

If the sequence o- and data set f are chosen, and if f is linearly separable, we
might reasonably hope that for each L there is some natural number N such that
convergence occurs and every point in dom f is correctly classified. In this event,
with the standard correction procedure, L would never be moved again.

DEFINITION 2.14. A T.L.U. training sequence o- converges under the standard
action (or converges, for short) if /Lf(*:IN’n>N(E(n))(L)

(Z(N))(L).
THEOREM 2.15. Let f be any linearly separable data set in ", cr any training

sequence. Then r converges under the standard action.
Remark 2.15.1. We give no proof of Theorem 2.15 at this stage; see 1 for a

somewhat different version.
The least N t such that the implication of Definition 2.14 holds is the stage

or iteration at which the T.L.U. has converged. We say informally that the T.L.U.
has "learned" the data set at this point.

Remark 2.16. This concludes our formalization of the "single unit" case.
Apart from our choice of a standard correction procedure and hence a standard
action of training sequences, this merely writes out in an abstract setting what has
been well known. In fine, the long string of definitions to date is no more than a
mild tightening up of the language of 1], and nothing has actually been said yet. It
should not be necessary to point out that the economy of a terse formal language is
a considerable aid to thought when matters get complicated. We proceed to
discuss the nets we shall be concerned with in later sections.

HIERARCHIES OF MODEL NEURONES 495

Remark 2.17. We suppose we have q T.L.U.’S, each "state" in 2*. Assume q
is odd.

DEFINITION 2.18. The committee-net of order q is the map

C" ’* x* x. x* x R" - S

q copies

defined by

C(L1, L2, "Lq, x) sgn sgn (Lj(x))

This map, strictly speaking, has domain the subset of

2* x 2*x x 2* x R"

where points of R" do not occur in the kernels of the Lj. The difference is a set of
measure zero and will be ignored.

Remark 2.18.1. We have not one but q affine maps, each giving a verdict +/- 1
on x. C takes the majority vote of the committee as the output. Writing I-L=l.q)
for the above Cartesian product (j not indicating the dimension!), L
=(L,,L2,". Lq)e H 7.

j=l,q

DEFINITION 2.19. A data set f is committee q-separable iff

qL H X C(L, x)= f(x) Vx dom f.
j=l,q

Remark 2.19.1. That is to say, a data set f is committee q-separable if there is
a set of committee "members", each member a T.L.U. such that the majority vote
on each data point is always right. We note two things: first that since the data set is
finite, if any one solution exists, then an open neighborhood of solutions exist
consisting of L’s "close enough" to the given L. Since Hi=l,q is a subset of
(+1), we may take the Euclidean metric in __, and talk of an open "ball" on
a given L. Second, permuting committee members gives a generally distinct
solution that is just as good. Effectively we are observing that there is a high
degree of symmetry in the "solution space", where the solution space is that
subset of [L--1, containing exclusively points L such that

C(L, x) f(x) Vx e dom f.

We turn to the second kind of net we shall consider.
DEFINITION 2.20. The simple hierarchy net is the map

given by
H" J* x J* x J* x W S

H(L,, L2, L3, x)= (L3(x))
(1 +LI(X)) (1-L,(x))+ (L2(x))

2 2

where Lj(x) is an abbreviation for (sgn Lj)(x). Again strictly speaking, we take a

496 M. . ALOZ

subset of J* x J* x J*x R", the map not being defined on (El, L2, L3, x) if x is in
ker L1 or ker Lz or kr L3. This set has measure zero.

Remark 2.20.1. The effect of this is that if L1 "decides" that x N" is of type
+ 1, then L3 is "allocated" the job of deciding on the nets view of the true category
of x. If sgn (Ll(x))=-1, then Lz gets the job of deciding. We have a decision
hierarchy, where the "top layer" (L e X*) decides not on the category of the
point, but on which of the other two T.L.U.’s decides the matter.

To indicate the force of this process, consider a data set f: D --> SO for D R,
defined by f(x)= + 1 if x is strictly in the first or third quadrant of the plane,
f(x) 1 if x is strictly in the second or fourth quadrant and D any finite set of
points.

It is easy to see that this is a serious problem for a committee net" roughly
speaking, the number of committee members required increases monotonically
with the number of points. However, the simple hierarchy can correctly classify
any finite number of points; we leave the reader to find a solution.

The problem arises: how does one correct such a machine, for the correction
process can occur at either level in general? If the hierarchy is in error, we can
suppose either that the executive (lower) unit selected was in error or that the
policy (upper) unit erred in its allocation. If we have no evidence to prefer one
hypothesis to the other, it seems reasonable to choose at random between layers,
to choose at random a T.L.U. in the lower layer if that is selected and to correct it if
it is in error. We show later that this somewhat haphazard procedure yields
convergence.

Remark 2.21. There is for any net the following problem: which T.L.U. does
one select for "correction" by the standard procedure, when it is the net as a
whole that is in error? As remarked above, for the simple hierarchy, this becomes
a matter of choosing between layers; for the committee net we have a similar
problem: which committee member gets corrected?

We shall show in both cases that the "net correction procedure" of choosing
at random some unit to correct will guarantee convergence, provided that the data
points are also called at random. The method of argument appears to hold for
quite general net configurations, but we restrict ourselves to the particular nets
discussed. The convergence result for both nets is established in 4; in 3 as a
preamble we give a proof of the perceptron convergence theorem for the standard
correction procedure.

3. The perceptron convergence theorem.
Remark 3.1. For x domf, the action of Definition 2.12 defines a map

(x) X* X* which is a map of E"+ onto a half-space. It is easy to see that the
map (x) X* X+* is a retraction (i.e., it leaves points already in the half-space
X+ fixed) satisfying the following Lipschitz condition:

I[(x)(y)-(x)(z)l[<= IIY- z]l Vy, z X*, Vx dom f.
where II. denotes the usual Euclidean norm on X*, taken isomorphic to
Let A be a subset of N" and r " --> A a retraction satisfying

(2) lit(y)- r(z)ll IlY zll vy, z "
(and r(a)= a, Va cA, since r is a retraction); then r is continuous and A is
necessarily convex.

HIERARCHIES OF MODEL NEURONES 497

The first part of this remark, that (I)(x) satisfies the Lipschitz condition,
follows from the "diluted reflection in a plane mirror" nature of (I)(x). Obviously,
no two points can be moved further apart by the map; it is "nonexpansive", which
is what (1) says. That a nonexpansive map is continuous is a triviality; to see that A
is necessarily convex, take any two points a, b in A. Then the line segment joining
a and b lies wholly in A, for take c on the line segment between a and b. c cannot
be moved without increasing its distance from a or b. r is nonexpansive, so c is not
moved byr; hence c A. We deal therefore with a set of nonexpansive retractions
onto convex subsets and with composites of them. It is clear that if we have two
nonexpansive retractions onto sets which intersect, then the composite of the
retractions "winds fl"" around the intersection. If the intersection has nonzero
measure, a "bite" of at least this size is taken out by each iteration of the
composite of the retractions. For example, take the retraction of to which
sends x to Ix and the second retraction sending x to -Ix I- Iterating the composed
map "winds" 0 around the origin, which has measure zero.

Compare with the maps rl" 0- with rl(x)= x if x>-l, r(x)=-x-2 if
x<_--l; and r2" -fl with r2(x)=2-x if x>l, r2(x)=x if x_-<l. Then r is a
nonexpansive retraction onto [-1, o0) and r2 is a nonexpansive retraction onto
(-o0, 1] with a "bite" between [-1, 1] taken out of the composite rl r2. The
composite is obviously a contraction mapping outside [- 1, 1] (on which it is fixed).
Hence for any x fl, there is a number n such that (r r2)" takes x into [-1, 1]. In
fact n Ix/2] clearly suffices. The following proposition states that this situation
holds quite generally.

PROPOSITION 3.2. Let {Aj}I <= j <-_ J be subsets of " and
{rj" I"- A,, 1 <-_j <-J} a family of retractions satisJ’ying IIr,(x)- r,(y)]l
-< IIx yll/x, y , /j 1 <- j <= J. Suppose that f’) =,=jA, contains an open set
f. Let g=rjo r_ r2o r. Then IxI" ::lk" gk(x)6 (’l=iAi.

Proof. We shall deal with the case J 2; the result follows by an easy
induction. The conventions of point set topology are employed" if A is a set, A
denotes the closure of A.

First we note that if W is the interior of A f)A2, then A F)A2 W, for A
and Az are closed by continuity; hence W___ A1 f3 A.. It suffices to show that if y is
a boundary point of A f)A, then any neighborhood of it intersects W.

This follows by taking the cone on W with vertex y, i.e., the set of line
segments in " joining y to a point of W. Since y and W are in A f)A2 and
A f-)A), is convex, the cone is also in A fqA2. Now any neighborhood of y
intersects a "contracted" copy of W which is itself open and in A, f-)A.

Now suppose x" given; we seek an m such that g"xA ["]A2. Put
WI (g-IW)t_J(AxfqA:). It is easy to see that Wa is an open set containing
A A. Generally put W,, g- W,,_ and V- m W,.. V covers ", for if not
let w be the point of "-V closest to AfqA. (which exists by an easy
compactness argument). Either g(w) w when w A f) A2 and hence w W, or
g moves w into V, when ::lm g(w) W,. whence w 6 W,,+I, contradiction. It is
easy to see that g cannot move w to a new point; it would have to be at the same
distance as w from every point in an open set. So V covers " and for any
x [" ::Ira such that x W,,, i.e., g"(x)AfqAz. The result follows.

Remark 3.3. For simplicity we have defined g as the composite of the
retractions in some order. It is clear that the argument does not depend on the

498 M.D. ALDF,R

order. Moreover, replacing g by any sequence of the retractions rl through rj in
which each retraction occurs will not affect the result. Thus we have the following
corollary.

COROLLARY 3.4. Taking the Aj to be half-spaces of X* bounded by hyper-
planes 2i, corresponding to the points xj in some data set f, and interpreting the
retractions r X* -A as the standard correction procedure for x, we have Theorem
2.15, the perceptron convergence theorem for the standard correction algorithm.

4. Committee and hierarchy nets.
Remark 4.1. The committee net, cognate with the MADALINE, is formally

defined as in Definition 2.18 as follows:
DEFINITION 4.2. The committee net of order q is the map

C: II XxR"-*S
j=l,q

given by C(L1, L2," ", Lq, x) sgn [Yi=,.q sgn (Li(x))].
Remark 4.2.1. Informally we recall that this means that q distinct T.L.U.’s

each give a verdict of + 1, and the majority of the committee determines the
output. We shall suppose q odd to avoid ties; strictly speaking C is not defined
everywhere on the nominal domain above; for a given set (LI, L,,. ., Lq), then
C(L1, L=, , Lq, x) is not defined for x in the kernel of any of the Lj. This is a set
of measure zero, and we shall ignore it; arbitrary conventions are possible that will
cope with this. We shall frequently let the map sgn be understood, and write L(x)
where we mean sgn (L(x)) in what follows.

Remark 4.3. The simple hierarchy net has not, to my knowledge been treated
in the literature. We recall that it consists of a master and two slave units; the
master on receipt of a data point allocates the decision to one or other of the two
slaves. The output of the chosen slave is the.output of the net. Formally we have,
as in Definition 2.20, Definition 4.4.

DEFINITION 4.4. The simple hierarchy net is the map

given by

\ / \ /2 2

(where L(x) is an abbreviation for sgn (L(x))).
Remark 4.5. Much of what follows does not depend on whether we are

discussing the committee net or the hierarchy net: the term "net" will in general
mean some configuration of T.L.U.’s having the property that a data point of R"
may be presented to some subset of the set of T.L.U.’s (possibly all of them) and a
unique output, + 1 is allocated to the data point by the net. We shall not inquire
how this is accomplished in general, but we observe that the simple hierarchy net
and the committee net are nets in this sense. More formally, we have the following
definition.

HIERARCHIES OF MODEL NEURONES 499

DEFINITION 4.5.1. A net of order q is a set of at least q T.L.U.’s and a map

j=l,q

Remark 4.6. The netproblem is as follows: given that the net has delivered its
verdict on a particular data point, we require an algorithm (which term is used
somewhat loosely to include random processes) for selecting a unit in the net.
Then this unit is deemed to be wrong and is corrected by the standard correction
procedure. We might reasonably suppose that if the net verdict is correct, that we
do not need to select a unit for correction; this supposition, however, is inconve-
nient, and we do not make it.

Obviously, we require if possible an algorithm having the property that under
its action the net will converge. In general, we ask for a specific net whether such
algorithms exist" first we formalize the problem.

DEFINITION 4.7. The symbol q denotes the set of

q+ 1 numbers {0, 1, 2,..., q}.

DEFINITION 4.8. A choice process for a net of order q is a map

0" N-q.

Remark 4.8.1. We have then two sequences, r which picks out the data
points from a finite set and "presents" them to the machine, and qt which, when
the machine/net verdict is in error (but even perhaps when it is not in error) will
choose a unit in the net and then "correct" it. We have only q T.L.U.’s in the net;
we have q + 1 possible values for O(n). We suppose that if 4(n) j for 1 <_- j -<_ q, we
correct the jth unit, and if 0(n)= 0, we make no correction at all.

Remark 4.9. 0(n) will depend on, in general, all the verdicts of the individual
units in the net on the occasion when o-(n) is presented. It may also depend on the
point o-(n) itself, but it should not depend on the whole data set and should
certainly not depend upon r(N) for N > n. Otherwise we expect 4 to be a
computable function, and we would prefer it to be a simple one that can be
computed quickly. In the case of the committee net, for instance, we might, when
the net is in error, choose for correction among those units which are wrong, that
unit having the absolute value of Lj(o(n)) a minimum, i.e., that unit having kernel
hyperplane closest to the data point. Or we might choose among the wrong units at
random. From our point of view this is a simpler, computable function. (Obviously
a uniform probability distribution is appropriate).

We can only deal with convergence of nets when the problem is solvable.
DEFINITION 4.10. Given a net N of order q and a data set f" D S, we say

that the data set f is N-solvable iff

:::[(L1, L,’’ ", L.) H -"j=l,q

N(L1, L:z,""", Lq, x)= f(x), Vx D.

Remark 4.11. We recall the standard correction procedure of Definition
2.12. Here, we have in general the difficulty that it does not make sense to say that

500 M.D. ALDER

a particular unit is "wrong". (It does in the committee net, but not in the simple
hierarchy net) here we always correct the unit q,(n), so long as q,(n) 0. Formally
we have the following.

DEFINITION 4.12. The standard correction procedure for a net unit is the map

where X* is the weight space for the unit, and

[(1 +a). (, L)]
(x,L)=L- i,

where a is any real number such that 0< a < 1 and i is the normal vector in
X* ,+1 to the hyperplane determined by x (obtained by augmenting the
vector x with a 1 in the (n + 1)th place, in the obvious representation of X*) (i, L)
is the usual inner product in E"+l(cf. Definition 2.12).

DEFINITION 4.13. Given a net N of order q, a data set f" D--> S, a training
sequence o- N D and a choice process q N--> q, the standard action of (o-, q,) is
the map

x. Nx
,q 1,q

given by

jv, (L1, L2,""", Lq),’’(L1, I,
where (L,. , L,- , L) differs from (L1," ", ," Lq) in the]th place for
]=$(n) when q(n)#0, and where /=(o-(n), L) where is the map of
Definition 4.12.

If q(n) 0, then X(n, L1, L2," Lq) (La, Lz," , Lq), and there is no
change in the state.

Remark 4.14. This expresses unambiguously the evolution of the net under
the combined action of the choice of data points and the choice of unit to correct;
now we observe that what is required is an algorithm for $ that will, for any given
initial state of the net and for a reasonably large class of plausible training
sequences or, guarantee that after a finite number of moves N, the net has
converged, i.e., reached a solution, and that thereafter, for n > N,

xo-n I1
j----1,q j=l,q

is the identity.
We shall suppose that we do not have control of r, but that it is random. For

learning machines, i.e., nets modeled on a computer, this assumption is unneces-
sarily pessimistic; one can control the order of presentation of points, although it is
not always clear how one should pick a "good" order, i.e., one that causes rapid
convergence.

From the point of view of modeling neutral nets, this total control of input is
an unrealistic premise, and the random ordering is a closer approximation.

HIERARCHIES OF MODEL NEURONES 501

Remark 4.15. At this point, it is possible to sketch out verbally the argument
used and the result obtained. To this end, consider a committee of 3 units learning
to classify a data set that is 3-separable in 2. Now we may draw noughts and
crosses on a sheet of paper and the committee becomes three oriented lines that
are moved about under the correction procedure. To make things as concrete as
possible, we may take an.equilateral triangle and put crosses at the vertices and a
nought at the center of gravity. Then there is a disposition of the three lines which
will correctly classify these four points, as a committee, i.e., by taking the majority
verdict.

This solution has the property that for each line, the line is right about some
points and generally wrong about others. Consider the maximal subset of points
about which the point is right. If the points are called at random, sooner or later
there will be called just this set of points in a sequence, and if we allocate
corrections at random, then sooner or later such a concentration of just these
points will be called when it is this unit’s turn to be corrected. This also holds for
the other units. Consequently, if we wait long enough and call all the points at
random and allocate at random, the coincidence will occur of moving the lines
into the right positions to give a correct classification.

It will be objected that waiting for a monkey to type out even a single line of
Shakespeare demands more patience than seems reasonable. Quantitative exami-
nations of convergence times, however, does something to alleviate the depres-
sion engendered by meditating on the proof. Two considerations are relevant, viz.
(a) a good deal of symmetry in the solution space exists, and there may be many
routes to many solutions; (b) a little redundancy of T.L.U.’s goes a long way. A
third matter will be treated in a subsequent paper: there are ways of doing better
than blind chance.

There is a complication. It is conceivable that the net as a whole will be right
on some of the occasions when we wish to move a line, and hence if we only correct
a unit when the net is wrong, we have no guarantee that we can always juggle lines
into the correct position. On the other hand, if we correct the net independently of
whether it is right or wrong, we may come to a solution state and then go straight
back out of it again; we wander through all dispositions of the lines indiscrimi-
nately and convergence never occurs. In the one case, we may get locked in a part
of the maze unable to get out; in the other case, we can go everywhere but have no
way of recognizing the exit.

We want, then, a choice process q which usually calls 0 in q when the net is
right about a point, but that sometimes doesn’t, picking at random from the
adaptive units. Moreover, this trick of correcting the net even when it is right must
cease after some number of moves, being switched off by the net being consis-
tently right, and being possibly switched on again should the net have some errors
left. By means of this somewhat unlikely procedure, we can guarantee a prob-
abilistic convergence: the probability that the net will not converge in a finite
number of moves is zero.

Remark 4.16. The argument outlined above has to be formalized with some
care; as the informal outline suggests, the complications present difficulties.

It is convenient to view the net as navigating a maze" when a unit is corrected
with respect to a data point we imagine that a choice has been made that sends the

502 M.D. ALDER

net into a new state. By a state in this context, we mean an equivalence class of all
those states which agree in their verdict on every point. One may imagine that the
data point in the plane are little pegs; then a line may be moved about from one
position to an equivalent position so long as it does not cross over a peg. It is the
equivalence class of positions which is the important "state" of a single unit, and
the list of these "states" for the net that is the important sense of the term
"net state". What is important about it is (a) we don’t actually care what the actual
position of each unit is, only at most what its "state" is, and (b) there are only a
finite number of distinct "net states".

The collection of net states in this sense can be thought of as a (finite)
collection of vertices or nodes. When a choice of unit and of data point can throw
a unit from a position in one state to some position in another state, we may draw a
directed arc from the first state to the second. In this way we build up a directed
graph, our maze, and the problem becomes one of taking a random walk in this
maze. Formally we have Definition 4.17.

DEFINITION 4.17. Given a net N of order q and a data set f D S, then two
states (L1,"" ", Lq) and (L],-.., L’q) are f-equivalent iff

L(x) L;(x) Vj" 1 j <- q, Vx D.

Remark 4.17.1. It is clear that this is an equivalence relation in the technical
sense.

DEvIyixioy 4.18. With the terminology of Definition 4.17, we shall write
ILl, , Lq] to denote the set of all states equivalent to (LI, , Lq) with respect
to a given data set.

Remark 4.18.1. In accordance with conventional mathematical usage, we
shall abuse language by referring to the "state" [L, , Lq] when we really mean
the set. It is trivial that the set of states [L,. , Lq] is finite, since D is,

DEFINITION 4.19. Given a net N of order q and a data set f D S, we say
that the derived graph of the pair (N, f) is the collection of vertices or nodes the set
of all different states [L,..-,Lo], and where there is an arc (x, j) from
[L,. , Lq] to [L[,. , L’q] whenever there is an element

(1, 2,""",)[L1,’’’ ,Lq]

such that

(/1,"’,/j,’’’,)[L],"’,
where/j @(x,), @ the map of Definition 4.12.

Remark 4.19.1. We recall that a directed graph is defined to be such a
collection of vertices and directed arcs; other far more obscure definitions are
available in the literature.

Here the arcs and vertices are both finite sets. We observe that there may be
none or several arcs between any two vertices. Also, because (L1,..-, Lq) and
(,’’ ",/q) are equivalent (i.e., [L,,..., Lq]--[]_7,1,’’-,/q]), it by no means
follows that it is possible to make the transition from (L,,- , Lq) to anything in
[L’, L’,. , L’q] just because there is a transition from (/_7,, , L,) to something
in [L,L,... ,L’q]. In other words, the arc (x,j) really acts between states
(L,--., Lq), not between the quotient states [L,..., L,].

HIERARCHIES OF MODEL NEURONES 503

Remark 4.20. If we call x and j at random, then we take a random walk on the
derived graph. If this graph has closed subgraphs that one can enter but not exit, or
if it is disconnected, then the random walk may not take us through all possible
vertices. The following proposition is stated without proof.

PROPOSITION 4.21. A finite directed graph has a distinguished vertex and the
property that for every vertex v in the graph, there is a route, i.e., a sequence of arcs,
starting at v and terminating at ,.

A route is generated by selecting a vertex at random and then choosing an arc
leaving it (uniformly) at random, and iterating from the vertex arrived at. Then the
probability is" zero that the route generatedfrom any vertex will notpass through * in
a finite number of moves.

Remark 4.22. is going to be a solution state; there may be a number of
different solutions, and we certainly cannot guarantee terminating at any particu-
lar one of them.

Now we define the class of choice functions we shall use.
DEFINITION 4.23. Let N be a net of order q, f a data set, and tr a training

sequence given as randomly generated. Then a choice function q [- q is said to
be planetic if it is constructed as follows:

If N(tr(n)) f(tr(n)) (i.e., if the net is wrong about the nth point called), then
q(n) is chosen at random from the elements of q-{0}= {1, 2, 3,..., q}, with a
uniform probability distribution.

If N(r(n))=f(r(n)) (i.e., if the net is right), then q(n)=0 unless
N(tr(n 1)) f(tr(n 1)) when q(n) is chosen randomly from q with a uniform
probability distribution.

Remark 4.23.1. A choice function constructed according to this rule will
select a unit to correct at random when the net is in error, and if the net is correct
but was in error last move, then in q/q + 1 cases a correction will still be made. This
last, rather odd, condition is what guarantees that the choice function together
with the training sequence is "planetic", i.e., wandering; that is to say, that the
state of the net will wander over all possible states, all possible vertices of the
derived graph, and not get locked in a closed subgraph.

THEOREM 4.24. Let N be a net of order q, f an N-solvable data set, tra

randomly generated training sequence and q a planetic choice process. Then under
the standard action o] (r, q), the probability is zero that the net will not converge in
some finite number of moves.

Proof. First we show that the net can actually get to a solution; then we show
that it will stay at a solution. Let denote the class of net states]-equivalent to a
solution state: we know there is at least one since]" is N-solvable. Let the net start
off in an arbitrary state (L1, , Lq), the quotient state of f-equivalent net states
denoted by [L1," , Lq] as before. Since the choice of an arc to leave ILl,. , Lq]
is made at random, we may try to use Proposition 4.21; to do so, it suffices to
establish that there is a route from ILl, , Lq] to .; more particularly, since not
all arcs from [L,..., Lq] to [L,..., L’q] are traversible from the starting state
(L, , Lq), we show that there is a route of accessible arcs; i.e., we can choose o-
and qt so as to force convergence.

Take (Z1, Z2, , Zq) .. Considering only L, we observe that there is some
maximal subset D c D dom f, such that Z1 correctly classifies flD1. That is, D1

504 M.D. ALDER

is linearly separable, and Z1 correctly separates it, and D1 is maximal in this
respect. Call under r the points of D1 in any order and correct under q the unit L1.
It may happen that the net as a whole is always right about the points of D, but it
isn’t right about every point unless it is already at a solution state. Hence we can
choose a point about which N is wrong, then on the next move, pick a point of D
that we need to correct L. In this way we can force L, by the ordinary perceptron
convergence theorem on D1, until it is in a state equivalent to Z. Now repeat on
Lz, and so on up to Lq.

The only obstruction to forcing the net from (L,..., Lq) to some state
equivalent to is the possibility of arriving at another solution, which will do just
as well. (I hope it is clear that I am not suggesting this as a practical convergence
algorithm; I am merely establishing that there do exist specific routes from any
given state to a solution state!)

Now by Proposition 4.21, it follows that a random walk will sooner or later
bring the net to ,, unless some other solution intervenes. Finally, having arrived at

the last move having corrected an error, it follows that the net is going to make a
"correction" on the next move, despite being right about all the points. This
"correction" may take it out of ,, but there is a 1/q + 1 probability of choosing 0
when no correction will be made. Subsequently, no point can move the net.
Hence, providing the net passes through often enough (and it will by the first part
of the argument), then we can expect that sooner or later it will stop there, and
convergence will occur. Again, the only obstruction to converging at is converg-
ing somewhere else.

Remark 4.25. The theorem guarantees probabilistic convergence: it is less
than efficient. We have exchanged generality for credibility to some extent here,
and must put the matter right. For the committee net, it is obviously foolish to
correct units which are "right"; it makes good sense here to say of a particular unit
and a particular data point whether or not the unit is correct in its verdict, and we
can accelerate convergence by changing the unit state only if it is wrong. In terms
of the derived graph, it makes sense to excise some arcs because we know they
lead away from a solution. It is eminently practical therefore to choose at random
only among the units which are wrong.

In the case of the simple hierarchy net, it does not always make sense to talk
of a unit being "wrong". Was it the master who erred in assigning the decision to
the wrong slave? Or did the slave simply bungle the job? There simply is no way of
meaningfully deciding the issue, which conclusion must be alarming to moralists.

If the data points are presented at random, then it is not necessary that the
unit also be chosen randomly to ensure the walk through the net be a random
walk. One might pick the units by strict rotation, or according to any scheme that
will not "derandomize" the effect of choosing the data points randomly. Con-
versely, we can hope that the route through the maze will be sufficiently planetic to
converge even if the data points are not called randomly, provided that the choice
of units to be corrected is random. In short, it is possible to strengthen the result
Theorem 4.24 somewhat; to do so is technically difficult and involves studying the
properties of derived graphs in particular cases, and the nature of random walks,
so we shall not pursue the matter here.

HIERARCHIES OF MODEL NEURONES 505

5. Conclusions. Theorem 4.24 gives a procedure for correcting two types of
net of threshold logic units and establishes that if a data set is "learnable" by the
net, then failure to converge in a finite number of moves has probability zero of
occurrence. It is clear that the proof holds for more complicated netsmhierarchies
having more than two layers, hierarchies having committees as elements, and so
on. A general argument requires a characterization of such nets which will appear
in a subsequent paper.

The practical significance of this result is that it becomes possible to model
complicated nets and to train them to correctly classify complicated patterns. It is
intuitively plausible that any finite data set can be learned by a net having order
the "convex complexity" [7] of the data set. We can chop the space into blocks
using hierarchies and learn within each block by committees. (The convex
complexity of a data set is the minimum number of elements of a cover of the
space by convex sets such that wherever two elements of the data set are in the
same convex set they have the same sign.) In short, we can be reasonably
economical in the number of units we useto learn a given data set.

The analysis of Minsky and Papert [3] of the perceptron and its limitations is
aimed mainly at its role in perception; as a model of animal perception it is of
course grossly unsatisfactory on a number of counts: as a device for machine
classification of data points it has serious drawbacks, which are examined in [3]
and [4]. The class of T.L.U. nets I have discussed here is not included in these
strictures: the perceptron is essentially a single T.L.U. Instead of restricting
ourselves to aftine functions as in the case of the single unit, it is fairly clear that we
can realize any finitely piecewise affine function by a net. Indeed, there is a sense in
which a data set f:D SO is "approximated" by a piecewise affine function
realized by a net, the net function being defined over almost all of ".

The process by which a finite data set is learned can be viewed as the
development of a theorizing machine, from a "random" theory to a theory which
is compatible with the data set. One of the limitations of our understanding at the
moment is that we cannot in general say anything about the capacity of a given net
to learn a given data set; it would be useful to have a way of deciding whether a
given data set is N-solvable for a given net N.

Another drawback is the problem of estimating the distribution of con-
vergence times; the simplest procedure is to try it and see. A practical problem
arises here; because of the stability of a net of this type under malfunction (an
attractive feature from the brain-modeling point of viewI) it is possible to have a
net converge in a computer simulation despite serious programming errors. On
two occasions I have been disappointed by the behavior of a simulated net, only to
find on program modification that there were several bugs still in there. This kind
of thing improves one’s opinion of the net as a candidate for brain modeling, but
destroys ones faith in the reliability of quantitative data.

It is, in principle, possible to actually compute the derived graph; but for even
the simplest cases this is a big and messy problem. It might be hoped that some
qualitative properties of the derived graph might be computable, perhaps by
symmetry arguments on the net or on the data set. I do not know which finite
graphs are derived graphs for various nets and data sets. Even the crudest
estimates relating complexity of the data set, complexity of the net and mean

506 M.D. ALDER

convergence time would be of great interest. Another crucial point is the
representation in " of real problems. If one wants to teach a net to recognize
symbols on a grid for instance, how can one estimate the complexity of the
corresponding data sets in R" (one data set for each dichotomy, say).

Some interesting experiments can be done here. It is perfectly possible to use
a figure or letter reading program, devised by human ingenuity, to train a net to do
the same job. How many units are required for a net to be capable of mastering the
task? What net configurations work? How long does it take? It is conceivable that
one might dispose of net models of this type, or confirm their credibility as brain
models by some estimates of net capacities based on such data.

Acknowledgment. I wish to thank some of my students--Robyn Owens and
Jo Goodall--for various assistance connected with this work, and in particular
Miss Jane Lake for providing me with a proof of Proposition 4.21.

REFERENCES

[1] NILS NILSSON, Learning Machines, McGraw-Hill, New York, 1965.
[2] M. FILLENZ, Hypothesis for a neuronal mechanism involved in memory, Nature, 238 (1962), pp..

41,43.
[3] M. MINSKY AND S. PAPERT, Perceptrons, MIT Press, Cambridge, Mass., 1969.
[4] B. ROSENBERG, A criticism of adaptive neutral nets as models of perception, Internat. J. of

Man-Machine Studies, (1972), pp. 45-53.
[5] J. MYCIELSKI, Review of ’Perceptrons’, Bull. Amer. Math. Soc., 78 (1972), pp. 12-15.

[6] H. D. BLOCK, Review of ’Perceptrons’, Information and Control, 17 (1970), pp. 501-522.
[7] M. D. ALDER, On Theories, Philos. Sci., 40 (1973), pp. 213-226.

SIAM J. CoMavx.
Vol. 4, No. 4, December 1975

NETWORK FLOW AND TESTING GRAPH CONNECTIVITY*

SHIMON EVEN" AND R. ENDRE TARJAN:I:

Abstract. An algorithm of Dinic for finding the maximum flow in a network is described. It is
then shown that if the vertex capacities are all equal to one, the algorithm requires at most O(IV[1/2 IEI)
time, and if the edge capacities are all equal to one, the algorithm requires at most O(I VI 2/3. IEI) time.
Also, these bounds are tight for Dinic’s algorithm.

These results are used to test the vertex connectivity of a graph in O(IVI 1/z. IEI 2) time and the
edge connectivity in O(I V[5/3. IEI) time.

Key words. Dinic’s algorithm, maximum flow, connectivity, vertex connectivity, edge connec-
tivity

1. Network flow. Let G(V, E) be a finite directed graph, where V is the set of
vertices and E is the set of edges. Each edge e is assigned.a capacity c(e) >= O.
One of the vertices, s, is called the source, and another, t, is called the sink. We seek
a flow function f(e) on the edges such that for every e, c(e) >= f(e) >= 0 and such
that the total flow which enters a vertex, other than s or t, will equal the total
flow which leaves the vertex. Of all such flows, we want one for which the net total
flow which emanates from s is maximum.

This well-known network flow problem [1] was recently reexamined. A
solution in O(n5) steps, where n is the number ofvertices, was produced by Edmonds
and Karp [2] in 1969. A solution in O(I VI 2" IE]) steps was published in Russian by
Dinic [3] in 1970.

In this section we present a solution in O(IVI 2. IEI), essentially the same as
Dinic’s. (This version was discovered independently by S. Even and J. Hopcroft.)

The algorithm runs in phases, at most IVI in number. We start with zero
flow; that is, f(e) 0 for every e E. In each phase, the flow is increased. New
phases are applied until no increase is possible. At that point, the proof of maxi-
mality is the same as that of Ford and Fulkerson [1], and it will not be repeated
here. However, the algorithm up to that point is not a restriction of the freedom
allowed by the Ford and Fulkerson algorithm--as is the case with the Edmonds
and Karp algorithm. The computation within each phase is through a different
method of labeling and path finding.

Assume that we have a present flow f(e). An edge is usable in the forward
direction iff(e) < c(e), and it is usable in the backward direction iff(e) > 0. Clearly,
an edge may be usable in both directions.

Each phase starts with a breadth-first search from s. That is, we start by label-
ing s with 0; i.e., 2(s) 0. Next, we label with all unlabeled vertices which are
reachable from s via a single usable edge, where the usable direction is from s to

Received by the editors June 27, 1974, and in revised form November 15, 1974.
-Computer Science Department, Technion-Israel Institute of Technology, Haifa, Israel. On

leave of absence from the Department of Applied Mathematics, Weizmann Institute of Science, Rehovot,
Israel. Parts of this work were completed during the summers of 1972 and 1973 while he visited the
Department of Computer Science, Cornell University, Ithaca, New York.

Computer Science Division, University of California at Berkeley, Berkeley, California 94720.
The work of this author was supported in part by the National Science Foundation under Grant
NSF-GJ-35604X, and by a Miller Research Fellowship.

507

508 SHIMON EVEN AND R. ENDRE TARJAN

them. This action is called scanning s. We scan the vertices in the order they are
labeled; that is, first-labeled, first-scanned. When v is scanned, all unlabeled
vertices reachable from v are labeled 2(v) + 1. Once is labeled while scanning,
say, w, we continue scanning all labeled but unscanned vertices v for which 2(v)

2(w), and terminate the breadth-first search once we reach a vertex v, waiting
to be scanned, for which 2(v) > .(w).

It is easy to see that this is nothing, but the well-known algorithm [4] for finding
a shortest path from s to when length is measured by the number of edges on the
path. Edges are used only in a usable direction, and every shortest path indicates
an augmenting path for increasing the flow.

As we conduct the breadth-first search, we prepare a copy of all vertices and
edges traced. For every vertex v, we keep a list of the edges which are usable from
v to vertices which are labeled 2(v) + 1. The total number of steps required for this
is O(IEI) if the data structure of the graph is originally by lists of adjacent edges
for each vertex. Let us call the newly prepared structure the auxiliary graph. All
paths from s to in the auxiliary graph are of length 2(0 edges.

Now we use the auxiliary graph to trace flow augmenting paths, from s to t.
These paths are found by depth-first search [5], [6]. We start tracing from s,
move through a usable edge to a vertex labeled 1, move from there to a vertex
labeled 2, etc. If we reach t, we have an augmenting path, and we push through it
as much flow as is possible. All edges along the path which cease to be usable (in
the direction used) due to this change in the flow are erased from the auxiliary
graph, and a new depth-first search is started. Clearly, each time an augmenting
path, is used, at least one edge is removed from the auxiliary graph. (Such an edge
is called a bottleneck of the path.) If the depth-first search ends in a dead-end,
namely, a vertex v from which no usable edge leads to a vertex whose label is 2(v) + 1,
then we retrace to the vertex preceding v on the path and erase the last edge from
the path and from the auxiliary graph. We continue the search from there. If
we cannot proceed from s the phase is over.

Finding one successful path takes O()(t)) steps, and in the case of failure
(when we retrace), the number of steps cannot exceed 0(2(0). In either case, at
least one edge is erased. Thus the total number of steps in tracing paths during
one phase is bounded by O(I VI" IEI). It follows that each phase cannot take more
than O(I VI. IEI) steps. We shall show that the number of phases is bounded by
VI 1, and therefore the whole algorithm does not take more than O(I VI 2. IEI),

Each auxiliary graph, when first constructed, describes all shortest augmenting
paths for the present f(e). It has the property that there is no usable edge which
leads, in a usable direction, from a vertex v to a vertex whose label is higher than
2(v) + 1. The changes in the flow performed by pushing flow through a shortest
augmenting path may create a new usable direction for some of its edges, but these
directions are from some v to a vertex labeled 2(v) 1. Thus the property remains
valid through all the changes during the phase. It follows that at the end of the
phase, a shortest augmenting path is of length higher than 2(0. Thus, from phase
to phase, 2(0 increases, and therefore the number of phases is bounded by lVI 1.

In the last phase, the labeling does not reach t, and the proof of maximality
(which brings up the max-flow min-cut theorem) is identical with that of Ford and
Fulkerson [1].

NETWORK FLOW AND TESTING GRAPH CONNECTIVITY 509

2. Zero-one network flow..Consider now a network flow problem, as above,
except that for all e E, c(e) 1. (One should realize that even if for all e E,
c(e) is integral, not necessarily 1, the algorithm described above will never intro-
duce fractions, It follows that for all flow functions along the way and for every
e, f(e) is either zero or one.

When we trace an augmenting path, the increase in the flow through it is exactly
1, and all edges used in it are erased from the auxiliary graph; that is, each edge,
when used, is a bottleneck. Also, each time we backtrack one edge, it is erased.
It follows that the number ofsteps per phase is at most O(IEI), and the total number
of steps the algorithm requires is bounded by O(I VI IEI).

Another bound, O(IEI3/z), which is better for sparse graphs can be proved,
but we have to prepare a few tools first.

Let G(V, E) be a network with integral edge capacities c(e). Assume the maxi-
mum total flow from s to is M. Also, assume that through Dinic’s algorithm
(or any other algorithm which does not introduce fractions), the flow has been
increased from zero to a present flow function f, and the present total flow from
s to is F. Define now the network (V,) with capacities g’(e) as follows"

(i) If e e E andf(e) < c(e), then e e and (e) c(e) f(e).
(ii) If e e E and f(e) > 0 then e’ e E, where e’ connects between the same two

vertices as e, but in the reverse direction, and ’(e’) f(e).
Clearly, each edge of G generates at least one edge in (, and if 0 < f(e) < c(e),
e generates two edges. However, in the case that c(e) for every edge e, each
edge generates exactly one edge in G, since f(e) can be either 0 or 1.

We shall use the following notation" (S; S)G is a cut separating s from in G
that is, S U V, S fl , s e S, e and (S;) is the set of edges in G which
lead from a vertex in S to a vertex in S.

LEMMA 1. The maximumflow in G is M F.
Proof. The definition of G implies that

g(a)= (c(a)-f(a))+ f(e),
ae(S;) ae(S;$) ee(;S)

However,

Thus

F= f(a) f(e),
ae(S;B) ee(g;S)

g(a)= c(a)-F,
ae(S;g) ae(S;)

This implies that a minimum cut of G corresponds to a minimum cut of G (namely,
is defined by the same S). By the max-flow min-cut theorem, the value of the mini-
mum cut of G is M. Thus the value of a minimum cut in G is M F. Again, by
the max-flow min-cut theorem, the maximum flow in G is M F. Q.E.D.

LEMMA 2. Let G(V, E) be a network in which c(e) for every e e E. Assume
the maximum flow from s to is M. The distance from s to when the flow is zero
everywhere is at most IEI/M.

This holds for all "reasonable" algorithms for network flow problems.

510 SHIMON EVEN AND R. ENDRE TARJAN

Proof Let V {vlv is at distance from s}. Here the distances are with zero
flow and V corresponds to the set of vertices on the ith level of the first phase
of Dinic’s algorithm. Let be the distance from s to t. The set of edges from V to

V+t is a cut, and therefore the number of edges between V and V/ is at least
M. Thus

l. M __< IEI. Q.E.D.

THEOREM 1. For networks with unit edge capacities, Dinic’s algorithm requires
at most O(IEI 3/2) steps.

Proof. If M =< IEI /, then the number of phases is bounded by IEI /e, and the
result follows. Otherwise, consider the phase during which the flow reaches the
value M IEI /2. The value of the flow, F, when the auxiliary graph for this phase
is constructed is less than M -IEI /2. However, this auxiliary graph is identical
with the initial auxiliary graph for the network . t still has unit edge capacities,
and by Lemma its maximum flow is

2 M F > M (M -IEI /2) IEI /.
Thus, by Lemma 2, the length, l, of a shortest augmenting path satisfies

< IEI < IEI 1/2

M

Thus the number of phases up to this point is at most IEI x/2 1, and since the
number of phases to completion is at most IEI /2, the total number of phases is at
most 21EIX/2. Q.E.D.

A network is of type if it satisfies the following conditions"
(i) All (edge) capacities are equal to 1.

(ii) There are no parallel edges; that is, an edge is identified by its start and
end vertices.

LEMMA 3. Let G(V, E) be a network oftype 1, with maximumflow Mfrom s to t.
The distancefrom s to when the flow is zero everywhere is at most 21Vl/x/-.

Proof Let and be as in the proof of Lemma 2. Since the network is of
type 1, we have IVI. IVy/ 1 => M. Thus, for all 0 _< < l, either

Since li= o Vl 51vI, we have

and l <- 2l Vl/v/M. Q.E.D.
THEOREM 2. For networks oftype 1, Dinic’s algorithm requires at most O(I VI 2/3

IEI steps.

Proof The proof is similar to that of Theorem l" if M <__ [VI E/a, the result
follows immediately. Let F be the flow when the auxiliary graph for the phase
during which the flow reaches the value M- I/rl 2/3 is constructed. Again, this
auxiliary graph is identical to the initial auxiliary graph for the network . may
not be of type since it may have parallel edges, but it can have at most two

NETWORK FLOW AND TESTING GRAPH CONNECTIVITY 511

parallel edges from one vertex to another.2 By Lemma 1,/r >]VI 2/3. By a variation
of Lemma 3, the length of a shortest augmenting path satisfies

2v/IV[2x//. Vi2/3<= %//[VI2/3
Thus the number ofphases up to this point is at most O(I VI 2/3) and since the number
of phases to completion is at most vI 2/3, the total number of phases is at most
o(IvI2zS), Q.E.D.

In certain applications, we need upper bounds on the flow through vertices.
This restriction can be translated to bounds on the flow through edges as follows:
each vertex v which has a vertex capacity c(v) is split into two vertices, v’ and v",
which have no explicit upper bound on the flow through them; a new edge e
connects from v’ to v" and c(e) c(v); all edges which formerly led to v now lead
to v’, and all edges which emanated from v now emanate from v". Clearly, the new
edge e and its capacity implicitly specify the upper bound on the flow through v.

A network is of type 2 if all (edge) capacities are equal to and every vertex v
other than s or either has a single edge emanating from it or has a single edge
entering it.

One important source of such networks is the case of networks with vertex
unit capacities for all vertices other than the source and the sink, which were
translated into edge capacities as above. Even if the original network had no edge
capacities (co), all edge flows (assuming no edges go directly from s to t) are im-
plicitly bounded by 1.

LEMMA 4. Let G(V, E) be a network oftype 2 with maximumflow Mfrom s to t.
The distancefrom s to when theflow is zero everywhere is at most (1 V] 2)/M + 1.

Proof The structure of G implies that a flow in G can be decomposed into
vertex-disjoint directed paths from s to t. 3 The number of these paths is equal to
the value of the flow. Assume we have a flow function f which achieves M. Let
be the length of a shortest path among the paths implied by f. Thus each path uses
at least intermediate vertices. We have

M.(l- 1) IVI- 2. Q.E.D.

LEMMA 5. If G is a network of type 2 and the present flowfunction is f, then ;
is also of type 2.

Proof If there is no flow through v (per f), then v still satisfies the condition
that there is a single edge entering it or a single edge emanating from it. If the
flow going through v is 1, assume it enters via el, and leaves via e2 In (both these
edges do not appear, but each gives rise to an edge in the reverse direction. The
other edges of G which are incident to v remain intact in . Thus the number of
incoming edges and the number of outgoing edges of v did not change. Q.E.D.

In G, we may have antiparallel edges; that is e and e’, where both connect between the same
two vertices but in opposite directions. One of them may stay in while the other gives rise to an edge
which is parallel to the first,

Namely, no two paths share a vertex except and t. In addition, the flow may imply directed
cycles which are of no interest to us.

512 SHIMON EVEN AND R. ENDRE TARJAN

THEOREM 3. For a network of type 2, Dinic’s algorithm requires at most

O([V[1/2. [El) steps.,

Proof. If M __< [VI 1/2, then the number of phases is bounded by IV[1/2, and
the result follows. Otherwise, consider the phase during which the flow reaches the
value M IV[1/2. Thus the value of the flow, F, when the auxiliary graph for this
phase is constructed is less than M- [VI /2. However, this auxiliary graph is
identical to the initial auxiliary graph for the network (. By Lemma 5, is also
of type 2. By Lemma 1, the maximum flow in t is greater than VI 1/2. By Lemma 4,
the length, l, of a shortest augmenting path satisfies

l_< IVI- 2 2).+ O(IVI 1/

VI1/2
Thus the number of phases up to this point is at most 0(I VI 1/2). Since the number
of phases to completion is at most VI /2, the total number of phases is at most
O(IVl/2). Q.E.D.

3. Applications. We want to point out two areas of applications of the
results of the previous sections. They are"

(i) matching in the bipartite graph;
(ii) connectivity of a graph.
The best known algorithm for finding a maximum matching in a bipartite

graph is that of Hopcroft and Karp [7]. Their algorithm takes at most O(n25)
steps it is a variant of the Hungarian method and is very close to Dinic’s algorithm,
in spite of the fact that they do not use the network-flow formulation. In fact, we
have borrowed the idea for the bounds ofthe previous section from them. However,
their result can be viewed as a special case of Theorem 3. One can use the network-
flow approach to solve the maximum matching in the bipartite graph 1], and
the network is of type 2.

In the remainder of this section we shall discuss the testing of connectivity
in a graph.

Let G(V, E) be a finite undirected graph. We assume that G has no self-loops.
A set of vertices, S, is called an (a, b) vertex separator if {a, b} c V S and every
path connecting a and b passes through at least one vertex of S. Let N(a, b) be the
least cardinality of an (a, b) vertex separator, assuming one exists.4 It is a theorem
that N(a, b) is equal to the maximum number of vertex disjoint paths connecting
a with b. This theorem is well known and is one of the variations of Menger’s
theorem [8]. It is not only reminiscent of the max-flow min-cut theorem, but in
fact can be proved by it. Dantzig and Fulkerson [9] pointed out this relationship,
and their proof offers an algorithm to determine N(a, b). This is done as follows"

Construct a directed network flow graph G(V, E), where V V and E is a
set of directed edges; for each e E, we have e’ and e" in E, where e’ and e" connect
between the two end vertices of e and are directed in opposite directions. Each v,
other than a and b, has vertex capacity 1. These vertex capacities can now be trans-
lated to edge capacities, as was pointed out in the previous section. The maximum
flow in this network is equal to N(a, b). This last network is of type 2, and therefore
Dinic’s algorithm achieves this result in at most 0(I VI /2. IEI) steps. (See Theorem 3).

Clearly, if a and b are connected by an edge, then no (a, b) vertex separator exists.

NETWORK FLOW AND TESTING GRAPH CONNECTIVITY 513

The vertex-connectivity, c, of G is defined in the following way"
(i) If G is completely connected,5 then c IV[1.
(ii) If G is not completely connected, then c mina.b N(a, b).

(If G is not completely connected, then the minimum value of P(a, b), where P(a, b)
is the maximum number of vertex disjoint paths connecting a and b, will be equal
to mina,b N(a, b), in spite of the fact that N(a, b) is only defined for pairs which are
not connected by an edge.)

The obvious way, then, to find c if G is not completely connected is to compute
N(a, b) for all pairs a, b which are not connected by an edge. This leads to at most
O(IVI 2) computations, and each requires at most O([VI 1/z. [El) steps. Hence at
most O(I VI 2"5. IEI) steps.

However, a slightly better bound can be proven.
LEMMA 6. The (edge or vertex) connectivity, c, of an undirected graph G(V, E)

with no self-loops and no parallel edges satisfies c <= 21EI/I VI.
Proof The connectivity cannot exceed min d(v), where d(v) is the degree of

vertex v.6 Also,

d(v) 2. IEI,
v

Thus c <= 2lEl/IVI. Q.E.D.
Now let us conduct the procedure in the following manner" we choose a

vertex v and compute N(vl, v) for each v not connected to v by an edge; there are
at most VI such computations. We repeat the computation for v2, v3, etc. We
terminate with Vk once k exceeds the minimum value of N(a, b) observed so far, y.

THEOREM 4. The value y resulting from the procedure above is equal to the
connectivity, c.

Proof By Menger’s theorem, there is a vertex separator S such that IS[c.
Thus at least one of the vertices vl, v2, "", vc+l is not in the separator. Assume
it is vj. There is a vertex v such that N(vj, v) c. Clearly y _>_ c. Also k > y. Thus
k _> c + 1. Therefore), c. Q.E.D.

Lemma 6 and Theorem 4 imply that k __< 21EI/I VI + 1. Thus the total number
of steps of our procedure is at most 0(I VI 1/2.]EI2).

In case G is a directed graph, similar definitions and approach lead to the same
result, except that for each vl, v2,-", Vk, we compute both N(vi, v) and N(v, vi)
(which are now not necessarily the same) for each applicable v. 7

A natural idea, in relation to these computations is to use the technique of
Gomory and Hu [10]. They find the maximum flows between every two vertices
in an undirected flow graph by solving only VI- flow problems. However,
their technique is not applicable to directed graphs. Observe that the network
flow problems we solve, even for the vertex connectivity of undirected graphs, are
all directed. Thus this does not suggest an improvement.

Now let us consider the question of edge connectivity. Again, let G(V, E) be
a finite undirected graph. A set of edges, T, is called an (a, b) edge separator if

Each pair of vertices is connected by an edge. In this case, there are no vertex separators.
The degree of a vertex is the number of edges incident to it.
If there is an edge from vi to v, N(vi, v) is not computed, and if there is an edge from v to vi,

N(v, v) is not computed.

514 SHIMON EVEN AND R. ENDRE TARJAN

{a, b} c V and every path connecting a and b passes through at least one edge of
T. Let M(a, b) be the least cardinality of an (a, b) edge separator. It is a theorem
that M(a, b) is equal to the maximum number of edge disjoint paths connecting a
with b. This is another variation of Menger’s theorem, and again, one can use the
network flow approach to determine M(a, b). Here, too, we may construct ,, but
one can use the undirected graph, with edge capacities all equal to 1. Since t3 is
of type 1, both Theorem and Theorem 2 provide upper bounds on the number
of steps Dinic’s algorithm will need. Thus

O([E[min {] V[2/3 [E] 1/2})
is an upper bound on the number of steps for evaluating M(a, b).

The edge connectivity, c’, of G is defined by c’ mina,b M(a, b).
Let T be a minimum edge separator in G; that is, IT[c’. Let v be any vertex

of G; then every vertex v’ on the other side of T satisfies M(v, v’) c’. Thus in
order to determine c, we can use

c’ min m(v,v’).
v’V {v}

This takes at most O([V[. [El. min {[Vl 2/3, IE[1/2})steps.
The approach described above can be used to determine the edge connectivity

for directed graphs, too, with the modification that for every v’, both M(v, v’) and
M(v’, v) have to be computed. The same bounds follow.

It is interesting to note that using the technique of Gomory and Hu would
yield the same bound for edge connectivity in the undirected case, when one uses
Dinic’s algorithm to solve each of the IV[- flow problems,s However, our
observation is simpler and works for directed graphs as well.

4. Lower bounds. In this section we shall show that the upper bounds on
Dinic’s algorithm, discussed in and 2, are tight. Namely, in each case there
are graphs for which the number of steps is as high as the upper bound.

N. Zadeh [11] showed a family of flow problems for which Edmonds and
Karp’s algorithm requires O(n) augmenting paths and a total of O(n5) steps. The
same family requires O([V[2. IE[) steps when Dinic’s algorithm is used, thus proving
that the bound given in cannot be improved.

Let us now consider the problem of maximum matching for a family of
bipartite graphs.

Let

X,,, {aijll <= j <= <= m}, Ym {bij[1 J <= <= m},
E’,, {(aij, bij)[1 __< j =< __< m},

E {(aii, bi,j+l)[1 _< j < =< m},
Em=E,nUEm.

The bipartite graph G,.(X,., Y, E,,,) is drawn for m 4 in Fig. 1. Clearly, the
maximum matching in this case is unique and is given by E. The value of the

In the case of edge connectivity of undirected graphs their technique is applicable.

NETWORK FLOW AND TESTING GRAPH CONNECTIVITY 515

FIG.

matching is

m(m + 1)_ O(m2),
2

and the number of vertices in the graph is

vI- m(m + 1)-- O(m2).
Assume now that we are looking for a maximum matching for Gm by using

Dinic’s algorithm, as suggested in 3. The network is achieved by adding two new
vertices: s, the source, and t, the sink. Also, connect s with each ai via a directed
edge (s, ai) with capacity 1, direct all the edges of Gm from X,, to Y and assign
each edge the capacity (one may use here as well), and, finally, connect each
bj to via a directed edge (b, t) again with capacity 1. The network is shown, for
m 4, in Fig. 2.

FIG. 2

The first phase of Dinic’s algorithm may produce a unit flow in each of the
edges of E,. The corresponding matching is shown in Fig. 3, for m 4, where
the edges in the matching are represented by wiggly lines. In this case, the second
phase will add {(a21 b21), (a22 b22)} to the matching, and subtract {(a2 b22)}.
In general, the ith phase will add to the matching the set

{(ai, bil), (ai2, bi2), (aii, bii)}

516 SHIMON EVEN AND R. ENDRE TARJAN

FIG. 3

and subtract the set

{(ait, bi2), (ai2, bi3), (ai,i- , bu)}.
Therefore the number of phases will be m. It is not hard to see that the total number
of steps is O(ma). Since]El O(m2), these examples show that the bounds given
by Theorems and 3 are tight. Namely, the bound O(]E[a/2) is the best possible,
for graphs with unit edge capacities, in terms of]E], and the bound O(1 V] /2.]E])
is the best possible, for graphs of type 2 in terms of IV] and

Clearly, for dense graphs oftype 2, the bound O(1 V] 1/2.]El) is more informative
than O(]E]a/2), and one may wonder if O(]V] 1/2.]E]) still remains tight there. A
family of dense graphs (O(]E])- O(]VI2)) for which this bound is still tight is
achieved by adding to G,, the following set of edges"

{(a,j, bk,)l(1 __< j =< < k) A (j < =< k =< m)}.
The steps of Dinic’s algorithm can be chosen in such a way that none of these
edges ever enters the matching. An examination reveals that

I1- O(m4), VI O(m2),

and the number of steps is O(mS).
Next, we want to show that the bound given by Theorem 2 cannot be improved

either. Let

Vm {s,t} O {ai]l =< i=< m3} [_J {b,[1 =< i=< m3}
U {cll __< __< m2} [,.J {djl(1 _-< __< m2) A (1 =< j __< m)}
13 {ell < __< m2},

and

E.,= {(s,a)ll _-<i_-<m3} U {(e,t)[1 =< i m2}
[J {(ai, bi)[1 =< i,j <- m3}
U {(bi, cj)l(1 _-< __< m3) A (1 -< j __< m2)}
U {(c, d)ll _-< __< m2}
U {(d,, ej)l(1 =< __< m) A (1 __< j =< m2)}
[,.J {(dij, di+,k)l(1 =< < m2) A (1 N j, k =< m)}.

The graph Gm(V,,, Era) is shown for the case m 2 in Fig. 4. Now assume we want
to find the maximum number of edge disjoint paths between s and t. If we use
Dinic’s algorithm for finding a maximum flow from s to t, where all edge capacities

NETWORK FLOW AND TESTING GRAPH CONNECTIVITY 517

FIG. 4

are 1, we first find a path of length 6 (via din2,1), then of length of 7, etc., up to a
path of length m2 + 5 (via d11). The number of phases is therefore O(m2). The
number of edges is O(m6), and so is the number of steps per phase. Thus the total
number of steps is O(mS). Since IEI O(m6) and VI- O(m3), O(m8) O(IVI 2/3

IEI). This shows that the bound given by Theorem 2 is tight.

5. Remarks. One may make changes in Dinic’s algorithm to produce an
algorithm for which the lower bounds, as established by the examples of the pre-
vious section, are not equal to the upper bounds of 2. However, for all the changes

518 SHIMON EVEN AND R. ENDRE TARJAN

we have tried, we could find other examples which showed that the upper bounds
of 2 are tight. Yet, let us show some results which seem to indicate that a better
algorithm exists.

THEOREM 5. For a network of type 2, the total length of all augmenting paths
in Dinic’s algorithm is at most O(I VI. log VI).

Proof. The last augmenting path, by Lemma 4, is of length at most (I VI 2)/1
+ 1, the next to last is at most (IVI- 2)/2 + long, etc. Since the number of
augmenting paths is at most VI 1, the total length of the augmenting paths L
satisfies

IVl-
L <_ VI / Vl 2). o(IvI, log lVl).

i=1

THEOREM 6. For a network oftype 1, the total length ofall augmenting paths in
Dinic’s algorithm is at most

O(min (IVl 3/2, Iel-log

Proof By a similar argument, following this time Lemma 3, and observing that
the number of augmenting paths is again 10ounded by lVI 1, we get

IVl-I
L =< Vl / 21vi .- O(I V13/2).

i=

On the other hand, if we use Lemma 2, we get

IVl-
L <__ IEI. O(IEl.loglVI) Q.E.D.

i=1

It remains to be shown that one could trace all these paths without spending
more time than their total lengths.

REFERENCES

[1] L. R. FORD AND D. R. FULKERSON, Flows in Networks, Princeton University Press, Princeton,

N.J., 1962.
I2] J. EDMONDS AND R. M. KARp, Theoretical improvements in algorithmic efficiency for network

flow problems, J. Assoc. Comput. Mach., 19 (1972), pp. 248-264.

[3] E. A. DINIC, Algorithmfor solution ofa problem ofmaximumflow in a network with power estima-

tion, Soviet Math. Dokl., 11 (1970), pp. 1277-1280.
[4] E. F. MooRE, The shortest path through a maze, Proc. of an Internat. Symp. on the Theory of

Switching (April 1957), Harvard University Press, Cambridge, Mass., 1959, pp. 285-292.

I5] J. HOPCROFT AND R. TARJAN, Algorith 447: Efficient algorithms jbr graph manipulation, Comm.,
ACM, 16 (1973), pp. 372-378.

[6] R. TARJAN, Depth-first search and linear graph algorithms, this Journal, 2 (1972), pp. 146-160.
[7] J. E. HOPCROVT AND R. M. KARP, An rl 5/2 algorithm jbr maximum matching in bipartite graphs,

this Journal, pp. 225-231.
[8] K. MENGER, Zur allgemeinen Kurventheorie, Fund. Math., 10 (1927), pp. 96-115.
[9] G. B. DANTZIG AND D. R. FULKERSON, On the max-flow min-cut theorem of networks, Linear

Inequalities and Related Systems, Annals of Math. Study 38, Princeton University Press,
Princeton, N.J., 1956, pp. 215-221.

10] R. E. GOMORV AND T. C. Hu, Multi-terminal network flows, J. Soc. Indust. and Appl. Math., 9

(1961), pp. 551-570.
[111 N. ZADEH, Theoretical efficiency of the Edmonds-Karp algorithm for computing maximal flows,

J. Assoc. Comput. Mach., 19 (1972), pp. 184-192.

SIAM J. COMPUT.
Vol. 4, No. 4, December 1975

A SIMPLE ALGORITHM
FOR

GLOBAL DATA FLOW ANALYSIS PROBLEMS*

MATTHEW S. HECHT]" AND JEFFREY D. ULLMAN$

Abstract. A simple, iterative bit propagation algorithm for solving global data flow analysis
problems such as "available expressions" and "live variables" is presented and shown to be quite
comparable in speed to the corresponding interval analysis algorithm. This comparison is facilitated by
a result relating two parameters of a reducible flow graph (fig). Namely, if G is an fig, d is the largest
number of back edges found in any cycle-free path in G, and k is the length of the interval derived
sequence of G, then k >_-d. (Intuitively, k is the maximum nesting depth of loops in a computer
program, while d is a measure of the maximum loop-interconnectedness.) The node ordering
employed by the simple algorithm is the reverse of the order in which a node is last visited while
growing any depth-first spanning tree of the flow graph. In addition, a dominator algorithm for an rfg is
presented which takes O(edges) bit vector steps.

Key words, global code improvement, flow graph, reducibility, interval analysis, dominance,
depth-first spanning tree, data flow analysis, available expressions, live variables

1. Introduction. When analyzing computer programs for code improvement
[2], [4], [19], [22], there is a class of problems, each of which can be solved in
essentially the same manner. These problems, called "global data flow analysis
problems", involve the local collection of information which is distributed
throughout the program. Some examples of global data flow analysis problems are
"available expressions" [8], [26], "live variables"[14], "reaching definitions" [5],
[6] and "very busy variables" [22]. There are several general algorithms to solve
such problems.

The "interval" approach [2], [5]-[8], [14], [22] collects relevant information
by partitioning the flow graph of the program into subgraphs called intervals,
replacing each interval by a single node containing the local information within
that interval, and continuing to define such interval partitions until the graph
becomes a single node itself, at which time global information is propagated
locally by reversing the partition process.

Another approach [16], [26], [27] propagates information in a simple itera-
tive manner until all the required information is collected; that is, until the process
converges. It is this approach which will be described and analyzed in this study.
We shall show that this second approach (with a suitable node ordering) is time
competitive with the interval approach!

Prior to presenting the main result and the algorithm, we review part of the
theory of reducible flow grap’hs.

* Received by the editors May 21, 1973, and in revised form August 15, 1974. This work was
supported by the National Science Foundation under Grant GJ-1052.

" Department of Computer Science, University of Maryland, College Park, Maryland 20742.
t Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08540.
In 1961, V. A. Vyssotsky [27] implemented this kind of flow analysis (and presumably the simple

iterative algorithm) in a Bell Laboratories 7090 FORTRAN II compiler--for strictly diagnostic
purposes.

519

520 MATrHEW S. HECHT AND JEFFREY D. ULLMAN

2. Background.
2.1 Basic definitions. A flow graph [2],[5],[10], e.g., is a triple G

(N, E, s), where"
(a) N is a finite set of nodes. Let n
(b) E is a subset of N N called the edges. Let e IEI. The edge (x, y) enters

node y and leaves node x. We say that x is a predecessor of y, and y is a successor of
X.

A path from xl to xk is a sequence of nodes (xl, , xk) such that (x,, x,/l) is in
E for 1 =< _-< k 1. The path length of (xl, , x) is k 1. If X x and k > 1, the
path is a cycle.

(c) Node s (in N) is the initial node. There is a path from s to every node.
Let G be flow graph and let h be a node of G. The interval with header h

[2], 1-5], [10], [22], e.g., denoted by I(h), is constructed as follows:
(a) First, set I(h) to {h}.
(b) while m is a node not yet in I(h) and rn s and all predecessors of m are

in I(h) do add rn to I(h) end
Observe that although m in the while-loop above may not be well-defined,

I(h) does not depend on the order in which candidates for m are chosen. A
candidate at one iteration of the while-loop will, if it is not chosen, still be a
candidate at the next iteration.

There is a certain way to choose interval headers so that a flow graph is
uniquely partitioned into disjoint interv.als. This process takes O(e) steps [2], [5].

If G is a flow graph, then the derived flow graph of G [2], [5], [10], [22],
denoted by I(G), is defined, as follows:

(a) The nodes of I(G) are the intervals of G determined from the unique
interval partitioning of G.

(b) There is an edge from the node representing interval J to that represent-
ing K if there is any edge from a node in J to the header of K, and J K. Note that
there cannot be an edge from J entering a node other than the header of K.

(c) The initial node of I(G) is I(s).
The sequence G Go, G1,-", G is called the derived sequence for G

[2], [5], [10], [22] if G,+I I(Gi) for 0 _-< _-< k 1, G_I # Gk, and I(Gk) G. G is
called the limit flow graph of G [2], [10].

A flow graph is called reducible (an rfg) [2], [5], [10], [22] if and only if its
limit flow graph is the single node with no edge (henceforth called the trivial flow
graph). Otherwise it is called irreducible or nonreducible.

Let G be a flow graph and let (x, x) be an edge of G. Transformation T1 [10]
is removal of this edge.

Let y not be the initial node and have a single predecessor, x. Transformation
T2 10] is the replacement of x, y and (x, y) by a single node z. Predecessors of x
become predecessors of z. Successors of x or y become successors of z. There is an
edge (z, z) if and only if there was formerly an edge (y, x) or (x, x). (Whenever T2
is applied as described here, we say that x consumes y.)

There are two results from 10] which interest us here. First, if T1 and T2 are
applied to a flow graph until no longer possible, a unique flow graph results,
independent of the sequence of applications of T1 and T2 actually chosen.
Second, a flow graph is reducible by intervals if and only if repeated application of
T1 and T2 yields the trivial flow graph.

GLOBAL DATA FLOW ANALYSIS PROBLEMS 521

If x and y are two distinct nodes in a flow graph G, then x dominates y
[2], [5], [11], [19], [20] if every path in G from the initial node to y contains x.

Let G (N, E, s) be a flow graph, let N1
_
N, let E1

_
E, and let h be in N.

We say R =(N,E, h) is a region of G with header h [11], [26] if in every path
(x, , xk), where xl s and xk is in N1, there is some -<_ k such that

(a) x, h; and
(b) x,+,..., x are in N; and
(c) (x,, x,+), (x,+, x,+2), , (x_, x,) are in E.

That is, access to every node in the region is through the header only.
As we proceed to apply T1 and T2 to a flow graph, each edge of an

intermediate graph represents a set of edges and each node represents a set of
nodes and edges in a natural way [26].

We say that each node and edge in the original flow graph represents itself. If
T1 is applied to node x with edge (x, x), then the resulting node represents what
node x and edge (x, x) represented. If T2 is applied to x and y, with edge (x, y)
eliminated, then the resulting node z represents what x, y, and (x, y) represented.
In addition, if two edges (x, u) and (y, u) are replaced by a single edge (z, u), then
(z, u) represents what (x, u) and (y, u) represented.

In [26] it was established that a node at any stage of the reduction of an rfg
represents a region.

Since T1 and T2 may be applied to an rfg in different sequences, it becomes
necessary to discuss specific sequences of application of T1 and T2. Informally, a
"parse" of an rfg is a list of the reductions made (T1 or T2) and the regions to
which they apply.

Formally, a parse 7r of an rfg G (N, E, s) [26] is a sequence with elements of
form (T1, u, v, S) or (T2, u, v, w, S), where u, v and w are names of nodes and S
is a set of edges. We define the parse of an rfg recursively as follows:

(a) The trivial flow graph has only the empty sequence as its parse.
(b) If G’ (which may not be the original flow graph in a sequence of

reductions) is reduced to G" by an application of T1 to node u, and the resulting
node is named v in G", then (T1, u, v, S) followed by a parse of G" is a parse of G’,
where S is the set of edges of G represented by the edge (u, u) eliminated from G’.

(c) If G’ is reduced to G" by an application of T2 to nodes u and v (with u
consuming v), and the resulting node is called w, then (T2, u, v, w, S) followed by
a parse of G" is a parse of G’, where S is the set of edges of G represented by the
edge (u, v) in G’.

If G is an rfg and 7r is a parse of G, we call an edge of G a backward edge wrt
(with respect to) 7r [26] if for some u and v this edge appears in set S of an entry
(T1, u, v, S) of r.

The next two results appear in 11].
LEMMA 1. The backward edges of an rfg are independent of the parse.
LZMMA 2. Edge (x, y) is a backward edge of an rfg if and only if x y or y

dominates x.

2.2. Depth-first search. A depth-first spanning tree (DFST) of a flow graph G
is a directed, rooted, ordered spanning tree of G grown by Algorithm A [23]. This

522 MATI’HEW S. HECHT AND JEFFREY D. ULLMAN

algorithm also defines an ordering on the nodes of G which we call rPOSTOR-
DER (reverse POSTORDER).

ALGORIWI-IM A: Computes rPOSTORDER for the nodes of a flow graph G.
Input. G (N, E, s) is a flow graph with n nodes numbered from 1 to n in an

arbitrary manner. G is represented by successor (adjacency) lists. That is, for each
node x let S(x) {yl(x, y) E}.

Output. A numbering of the nodes from 1 to n (rPOSTORDER) indicating
the reverse of the order in whicl each node was last visited.

Method.
Initially all nodes are marked "new".
There is a global integer variable with initial value n.
There is a global integer array rPOSTORDER[1 n].
The algorithm consists of a call to DFS(s), where DFS is the procedure
defined below.

recursive procedure DFS(x)
mark x "old"
while S(x) is not empty

do
select and delete a node y from S(x)
if y is marked "new"

then
/* add (x, y) to DFST */
call DFS(y)

end
end

rPOSTORDER[x]
ii-1
end DFS I-]

If (u, v) is an edge in a DFST, then u is the parent of v, and v is a child of u.
The ancestor and descendant relations are the respective transitive closures of the
parent and child relations.

Let G (N, E, s) be a flow graph and let T= (N, E’) be a DFST of G. The
edges in E-E’ fall into three categories:

(a) Edges which go from ancestors to decendants we call forward edges wrt T.
(b) Edges which go from descendants to ancestors or from a node to itself we

call back edges wrt T.
(c) Edges which go between nodes that are unrelated by the ancestor-

descendant relation we call cross edges wrt T.
Since a DFST is an ordered tree, the children of each node z are ordered from

left-to-right so that "younger" children of z are to the right of "older" children of
z. We extend the notion of "to the right" in a DFST by saying that if x is to the

The reason why the name "rPOSTORDER" was chosen here is worthy of mention. In the 1974
edition of [17], Knuth has renamed the binary tree traversals which were formerly (preorder,
postorder, endorder) in the 1968 edition to (preorder, inorder, postorder), respectively. A DFST T of
a flow graph is an ordered tree. The order in which a node was last visited while growing T is the
POSTORDER (h la 1974 edition of 17]) traversal of Twhen T is considered as a general ordered tree.

GLOBAL DATA FLOW ANALYSIS PROBLEMS 523

right of y, then all of x’s descendants are to the right of all of y’s descendants.
Thus, if (u, v) is a cross edge wrt a DFST, then u is to the right of v [23].

LEMMA 3 [11]. The backward edges ofan rfg G are exactly the back edges ofa
DFST for G.

In view of Lemmas 1 and 3, we can safely confuse backward edges and back
edges in an rfg.

3. A dominator algorithm. Developing an idea of [7] leads, when combined
with depth-first search, to a linear bit vector algorithm to find dominators.

Let T be a DFST of a flow graph G with n nodes. We consider two orderings
of the nodes of G:

(a) rPOSTORDERmas defined in Algorithm A. According to this order, x
precedes y if rPOSTORDER[x] < rPOSTORDER[y].

(b) POSTORDER--where POSTORDER[x] n + 1-rPOSTORDER[x],
for each node x. Here x precedes y if POSTORDER[x] < POSTORDER[y], i.e.,
if rPOSTORDER[y] < rPOSTORDER[x].

We define the dag of an rfg G [11], [26] to be G minus all of its back edges.
LEMMA 4. rPOSTORDER topologically sorts the dag of an rfg. (That is, the

partial order defined by the dag of an rfg is a subset of the total order defined by
rPOSTORDER.)

Proof. Let G be an rfg, let G’ be the dag of G, and let T be any DFST of G. By
Lemma 3, G’ is G without the back edges of T. It suffices to show that if there is a
path in G’ from the initial node to node y which includes node x, with x y, then
rPOSTORDER[x] < rPOSTORDER[y].

Suppose, in contradiction, that there are two distinct nodes x and y such
that there is a path in G’ from the initial node to y which includes x,
and rPOSTORDER[x] > rPOSTORDER[y]. Then POSTORDER[x] <
POSTORDER[y]. That is, y is last visited after x is last visited while growing T.

Either y is an ancestor of x, or y is to the right of x in T. If y is an ancestor of x,
then G’ contains a cycle. This is impossible. Consequently, y is to the right of x.
The path from x to y must go through a common ancestor of x and y [23], so there
would again be a cycle in G’. f-!

If is a predecessor of in an rfg, then either (i, j) is a back edge or it is not. If it
is a back edge, then either j dominates or i= j (Lemma 2), and thus cannot
dominate j. If (i, j) is not a back edge of an rfg, then rPOSTORDER[i]<
rPOSTORDER[j]. These properties of rPOSTORDER are exploited in
Algorithm B.

ALGORITHM B: Computes a set DOM(x), the dominators of x, for each
node x.

Input. G (N, E, s) is an rfg with n nodes represented by predecessor lists.
That is, for each node y, let P(y)= {xl(x, y) E}. We assume that the nodes are
numbered from 1 to n by rPOSTORDER, and we refer to each node by this
number.

This assumption can be implemented in one of two ways. One way is to replace the statement
"rPOSTORDER[x]- i" by "rPOSTORDER[i] x" in Algorithm A, and then use rPOSTORDER
appropriately. Another way is to just use a "bucket sort" (e.g., see [3]) to renumber nodes.

524 MA"Iq’HEW S. HECHT AND JEFFREY D. ULLMAN

Output. Sets DOM(j), 1 -< j =< n, where DOM(j) itt dominates j.
Method.

DOM(1)
for j 2 to n

do
DOM(j) f ,p),< ({k} U DOM(k))

end
THEOREM 1. Algorithm B is correct. That is, after Algorithm B terminates, is

in DOM(j) if and only if dominates j.
Proof. Let G be an fig. We proceed by induction on j.
Inductive hypothesis. After processing node j, is in DOM(j) if and only if

dominates j.
Basis (j 1). This is trivially true.
Induction step (j> 1). Assume the inductive hypothesis for all k <j, and

consider the case for
If dominates j, then surely dominates every predecessor of j except itself

(if P(j)). Thus is placed in DOM(j) by Algorithm B.
Now, suppose is in DOM(j), but does not dominate j. Then there is a

cycle-free path from the initial node to j which does not pass through i. Let k be
the node on the path immediately before j. By Lemma 2, (k, j) cannot be a back
edge, else j would dominate k or k j, and the path would have a cycle. Thus (k, j)
is not a back edge and rPOSTORDER[k]<rPOSTORDER[j]. As iS k and
not dominate k, we have by the induction hypothesis that is not in {k} U DOM(k)
and hence not in DOM(j). l-1

If the DOM sets are implemented by bit vectors, then Algorithm B requires
O(e) bit vector steps. This follows because in a flow graph with e edges at most e
bit vector intersections are computed in the for-loop of Algorithm B. Also, the
node ordering (rPOSTORDER) assumed as input can be computed in O(e) steps
[23].

In [2], Aho and Ullman present an O(ne) step algorithm to compute
dominators. Purdom and Moore’s algorithm [21] has the same time bound.

Allen and Cocke [7] suggest breadth-first ordering of the nodes to compute
dominators of an arbitrary graph, but their algorithm (to which Algorithm B is
similar) may require more than one pass through the nodes.

Earnest et al. [9] present an algorithm which establishes an "interval order-
ing" (similar to rPOSTORDER) but takes more than O(e) steps to compute.

Aho, Hopcroft and Ullman [1] give an O(e log e) step algorithm to find
immediate (closest) dominators in an fig. In [24], Tarjan presents an algorithm for
determining immediate dominators in O(e + n log n) steps for an arbitrary graph.

4. The central result. Following several lemmas, we establish the central
result of this paper.

DEFINITION. The loop-interconnectedness parameter of an rfg G, which we
shall denote by d(G) or simply d, is the largest number of back edges found in any
cycle-free path in G.

DEFINITION. Let G be a flow graph, let I(G) be the derived flow graph of G,
and let G’ be G minus all of its self-loops, where a self-loop is an edge from a node

GLOBAL DATA FLOW ANALYSIS PROBLEMS 525

to itself. We define the length of the derived sequence of G to be 0 if G’ is the trivial
flow graph, and otherwise it is that k 0 such that

(a) Go G’,
(b) G,/I I(G,), i_->0,
(c) Gk is the limit flow graph of G, and
(d) Gk G_I.
The length of the derived sequence of an rfg corresponds intuitively to the

maximum "nesting depth" of the loops of a computer program. The "intercon,

nectedness" of the loops of a computer program can be an entirely different thing.
For example, Fig. 1 shows a possible configuration of three nested for-loops
versus three nested while-loops with the corresponding k and d values.

d=l
k=3

d=3
k=3

(i) Three.for-loops (ii) Three while-loops

FIG. 1. "Maximum nesting depth of loops" (k) vs. "loop-interconnectedness" (d)

LEMMA 5. Let G be an rfg and let G’ be G at some intermediate stage of its
reduction by T1 and T2. If there is a pathfrom node u to node v in G’, then there exist
nodes w and x in G such that w and x are respectively represented by nodes u and v in
G’ and there is a path from w to x in G.

Proof. The lemma is an easy induction on the number of steps of r taken to
reach G’.

LEMMA 6. Let G be an fig. Nodes entered by back edges in G head intervals in
G.

Proof. The lemma is obvious for self-loops. So, let (m, h) be a back edge in G
and suppose m h. Thus h dominates m by Lemma 2. If h is the initial node, the
lemma follows. Now consider the case where h is not the initial node.

Suppose h is in interval K but does not head K. Then by the method of
constructing intervals, we must conclude that m is in K, since (m, h) is an edge.

As (m, h) is an edge, m must be added to K before h is. But then there is a
path from the initial node to the header of K and thence to m which does not pass
through h. This would contradict the assumption that h dominates m. [1

LEMMA 7. If U dominates v in an rfg G, u heads an interval in G, J is the
interval containing v, and I(u) J, then I(u) dominates J in I(G).

526 MATTHEW S. HECHT AND JEFFREY D. ULLMAN

Proof. Neither T1 nor T2 create any new paths between nodes. That is, edges
of I(G) are based precisely on edges of G. Thus, if I(u) did not dominate J, then u
would not dominate v.

LEMMA 8. Let d be the loop-interconnectedness parameter ofan rfg G, let d’ be
the loop-interconnectedness parameter of I(G), and suppose G I(G). Then
d’>=d-1.

Proof. Assume all the hypotheses, and let P be any circle-free path in G from
pl to p,, containing d back edges. We write P as an ordered sequence of edges,
P=[(pl, p2), (p2, p3),’", (p,,-, p,,)], where the th edge in P is (pj, pj+). Let
[(xa, ra), (x2, r2)," , (xa, ra)] be the subsequence of P consisting of all and only the
back edges of P. (See Fig. 2.) Note that the ri’s are distinct, since P has no cycles.

This is the last node
in path P.

Pm rd-

Oo
ri+

Xd

Xi O
ri

o
Xi+

Xi r2

This is the first
node in path P.

X3

FIG. 2. A cycle-free path P in an rig from pl to pm containing d > 0 back edges

GLOBAL DATA FLOW ANALYSIS PROBLEMS 527

Let Jy denote the interval containing the node y. By Lemma 6, each r, heads
an interval Jr,. Also, there is a path of nonback edges from each ri to xi+l, so x+l
cannot be in the interval Jr,+,. Thus we have Jx,+l Jr,+,, and the edge (Jx,+,, Z,+,) is in
I(G). Furthermore, we know that r,+a dominates x,+l by Lemma 2, and so by
Lemma 7, Jr,+1 dominates J,+, in I(G). Now by Lemma 2 again, we may conclude
that (J,/, Jr,/,) is a back edge of I(G). That is to say, each back edge of G, except
possibly the first, is preserved in I(G). If the first is also preserved, then d’= d.
Otherwise, d’= d- 1. 1-1

THEOREM 2 (Central Theorem). If G is an rfg with loop-interconnectedness
parameter d and derived sequence length k, then k >-d.

Proof. Let d do, dl,. , d be the loop-interconnectedness parameters of
the members of the derived sequence. By Lemma 8, we know that d,_ _-< d, + 1 for
1 _-< _-< k. Also, d 0, since the last graph in the derived sequence is trivial. An
elementary induction on shows that d_ _-< i. Thus do -< k, as was to be proved. I-1

We shall postpone explaining the significance of Theorem 2 until after the
next two sections. In these sections we present and then analyze a simple,
iterative, bit propagation algorithm for global data flow analysis problems.

5. Solution ot two global data flow analysis problems.
5.1. Available expressions (as in, e.g., [8], [26]). An expression such as A + B

is available at point p in a flow graph if every sequence of branches which the
program may take to p causes A +B to have been computed after the last
computation of A or B. If we can determine the set of available expressions at
entrance to the nodes of a flow graph, then we know which expressions have
already been computed prior to each node. Thus we may be able to eliminate the
redundant computation of some expressions within each node.

Let be the set of expressions computed in a flow graph G (N, E, s).
Let r N- 2. We interpret ’r[x as the set of expressions which are killed in

node x. Informally, expression A 0 B is killed if either A or B is assigned within
node x. (The symbol 0 indicates a generic binary operator.)

Let N- 2. If an expression r A 0 B is in [x], then we imagine that r
is generated within node x, and that neither A nor B is subsequently assigned
within x.

Let AEIN[x] and AEOUT[x], for each node x, be, respectively, the set of
expressions available at entrance to and at exit from node x.

The fundamental relationships which enable us to compute AEIN[x] for each
node x are:

AE1. AEIN[s] .
AE2. For x s, AEIN[x] is the intersection of AEOUT[y] over all pre-

decessors y of x.
AE3. AEOUT[x] (AEIN[x]- :7{[x]) CI 3[x] for each node x.
AE4. Since AE1-AE3 do not necessarily have a unique solution for

AEIN[x], we want the largest solution.
The algorithm which follows is a bit vector algorithm and similar to those in

[16], [26] and [27], except for the node ordering. We distinguish between sets and
bits vectors by using AEIN for sets and AEin for bit vectors. Algorithm C is
essentially AE3 "plugged into" AE2.

528 MATTHEW S. HECHT AND JEFFREY D. ULLMAN

ALGORITHM C." Computes bit vectors AEin[x] for each node x.
Input. G (N, E, s) is a flow graph with n nodes represented by predecessor

lists. That is, for each node y let P(y)= {xl(x, y) E}. The nodes are numbered
from 1 to n by rPOSTORDER. We refer to each node by its rPOSTORDER
number.

Bit vectors NOTKILL[j] and GENIi], 1 <_- j <_- n, are input where the ith bit of
NOTKILL[j] (resp. GEN[j]) is 1 if and only if the ith expression is not in Yf[j]
(resp. in [j]). All bit vectors have length p, where p is the number of expressions.

Output. Bit vectors AEin[], 1 =< j _-< n.
Method.

AEin[1] - all O’s
tor j - 2 to n do AEin[] *- all l’s end
change true
while change

do
change false
lor /-2 to n /*rPOSTORDER */

do
previous AEin[j]
AEin[j] -/kkP,j ((AEin[k] ^ NOTKILL [k]) v GEN[k])4

it previous # AEin[j] then change true end
end

end

5.2. Live variables (as in, e.g., [14]). A path in a flow graph is called
definition-clear with respect to a variable v if there is no definition of v (by
assignment or input) on that path. A variable v is live at a point p in a flow graph if
there is a definition-clear path for v from p to a use of v. That is, v is live if its
current value might be used before v is redefined. Having determined the set of
live variables at exit from each node in a flow graph, we can use this information
for register allocationmwe can determine when a value should be kept in a
register because of a subsequent use.

Let f be the set of variables occurring in a flow graph G (N, E, s).
Let :N 2’. [x], the clear of x, is the set of variables which are not

defined in node x.
Let 0-//: N 2v //[x] is the set of variables which have exposed uses in node

x, i.e., those variables with a definition-clear path from the entry of node x to a use
within node x.

Let LVOUT[x] and LVIN[x], for each node x, be the set of variables live at
exit from and on entrance to node x.

The fundamental relationships which enable us to compute LVOUT[x] for
each node x are:

LV1. If x has no successors, then LVOUT[x]

Here, the symbols/, /and stand for the AND (bitwise product), OR (bitwise sum) and NOT
(bitwise complement) functions, respectively. Note also that this expression can be evaluated for k
once on each pass, after the new value of AEin[k] is computed, and then used subsequently without
recomputation.

GLOBAL DATA FLOW ANALYSIS PROBLEMS 529

LV2. Otherwise, LVOUT[x] is the union of LVIN[y] over all successors y
of x.

LV3. LVIN[x] (LVOUT[x] f-) [x]) 9/Ix] for each node x.
LV4. Since LV1-LV3 do not necessarily have a unique solution for

LVOUT[x], we want the smallest such solution.
Let LVout be the bit vector for set LVOUT.
Algorithm D which follows is just an iterative version of LV3 "plugged into"

LV2, with a suitable initialization for LVOUT, and with a suitable node ordering.
Algorithms C and D are not exactly the same. Algorithm D propagates

information opposite to the direction of control flow, while C propagates it in the
same direction. In Algorithm D we visit the nodes in POSTORDER rather than
the reverse. Also, here we are computing OUT’s rather than IN’s.

ALGORITHM D: Computes bit vectors LVout[x] for each node x.
Input. G- (N, E, s) is a flow graph with n nodes represented by successor

lists. That is, for each node x let S(x)= {yl(x, y)6 E}. The nodes are numbered
from 1 to n by rPOSTORDER. We refer to each node by its rPOSTORDER
number. It is assumed that each node has at least one successor. A node without
any successors can be combined with its predecessors first, with a resulting gain in
efficiency.

Bit vectors CLEAR[j] and XUSE[], 1 -<_ j -<_ n, are input where the ith bit of
CLEAR[/’] (resp. XUSE[j]) is 1 if and only if the ith variable is in [j] (resp.
q/[j]). All bit vectors have length q, where q is the number of variables.

Output. Bit vectors LVout[j], 1 =< j =< n.
Method.

for j - 1 to n do LVout[j] - all O’s end
change- true
while change

do
change false
for j n to 1 by -1 /*POSTORDER */

do

end
end I-1

previous LVout[j]
LVout[j] /sj)((LVout[k] ^ CLEAR[k])v XUSE[k])ff previous LVout[j] lhen change tue eml

6. Analysis. The termination and correctness of Algorithms C and D follow
directly from [16] and [26]. We focus on the complexity.

THEOREM 3. The while-loop ofAlgorithm C is executed at most d + 2 timesfor
an rfg G.

Proof. A 0 propagates from its point of "origin"ma "kill" or the initial
node--to the place where it is needed in d + 1 iterations if it must propagate along

Analogous to Algorithm C, note that this expression can be evaluated for k once on each pass,
after the new value of LVout[k] is computed, and then used subsequently without recomputation.
Algorithms C and D are only presented without this feature so that each algorithm will be more
readable.

530 MATTHEW S. HECHT AND JEFFREY D. ULLMAN

a path P of d back edges. It takes one iteration for a 0 to arrive at the tail of the first
back edge of P. This follows since the numbers along the path must be in
increasing sequence according to rPOSTORDER. After this point, it takes one
iteration for a 0 to climb up each back edge in P to the tail of the next back edge, by
the same argument. Hence we need at most d + 1 iterations to propagate
information, plus one more iteration to detect that there are no further
changes. [-1

THEOREM 4. The while-loop ofAlgorithm D is executed at most d + 2 times for
an rfg G.

Proof. A 1 indicating a use propagates backward along a cycle-free path to a
given point in d + 1 iterations if there are d back edges in the path from the point
to the use. It takes one iteration for a 1 to reach the head of the dth back edge in
such a path. The proof is then analogous to that of Theorem 3.

THEOREM 5. Ifwe ignore initialization, Algorithm C (orAlgorithm D) takes at
most (d + 2)(e + n) bit vector steps, where a bit vector step is the logical/ or / of bit
vectors.

Proof. Since Algorithms C and D are almost identical, we mostly refer to
Algorithm D below. We assume that Algorithm D has been rewritten so that the
expression ((LVout[k] ^ CLEAR[k]) v XUSE[k]) is evaluated for k once on each
pass. Also, we assume that each node has at least one successor, since any node
without successors can be easily combined with its predecessors first, with a
resulting gain in efficiency.

For each iteration of the while-loop of Algorithm D, 2n bit vector steps are
used to evaluate ((LVout[k] ^ CLEAR[k]) v XUSE[k]) for all k, that is, n nodes
at 2 bit vector steps per node. (In Algorithm C this process uses 2(n 1) bit vector
steps.) At most e-n bit vector steps are aggregately used to perform /over all
successors of each node, because each node with m successors requires m- 1 bit
vector steps, and e successors less one for each of n nodes yields e- n. Since the
while-loop is executed at most d + 2 times (Theorem 3 and 4), we have at most
(d + 2)(e n + 2n) (d + 2)(e + n) bit vector steps. [-1

7. Discussion and condusions.
The given iterative bit propagation algorithm for global data flow analysis

problems is conceptually simple, it is very easy to program, and the length of the
resulting program is quite short. It takes O(e) steps to compute the rPOSTOR-
DER numbering of the nodes, and at most (d +2)(e +n) bit vector steps to
propagate the required information in a reducible graph. Moreover, the bit
propagation algorithm, with no modification whatsoever, works on nonreducible
graphs.

The interval analysis algorithm for global data flow analysis problems is
conceptually complicated, it is quite difficult to program, and the length of the
resulting program is very long. Nonreducible graphs present an additional time
and programming complication.

Kennedy [15] has done some detailed comparisons of our Algorithm D and
his algorithm for live variable analysis [14]. While [15] bounds the number of bit
vector steps for the algorithm of [14] more carefully than for our algorithm, it is
basically correct and indicates that on practical problems our algorithm will run in

GLOBAL DATA FLOW ANALYSIS PROBLEMS 531

time comparable to the interval analysis algorithm but may take twice as long as
some flow graphs.

We can obtain a lower bound of 2(e + n) bit vector steps for any of the
published interval analysis algorithms [2], [5], [6], [8], [14], [22]. In comparison,
the upper bound for our algorithm in Theorem 5 is (d + 2)(e + n). Thus the ratio of
our time to that of interval analysis is at most d/2 + 1, and may be less. Knuth [18]
in a study of 50 FOITrtAN programs found all to be reducible with derived
sequence length k -< 6 and an average k of 2.75. Since d <_- k is Theorem 2, we can
expect an average value of d/2 + 1 to be no more than 2.4. Thus, we may claim
that on the average, propagation algorithms take no more than 2.4 times that of
the corresponding interval analysis algorithms.

The above analysis has, however, been overly conservative. There are a
number of other factors which tend both to argue that (a) the ratio 2.4 is higher
than it should be, and (b) propagation algorithms have other virtues which make
them preferable to the interval approach.

1. Propagation algorithms handle nonreducible flow graphs with no added
effort, in fact, without even noting they are nonreducible.

2. The coding for a propagation algorithm is trivial in comparison with the
coding necessary to implement an interval analysis algorithm.

3. The interval algorithms require additional work finding and manipulating
intervals. This work requires no bit vector steps and so was not reflected in
the calculation. In comparison, the cost of a depth-first search, the only
significant part of our algorithm not reflected in the count of bit vector
steps, is negligible.

4. In the above analysis, we assumed k d. In fact, Fig. 1 indicates that d < k
is quite possible, especially in FOITrAN programs whose jumps are all
caused by DO statements.

5. Without increasing the difficulty of coding our algorithm beyond that of
the interval algorithms, we could check whether the predecessors of a
node n had had their values changed since the last time we visited n. If not,
no calculation at n is necessary for the current pass.

When all the above issues are taken into account, we believe a strong case can
be made for using bit propagation algorithms for data flow analysis.

Acknowledgment. We appreciate the help of a referee who simplified our
proofs of Lemma 8 and Theorem 2.

REFERENCES

1] A. V. AHO, J. E. HOPCROFT AND J. D. ULLMAN, Onfinding lowest common ancestors in trees,
Proc. 5th Ann. ACM Symp. on Theory of Computing, Austin, Tex., May 1973, pp. 253-265.

[2] A. V. AHO AND J. D. ULLMAN, The Theory of Parsing, Translation and Compiling: Vol.
ll--Compiling, Prentice-Hall, Englewood Cliffs, N.J., 1973.

[3] m. V. AHO, J. E. HOPCROFT AND J. D. ULLMAN, The Design and Analysis of Computer
Algorithms, Addison-Wesley, Reading, Mass., 1974.

[4] F. E. ALLEN, Program optimization, Annual Review Automatic Programming, vol. 5, Pergamon
Press, New York, 1969.

[5], Control flow analysis, SIGPLAN Notices, (1970), 5, pp. 1-19.
[6],A Basis for Program Optimization, Proc. IFIP Congr. 71, North-Holland, Amsterdam,

1971.

532 MAT/EW S. HECHT AND JEFFREY D. ULLMAN

[7] F. E. ALLEN AND J. COCKE, Graph theoretic constructs]or program control flow analysis, IBM
Res. Rep. RC 3923, IBM T. J. Watson Res. Center, Yorktown Heights, N.Y., 1972.

[8] J. COCKE, Globalcommon subexpression elimination, SIGPLAN Notices, 5 (1970), pp. 20-24.
[9] C. P. EARNEST, K. G. BALKE AND J. ANDERSON, Analysis o] graphs by ordering o] nodes, J.

Assoc. Comput. Mach., 19(1972), pp. 23-42.
10] M.S. HECHTAND J. D. ULLMAN, Flow graph reducibility, this Journal, (1972), pp. 188-202.
[11], Characterizations o[reducible flow graphs, J. Assoc. Comput. Mach., 21 (1974), pp.

367-375.
[12] M. S. HECHT, Topological sorting and flow graphs, Proc. IFIP Congr. 74, August 1974, pp.

494-499.
[13] J. E. HOPCROFT AND J. D. ULLMAN, An n log n algorithm for detecting reducible graphs, Proc.

6th Ann. Princeton Conf. on Information Sciences and Systems, March 1972, pp. 119-122.
14 K. KENNEDY, A globalflow analysis algorithm, Internat. J. Comput. Math., 3 1971), pp. 5-15.
15] A comparison o] global data flow analysis programs, Rice Tech. Rep. 476-093-.1, Rice

Univ., Houston, Tex., 1974.
16] G. A. KILDALL, A unified approach to global program optimization, Conf. Rec. of ACM Symp.

on Principles of Programming Languages, Boston, Oct. 1973, pp. 194-206.
[17] D. E. KNUTH, The Art ol Computer Programming: Vol. IwFundamental Algorithms, 2nd ed.,

Addison-Wesley, Reading, Mass., 1974.
18],An Empirical Study o]: FORTRAN Programs, Software Practice and Experience, April

(1971), pp. 105-134.
[19] E. S. LOWRY AND C. W. MEDLOCK, Object code optimization, Comm. ACM, 12 (1969), pp.

13-22.
[20] R. T. PROSSER, Applications ofBoolean matrices to the analysis o]flow diagrams, Proc. Eastern

Joint Computer Conf., Spartan Books, New York, 1959, pp. 133-138.
[21] P.W. PURDOM AND E. F. MOORE, Immediate predominators in a directed graph, Comm. ACM,

15 (1972), pp. 777-778.
[22] M. SCHAEFER, A Mathematical Theory o] Global Program Optimization, Prentice-Hall,

Englewood Cliffs, N.J., 1973.
[23] R. E. TARJAN, Depth-first search and linear graph algorithms, this Journal, (1972), pp.

146-160.
[24], Finding dominators in directed graphs, Proc. 7th Ann. Princeton Conf. on Information

Sciences and Systems, March 1973.
[25] ., Testing flow graph reducibility, Proc. 5th Ann. ACM Symp. on Theory of Computing,

Austin, Tex., May 1973, pp. 96-107.
[26] J. D. ULLMAN, Fast algorithms]:or the elimination o]common subexpressions, Acta Informatica, 2

(1973), pp. 191-213.
[27] V. A. VYSSOTSKY, Private communication, June 7, 1973.

SIAM J. COMPUT.
Vol. 4, No. 4, December 1975

EVALUATING POLYNOMIALS AT FIXED SETS OF POINTS*

A. V. AHOf, K. STEIGLITZ$ AND J. D. ULLMANt

Abstract. We investigate the evaluation of an (n-1)st degree polynomial at a sequence of n
points. It is shown that such an evaluation reduces directly to a simple convolution if and only if the
sequence of points is of the form b, ba, ba2, ., ba for complex numbers a and b (the so-called
"chirp transform"). By more complex reductions we develop an O(n log n) evaluation algorithm for
sequences of points of the form

b + c + d, ba2 + ca + d, ba4 + ca2 + d,

for complex numbers a, b, c and d. Finally we show that the evaluation of an (n-1)st-degree
polynomial and all its derivatives at a single point requires at most O(n log n) steps.

Key words, polynomial evaluation, derivative, fast Fourier transform, chirp transform, straight-
line code, computational complexity, Taylor series

1. Introduction. We consider the following problem. Given an infinite
sequence of points ao, al, a2,"-, how long, as a function of n, does it take to
evaluate an arbitrary dense univariate polynomial of degree n- 1 at the first n of
these points?

Our model of computation is the straight-line code model. For each n, we
assume that the computation is performed by a sequence of assignment state-
ments of the form A -B 0 C, where A, B and (7 are variable names, constants, or
the names of coefficients of the polynomial (input variables), and 0 is one of the
operators +, -, or /. In addition, n variables are designated as output
variables, and after execution of the sequence of assignment statements, these
variables are to hold the values of the polynomial at the n points. Such a sequence
of assignment statements will be called an algorithm, and the complexity of an
algorithm is the number of assignment statements therein.

A straight-line algorithm that evaluates any (n- 1)st-degree polynomial at n
points is said to be an evaluation algorithm. The inputs to the algorithm are the
coefficients of the polynomial. A sequence of points ao, al, a2, is said to be of
complexity at most T(n), if for all positive n there is a straight-line algorithm with
at most T(n) statements that evaluates any (n 1)st-degree polynomial at the first
n points of the sequence.

It is known that an arbitrary sequence of points is of complexity at most
O(n log n)([1] modified by the treatment in [2], [3], [4]). Certain sequences of
points, however, are of complexity at most O(n log n). The best known such
sequence of points is the "chirp transform" [5], [6], a generalization of the "fast

* Received by the editors May 13, 1974, and in revised form November 15, 1974. The work of the
second author was supported in part by the U.S. Army Research Office, Durham, under Contract
DAHCO4-09-C-0012, and by The National Science Foundation under Grant GJ-965. The work of
the third author was supported in part by The National Science Foundation under Grant GJ-35570.

? Bell Laboratories, Murray Hill, New Jersey 07974.
$ School of Engineering and Applied Science, Princeton University, Princeton, New Jersey

08540.

533

534 A. V. AHO, K. STEIGLITZ AND J. D. ULLMAN

Fourier transform" (FFT) [7]. In the chirp transform, the sequence of points z,
z 1, z2, is used, where z is any complex number. A polynomial Y,"__- b,x’ can be
evaluated at the points z, z 1, ., z n-1 in O(n log n) time as follows. To compute

n--1

(1) cj Y b,z ij for0_-<j_-<n-1,
i=0

we rewrite (1) as"

n-1

(2) c b, z-(j-’)2/2 z ’/ z/ for 0_-< j _-< n 1.
i=0

Equation (2) is a convolution which can be evaluated in O(n log n) steps with the
FFT.

Our goal is to increase the set of sequences which are known to have
O(n log n) evaluation algorithms. While an interesting problem in its own right,
digital signal processing provides the practical motivation for considering the
evaluation of high-degree dense polynomials at more general sequences of points
than that of the chirp transform. See [8] and [9], for example.

The approach we use is to consider classes of sequences. The T(n) class of
sequences is the set of all sequences which have an O(T(n)) evaluation algorithm.
Thus for each complex number z, the sequence z, zl, is in the n log n class,
and every sequence is in the n log n class. We shall ultimately consider closure
properties of classes, but first we shall consider to what extent the chirp transfor-
mation generalizes directly.

It should be noted that our definition of "class" smears the boundary between
sequences of distinct degrees of difficulty. For example, it is by no means clear that
there is speedup by constant factors in the straight-line code model, as there is for
Turing machines [10]. It is likely that there are sequences that can be evaluated in
time (l+e)T(n) but not in time T(n) for any reasonable T(n) and e >0.
Nevertheless, the definition is a useful one to make, and we shall use it to
advantage subsequently.

2. Uniqueness of the chirp transform. We have seen that the chirp transform
,=o bd3(i)7(] i), where the b,’s are the.reduces to a convolution of the form a(j) ,-1

coefficients of the polynomial to be evaluated, and a,/3 and y are independent of
the bi’s. It is interesting to consider what other transformations, if any, can be
reduced to a convolution of this form. The following theorem shows that except
for a constant factor, the chirp transform is the most we can obtain by this
technique.

THEOREM 1. For n >= 3, suppose that the evaluation of an arbitrary (n 1)-st-
=o bx at the points ao, al," ", a,-1 can be expressed as adegree polynomial ,-1

convolution of the form
n--1 n--1

(3t , b,a a(j) b,/3(ilT(i) for 0 <-_,i <= n 1
=0 =0

for some functions a, and 3/independent of the b’s. Then a zl(z_) for some
complex numbers zl and z2.

EVALUATING POLYNOMIALS 535

Proof. Since the b,’s are arbitrary, the left and right sides of (3) must agree
term by term. Thus

(4) a= a(j)8(i)y(j- i)

for all and between 0 and n- 1.
Suppose temporarily that aj 0 for any j. Taking logarithms of (4), we obtain

(5) log aj log a (j) + log/3 (i) + log /(j i) for 0 <- i, j _<- n 1.

Taking finite differences of (5) with respect to + 1 and j gives

/3(i+ 1) 3,(j-i- 1)
(6) log a, log

t/3"i----+ log
i)

for 0 =< < n 1 and 0 =< j =< n 1, and

(7) log a--L- =log a(j)+log 3’(j-i)
aj_, a(j-1) 3,(j-i- 1)

for 0 =< =< n 1 and 0 < j =< n 1. Summing (6) and (7), we obtain

(8) log ai + log ai log a(j)+log/3(i + 1_______)
a-i a(j-1) /3(i)

for 0 <= < n 1 and 0 < j _<- n 1. Taking (8) at 1 and subtracting from it (8) at
0, we obtain

(9) log ai log/3(0)/3(2) for 0 < j < n 1
aj_l /3(1)

(Note that n - 3 is necessary for this step to make sense.) It follows from (9) that

a /3(0)/3(2)
ai_l /3(1)2

fr 0<J <n-1

and therefore

(0)/3 (2)]a ao /3(1):
for 0=<j=<n-l.

Let zl ao and z_ =/3(0)/3(2)//3(1) to prove the theorem.
The detail which remains is what happens when. ai 0 for some j, say jo.

Referring back to (3), we see that the left side evaluated at ajo is just bo. Thus, in
place of equation (4) with j jo, we have

(10) a(jo)fl(i)3,(jo- i) 0 for 1 =< --< n 1,

(11) c(jo)/3(0)’y(jo) 1.

From (11) we see a (jo) 0. Thus by (10) we have/3 (i) 3’(jo i) 0 for 1 _-< -< n 1.
The theorem is easily seen to hold if a 0 for all j. Thus assume the contrary.

If /3(i)=0 for any i, then the right side of (3) is independent of b,. This is
impossible, since we assumed not all a’s are zero. We may conclude that
3’(jo- i) 0 for 1 -< =< n 1. It is sufficient to consider two cases.

536 A. V. AHO, K. STEIGLITZ AND J. D. ULLMAN

Case 1. ao=0 and ajo+l0. Then, since y(jo-1)=0, it follows that
/((jo+ 1)-2)=0. Thus, for j =jo+ 1, the right side of (3) is independent of b2.
Since n _-> 3 is assumed, we have a contradiction.

Case 2. ao 0 and ao-1 0. Then the right side of (3) is independent of bo for
j jo-1, again yielding a contradiction, i-I

Note that Theorem 1 is trivially true for n 1, but there is a counterexample
with ao 0 for the case n 2.

3. Closure properties of sequence classes. We see from Theorem 1 that the
chirp transform is essentially all that we can obtain by a simple convolution. More
extensive algebraic manipulations, however, do yield larger classes of sequences
for the n log n class. Before looking at these more complex operations, we derive
several "closure properties" that hold for the various sequence classes.

LEMMA 1. If sequence ao, al, a2,’’’ is in class T(n)>-n, and c is any
complex number, then sequence cao, ca1, ca2,.." is also in class T(n).

Proof. Let A. be an algorithm that takes as input the coefficients
Y,i=o b,aj for 0 <n- 1 as outputs. Then webo, bl, bn-1 and produces dj ,-1 __< j

n--1may construct algorithm B. to compute e Y,=o b,(ca) for 0 <_- j -< n 1. B. works
as follows:

1. In n 2 steps, compute f c’ for 2 _-< -< n 1. Let fo 1 and fl c.
2. In n 1 steps, compute g b for 0 -_< _-< n 1.
3. Apply algorithm Ao to coefficients go, gl," ", g,-1.

4. The outputs of A. are the desired outputs for
It should be clear that B. works, and that the length of the straight-line algorithm
B. is 2n 3 plus the length of A.. Thus, since T(n) >- n, we know that the length of
B. does not exceed 3 T(n).

LEMMA 2. If ao, al, a2, is in the T(n) >- n log n class, and k is any positive
integer, then ao, a, az, is also in the T(n) class.

Proo] The proof is again straightforward. Given the coefficients
bo, bl," ", b,-1, we construct a new sequence of coefficients of length kn by
inserting k- 1 O’s after each of the b’s. Then we break this sequence into k
subsequences of length n. We let the subsequences represent k polynomials
po, pl,’" ", p-l. We now have

n--1 k-1

(12)
=0 r=O

for 0__<j__<n- 1.
We use the assumed O(T(n)) algorithm k times to evaluate the pr’s at

ao, al, ", a,_l. The terms aT’ for 0 _-< j _-< n 1 and 0 _-< r _-< k 1 can be evaluated
in O(kn + n log n) steps, and the right side of (12) can be evaluated in O(kn) steps

r,, and pr(a)’s. Thus the entire algorithm requires O(kT(n))given the a
+ O(kn + n log n) steps. Since k is a constant and T(n) >- n log n, this function is
of the order of T(n). [-1

LEMMA 3. If ao, a, is in the T(n)>-_ n log n class and c is any complex
number, then ao + c, al + c, is also in the T(n) class.

EVALUATING POLYNOMIALS 537

Y’.,=o b,(aj + c) for 0 -< j -< n 1. This can be donePro@ We wish to compute ,-1

in the following manner:

(13)
Z b,(a+c)’= Z b, ac’-r= Z b, ac ’-r

i=0 i=0 r=O r r---O i=r

If we define f(x) bxx! for 0 -< x _-< n- 1 and

-X/(-x)! for -(n- 1)-<x_-<O,
g(x)

0 for 1 _-< x -< n 1,

then we can allow the inner summation of (13) to range from 0 to n 1 and write
(13) as:

rn--1n--1

)i
n--1 aj

(14) Y. b,(a+c Y. [(i)g(r-i).
=0 r=O =0

It is easy to see how to compute the necessary values of f(x) and g(x) in O(n)
steps. Then the inner summation of (14) can be evaluated for 0 -< r-< n-1 in
O(n log n) steps, since it is a convolution. In O(n) more steps, we can compute
for 0 <- r -< n 1. Thus we can compute dr (1/r!) i"=- f(i)g(r i) for 0 _-< r =< n 1
in O(n log n) steps.

Thus the problem of evaluating ,"=- b,x’ at points ao + c, al + c, has been
reduced in O(n log n) steps to the problem of evaluating i"---2 dix at points
ao, al," ". The latter evaluation can be done in T(n) steps. Since T(n)>-n log n,
the desired evaluation takes O(T(n)) steps.

We may now combine the three lemmas to obtain additional closure proper-
ties of sequence classes.

THEOREM 2. If ao, a1,’’’ is in class T(n)>--n log n, b and c are complex
numbers, and k is any positive integer, then bao+ C, ba+ c, is in class T(n).

Proof. By Lemma 2, sequence ao, a,. is in class T(n). By Lemma 1, so is
sequence ba, ba,..., and by Lemma 3 we have the theorem.

THEOREM 3. /f sequence ao, al, is in class T(n)>-_ n log n, and b, c and d
are complex numbers, then bag 4- cao + d, ba + ca1 + d, is in class T(n).

Proof. By completing the square, we can find complex numbers e and [such
that for all x,

b(x + e) +/= bx + cx + d.

By Lemma 3, ao + e, al + e,. is in clfiss T(n). Using Theorem 2 with k 2, we
see that b(ao+e)Z+f, b(al+e)Z+f, is in class T(n). This sequence is the
desired one.

We have the following corollary to the theorems above and the chirp
transform theorem.

THEOREM 4. The following sequences are in class n log n for complex num-
bers a, b, c and d, and positive integer k:

(15) b + c, ba ’ + c, ba 2k + c,.

538 A. V. AHO, K. STEIGLITZ AND J. D. ULLMAN

and

(16) b+c+d, ba2+ca+d, ba4+ca2+d,. ..
Note that (15) is a special case of (16) with a, b and d set to a k, 0 and b,
respectively.

4. Evaluation of a polynomial and all its derivatives. There has been recent
interest in the question of how fast one can evaluate a polynomial and all its
derivatives at a single point. Shaw and Traub [1 1] show that one can reduce the
number of multiplications to O(n), although the algorithm given required O(n)
total operations. Kung [3] and Borodin and Munro [13] independently observed
that evaluation of a polynomial and its derivatives reduces to evaluation and
interpolation of polynomials, and thus could be done in O(n log n) steps. Kung
[12] gives another O(n log n) algorithm without using evaluation and interpola-
tion. In this section we show that problem can be done in O(n log n) steps. This
result hinges upon the following definition and lemma.

The Taylor series of a polynomial Y.,"__-o bix’ at point a is that polynomial
n--1Y.i=o cx such that for all x,

n--1 n--1

c,(x-a)’= Y. b,x’.
i=0 i=0

LEMMA 4. The problems o[evaluating a polynomial and all its derivatives at a
point and of finding the Taylor series of a polynomial at a point require within 2n
operations of each other for polynomials o]: degree n 1.

Proof. Let ,"__- b,x’--Y.,"=- c,(x-a)’ for all x. Then

b’x’ k!ck.k

Thus the kth derivative at point a and the kth coefficient of the Taylor expansion
can be recovered from one another by multiplying or dividing by k! 71

THEOREM 5. An (n- 1)-st-degree polynomial and all its derivatives can be
evaluated at point c in O(n log n) steps.

Proof. In Lemma 3 we showed how to compute from c and the b,’s in
O(n log n) steps those numbers dj, 0 -<] _-< n 1, such that for all x,

n--1 n--1

(17) Z b,(x+c)’= Z d,x .
=0 r=0

If (17) holds, then it is surely true that for any x,
n--1 n--1

Z b,x’= Z d,(x-c)’.
=o =0

The theorem then follows from Lemma 4.
Theorem 5 has been independently shown by Vari 14].

Acknowledgment. The authors would like to thank the referees for a
number of perceptive comments.

EVALUATING POLYNOMIALS 539

REFERENCES

1] R. MOENCK AND A. B. BORODIN, Fast modular trans[orms via division, Conf. Rec. IEEE 13th
Ann. Symp. on Switching and Automata Theory, 1972, pp. 90-96.

[2] A. V. AHO, J. E. HOPCROFT AND J. D. ULLMAN, The Design and Analysis of Computer
Algorithms, Addison-Wesley, Reading, Mass., 1974.

[3] H. T. KUNG, Fast.evaluation and interpolation, Tech. Rep., Dept. of Computer Sci.; Carnegie-
Mellon Univ., Pittsburgh, 1973.

[4 M. SIEVEKING, An algorithm[or the division o] power series, Computing, 10 1972), pp. 153-156.
[5] L. I. BLUESTEIN, A linear filtering approach to the computationo] the discrete Fourier transform,

IEEE Trans. Electroacoustics, AU-18 (1970), pp. 451-455.
[6] L. R. RABINER, R. W. SCHAFERAND C. M. RADER, The chirp z-trans]:orm and its applications,

Bell System Tech. J., 48 (1969), pp. 1249-1292.
[7] J. M. COOLEY AND J. W. TUKEY, An algorithm for the calculation of Fourier series, Math.

Comp., 19 (1965), pp. 297-301.
[8] A. OPPENHEIM AND O. H. JOHNSON, Discrete representation o]:signals, Proc. IEEE, 60 (1972),

pp. 681-691.
[9] A. OPPENHEIM, D. H. JOHNSON AND K. STEIGLITZ, Computation of spectra with unequal

resolution using the fast Fourier trans]orm, Proc. IEEE (Lett), 59 (1971), pp. 299-301.
10] J. HARTMANIS AND R. E. STEARNS, On the computational complexity o]: algorithms, Trans.

Amer. Math. Soc., 117 (1965), 285-306.
11 M. SHAW AND J. F. TRAUB, On the number of multiplications]or the evaluation o] a polynomial

and some o" its derivatives, J. Assoc. Comput. Mach., 21 (1974), pp. 161-167.
[12] H. T. KUNG, A new upper bound on the complexity o] derivative evaluation, Information

Processing Letters, 2 (1973), pp. 146-147.
[13] A. B. BORODIN AND I. MUNRO, Notes on Efficient and Optimal Algorithms, American-

Elsevier, New York, 1975.
[14] T. M. VARI, Some complexity results]or a class o] Toeplitz matrices, Tech. Rep., Dept. of

Computer Sci. and Mathematics, York Univ., Toronto, 1974.

SIAM J. COMPUT.
Voi. 4, No. 4, December 1975

AN ELEMENTARY SOLUTION OF THE
QUEUING SYSTEM G/G/l*

ALAN G. KONHEIM]

Abstract. In this note we give an elementary method for calculating the stationary distribution of

waiting time in a G/G/1 queue.

Key words, queuing theory

Our goal is to provide an elementary method for calculating the stationary
distribution of waiting time in a G/G/1 queue. The analysis of the waiting time of
the nth customer has been given by several authors; in 1952 by both Pollaczek [4]
and Lindley [3] and by Spitzer [5] in 1957. A good presentation of these methods
may be found in the recent book by Cohen [2]. All of these solutions share the
common use of complex analytic methods. Lindley’s solution involves a Wiener-
Hopf factorization, while both Pollaczek and Spitzer require the evaluation of
contour integrals. Our point of view is somewhat different. We propose to
examine the G/G/1 system within a discrete framework. This will avoid some of
the complications in the aforementioned solutions. Our solution will only require
the ability to factor polynomials. The discrete setting appears natural for applica-
tions in computer science in which the statistical data for the problem may be
empirically derived.

Our assumptions are as follows:
1. Customers (service requests) enter the service station singly; their arrival

times {T:l_-<i<oo} (To =0) form a renewal process with inter-arrival times
{zi T-T_I 1-<_i <oo}. The inter-arrival times are independent identically
distributed random variables with law

Pr {-i k6} p, O<__k<-K<oo.

2. The service time process {S, 1 _-< < oo}, where S, is the service time of the
ith request, consists of independent identically distributed random variables with
law

Pr{S, k6} qk,

3. The inter-arrival time and service processes are independent.
4. The queuing process is positive recurrent:

K1 K

Y kpk > kq,.
k =0 k =0

* Received by the editors August 27, 1974, and in revised form December 7, 1974.
t IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598.

540

SOLUTION OF THE QUEUING SYSTEM G/G/1 541

Let W. denote the waiting time of the nth customer. Then W1 0 and

W"/I={+S"-’/1 ifT+S"+W>-T/l’otherwise,
which we may write as

(1) W/=(W+(S-z/,))+, l_-<n<oo, W=0,

with a max (a, 0). If F, (x) Pr{ W, -< x} is the distribution function of W,, then
(1) yields

(2)

0 otherwise,

where G is the distribution function of S-z,,/l. Since the queueing process is
positive recurrent, the sequence {F} converges as n oo to a proper distribution
function F which satisfies the so-called Wiener-Hopf equation

(3) F(x)=
F.(x-y)G(dy) ifO-<x

otherwise.

It is clear from our assumptions that the distribution function F has points of
incr-.ase only in the set {k6" k =0, 1,2,...}. Setting [k =F(k6)-F(k6-), we
observe that (3) is equivalent to the system of algebraic equations

(4)
k=o k =o

where

(5) r,, pq.
j,k)

O<=jKI,O<=kK2

Note that r,. vanishes outside of the set of points {-K1, , O, 1, , K2}. To the
sequences {p} and {q} we associate the generating functions

P(z) po+plz +’" +p:,z :1,

O(z) qo + qlZ + + qK2z K2

and to {r} the series

Note from (5) that

R(z)
P(1/z)O(z)

542 ALAN G. KONHEIM

valid for 0<lzl<oo. To solve the system of (4), we introduce the auxiliary
sequence {fk’-K1 _-< k < co} defined by

(6) f Y’. fr_, -KI <-j < o.
k=-K k =0

Observe that

Let us set

0

k=--K1

h=h, <__k <oo.

F(z)=fo+flZ+" "+hz+ ",

P(z) f--c,z -’ +"" + f-o + f-z +"" +z +" ",

the first series converging when [z -< 1, the second when 0 < Iz[-< 1. From (6) we
have

(7) F(z___) F(z)P(1/z)O(z).
1-z 1-z

We write F(z)= z-lM(z)(1-z)+F(z), where M is a polynomial of degree at
most K-1, and note from (7) that

1 -P(1/z)O(z)
F(z) =z-K1M(z).

1--Z

We assert that the analyticity of F determines M uniquely. To show this, set

1-P(1/z)O(z) z’-P*(z)O(z)
(8) S(z)

1-z z’(1-z)

where P*(z)= p:, +pq_z +... +poZ:. The numerator of (8) has a zero at z 1
since P(1)=P*(1)=O(1)= 1. It is a simple zero since the derivative of the
numerator evaluated at z 1 is

K K- kp kq > O.
k=O

Both P and O are polynomials with nonnegative coefficients. It follows that z 1
is the only zero of the numerator on the unit circle unless both P and O are
polynomials in z for some integer s > 1. In this latter case, {pk} and {qk} vanish
unless k is a multiple of s and we may reduce this case to s 1 by replacing 3 by s3.
Hence we may assume that the zeros of S do not lie on {z z 1}. Factor S(z):

S(z)=S+(z)S-(z),

s+(z) -’-c1H (z--’)rT.
S-(Z) Gz- [I (z n:,)-

S/(1) 1.

SOLUTION OF THE QUEUING SYSTEM G/G/1 543

LEMMA. C3 is equal to one plus the number of roots (counting multiplicity) ofS
in O<lzl< 1.

Proof. The proof is a consequence of Rouch6’s theorem [1]. Take e > O; then

max [P*(z)Q(z) P*(1 + e)Q(1 + e)
Izl_-<l+

1 +[K1-P’(1)+Q’(1)]e +O(e2)

<1 +Kle =<(1 +e)K1.

Thus by Rouch6’s theorem, z ’(’ and z:’-P*(z)Q(z) have the same number of
zeros in {z]z] _-< 1 + e}. One of these zeros is at z 1, and since e may be taken
arbitrarily small, we conclude that the numerator of S has KI-1 zeros in
{z "lzl < 1}. This implies the lemma. Note that C3_-<

We now have

-M(z) -M(z)
F(z)S+(z)

C2z:’-cl] (z nT)r7 D(z’---- (say),

where D is a polynomial whose degree by the lemma is K- 1. But F is analytic in
Izl < 1, and hence D must be a factor of M. Since the degree of M is K- 1, we
must have D =-cM. Finally, F(1)S+(1)= 1 and hence c 1. This yields our
theorem.

THEOREM. F(z)= 1/S+(z).
Examples. We. take the service time to be uniformly distributed on the set

1,2,..., 10:

=.0.1 if k=l,2,...,10,
qk t0 otherwise.

The expected service time is 5.5. The inter-arrival times have law

=0.5 ifk=a, 10,
Pk

0 otherwise,

with expectation 5 + 0.5a. We consider the three cases a 2, 3, 5. The determina-
tion of S+(z) in this case requires a factorization of

S(z)
Z9-- 0.05(1 q- Z 1-")(1 q- Z -F" -F Z 9)

Z9(I--Z)

The degree of S is easily seen to be 10-a. A standard root finding algorithm
implemented in the APL/360 system was used. The location of the zeros in the
three cases is shown in Figs. 1-3.

544 ALAN G. KONHEIM

ZEROS OF S(z)IN Im(z)>-O

0.0-I oo-oooooo-k

(0,1)

0.5-

QO-I k
o

S+ z)= :5.29-0.46 z -0.41 z2-0.57z:5 0.52 z4-O.29zS-0.24z6-O.20z7
FIG.

ZEROS OF S(z) IN Im(z)>-O

(0,1)

I_-

Pk qk
0.5-1 o o 0.5-1

oooooooooo
0.0- oooo-oooo- k 0.0- k

0 I0 0 I0

(I,0)

S+ (Z)= 1.70 O. 18Z 0.16 Z2-0.14Z3-0.12 Z4-O.IOz5
FIG. 2

SOLUTION OF THE QUEUING SYSTEM G/G/1 545

ZEROS OF S(z)IN Im(z)_->O

(0,1)

:1

(,o)

Pk qk
0.5-1 o o 0.5-I

10000000000
0.0-, o-ooooooo- k 0.0-’ k

0 I0 0 o

S+ (z) 6.62-1.02 z -0.92 z

FIG. 3

REFERENCES

1] LARS V. AHLFORS, Complex Analysis, McGraw-Hill, New York, 1953.
[2] J. W. COHEN, The Single Server Queue, Wiley-Interscience, New York, 1969.
[3] D. V. LINDLEY, The theory o]" queues with a single server, Proc. Cambridge Philos. Soc., 48

(1952), pp. 277-289.
[4] FELIX POLLACZEK, Fonctions caractdristiques de certain es r.partitions dfinies au moyen de la

notion d’orde. Application gt la thdorie des attentes, C.R. Acad. Sci. Paris, 234 (1952), pp.
2334-2336.

[5] FRANK SPITZER, The Wiener-Hopfequation whose kernel is a probability density, Duke Math. J.,
24 (1957), pp. 327-343.

	SMJCAT_V04_i1_p0001
	SMJCAT_V04_i1_p0012
	SMJCAT_V04_i1_p0034
	SMJCAT_V04_i1_p0049
	SMJCAT_V04_i1_p0056
	SMJCAT_V04_i1_p0069
	SMJCAT_V04_i1_p0077
	SMJCAT_V04_i1_p0085
	SMJCAT_V04_i2_p0097
	SMJCAT_V04_i2_p0108
	SMJCAT_V04_i2_p0125
	SMJCAT_V04_i2_p0147
	SMJCAT_V04_i2_p0163
	SMJCAT_V04_i2_p0175
	SMJCAT_V04_i2_p0187
	SMJCAT_V04_i2_p0201
	SMJCAT_V04_i3_p0209
	SMJCAT_V04_i3_p0214
	SMJCAT_V04_i3_p0221
	SMJCAT_V04_i3_p0226
	SMJCAT_V04_i3_p0249
	SMJCAT_V04_i3_p0264
	SMJCAT_V04_i3_p0271
	SMJCAT_V04_i3_p0287
	SMJCAT_V04_i3_p0307
	SMJCAT_V04_i3_p0321
	SMJCAT_V04_i3_p0326
	SMJCAT_V04_i3_p0331
	SMJCAT_V04_i3_p0341
	SMJCAT_V04_i3_p0348
	SMJCAT_V04_i3_p0356
	SMJCAT_V04_i3_p0375
	SMJCAT_V04_i3_p0381
	SMJCAT_V04_i3_p0393
	SMJCAT_V04_i4_p0397
	SMJCAT_V04_i4_p0412
	SMJCAT_V04_i4_p0431
	SMJCAT_V04_i4_p0443
	SMJCAT_V04_i4_p0461
	SMJCAT_V04_i4_p0474
	SMJCAT_V04_i4_p0478
	SMJCAT_V04_i4_p0491
	SMJCAT_V04_i4_p0507
	SMJCAT_V04_i4_p0519
	SMJCAT_V04_i4_p0533
	SMJCAT_V04_i4_p0540

